1
|
Zhang R, Lv J, Li P, Mo Y, Zhou H, Wu R, Li M, Cheng H, Zhang H, Wen J, Gui M, Deng M. Analysis of changes in nutritional compounds of dried yellow chili after different processing treatments. Sci Rep 2024; 14:21639. [PMID: 39284844 PMCID: PMC11405392 DOI: 10.1038/s41598-024-72464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024] Open
Abstract
Dried yellow chili is highly appreciated by consumers due to its excellent quality and flavor. The quality of products is determined by the drying and storage methods. In this study, dried yellow chilis were processed by natural air drying and hot air drying methods and then stored under three conditions: ambient temperature, ambient temperature with light avoidance, and at 10 °C with light avoidance for 12 months. The changes in the bioactive compounds during this period were analyzed attempting to reveal correlations between the different treatments and these compounds, with the aim of providing references for maintaining the bioactive compounds of pepper products. The results showed that samples treated with hot air had higher levels of fatty acids, resulting in a more pronounced flavor. During storage, samples stored at 10 °C with light avoidance were more effective in preserving soluble solids, total protein content, total phenols, capsaicinoids and most fatty acids.
Collapse
Affiliation(s)
- Ruihao Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Pingping Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yunrong Mo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huidan Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Rui Wu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Mengjuan Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Cheng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jinfen Wen
- Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Min Gui
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China.
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Wang R, Liu K, Tang B, Su D, He X, Deng H, Wu M, Bouzayen M, Grierson D, Liu M. The MADS-box protein SlTAGL1 regulates a ripening-associated SlDQD/SDH2 involved in flavonoid biosynthesis and resistance against Botrytis cinerea in post-harvest tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1746-1757. [PMID: 37326247 DOI: 10.1111/tpj.16354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
3-Dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) is a key rate-limiting enzyme that catalyzes the synthesis of the shikimate, which is an important metabolic intermediate in plants and animals. However, the function of SlDQD/SDH family genes in tomato (Solanum lycopersicum) fruit metabolites is still unknown. In the present study, we identified a ripening-associated SlDQD/SDH member, SlDQD/SDH2, that plays a key role in shikimate and flavonoid metabolism. Overexpression of this gene resulted in an increased content of shikimate and flavonoids, while knockout of this gene by CRISPR/Cas9 mediated gene editing led to a significantly lower content of shikimate and flavonoids by downregulation of flavonoid biosynthesis-related genes. Moreover, we showed that SlDQD/SDH2 confers resistance against Botrytis cinerea attack in post-harvest tomato fruit. Dual-luciferase reporter and EMSA assays indicated that SlDQD/SDH2 is a direct target of the key ripening regulator SlTAGL1. In general, this study provided a new insight into the biosynthesis of flavonoid and B. cinerea resistance in fruit tomatoes.
Collapse
Affiliation(s)
- Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Bei Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
3
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for the nutritional value of fresh market tomato. Funct Integr Genomics 2023; 23:121. [PMID: 37039853 DOI: 10.1007/s10142-023-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The incidence of many diseases, such as cancer, cardiovascular diseases, and diabetes, is associated with malnutrition and an unbalanced daily diet. Vegetables are an important source of vitamins and essential compounds for human health. As a result, such metabolites have increasingly become the focus of breeding programs. Tomato is one of the most popular components of our daily diet. Therefore, the improvement of tomato's nutritional quality is an important goal. In the present study, we performed targeted metabolic profiling of an interspecific Solanum pimpinellifolium × S. lycopersicum inbred backcross line (IBL) population and identified quantitative trait loci responsible for the nutritional value of tomato. Transgressive segregation was apparent for many of the nutritional compounds such that some IBLs had extremely high levels of various amino acids and vitamins compared to their parents. A total of 117 QTLs for nutritional traits including 62 QTLs for amino acids, 18 QTLs for fatty acids, 12 QTLs for water-soluble vitamins, and 25 QTLs for fat-soluble vitamins were identified. Moreover, almost 24% of identified QTLs were confirmed in previous studies, and 40 possible gene candidates were found for 18 identified QTLs. These findings can help breeders to improve the nutritional value of tomato.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Mehmet Ülger
- MULTI Tarım Seed Company, Antalya, 07112, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey.
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
4
|
Bulut M, Alseekh S, Fernie AR. Natural variation of respiration-related traits in plants. PLANT PHYSIOLOGY 2023; 191:2120-2132. [PMID: 36546766 PMCID: PMC10069898 DOI: 10.1093/plphys/kiac593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plant respiration is one of the greatest global metabolic fluxes, but rates of respiration vary massively both within different cell types as well as between different individuals and different species. Whilst this is well known, few studies have detailed population-level variation of respiration until recently. The last 20 years have seen a renaissance in studies of natural variance. In this review, we describe how experimental breeding populations and collections of large populations of accessions can be used to determine the genetic architecture of plant traits. We further detail how these approaches have been used to study the rate of respiration per se as well as traits that are intimately associated with respiration. The review highlights specific breakthroughs in these areas but also concludes that the approach should be more widely adopted in the study of respiration per se as opposed to the more frequently studied respiration-related traits.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | |
Collapse
|
5
|
Zhang Y, Yun F, Man X, Huang D, Liao W. Effects of Hydrogen Sulfide on Sugar, Organic Acid, Carotenoid, and Polyphenol Level in Tomato Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:719. [PMID: 36840068 PMCID: PMC9965552 DOI: 10.3390/plants12040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is known to have a positive effect on the postharvest storage of vegetables and fruits, but limited results are available on its influence in fruit flavor quality. Here, we presented the effect of H2S on the flavor quality of tomato fruit during postharvest. H2S decreased the content of fructose, glucose, carotene and lycopene but increased that of soluble protein, organic acid, malic acid and citric acid. These differences were directly associated with the expression of their metabolism-related genes. Moreover, H2S treatment raised the contents of total phenolics, total flavonoids and most phenolic compounds, and up-regulated the expression level of their metabolism-related genes (PAL5, 4CL, CHS1, CHS2, F3H and FLS). However, the effects of the H2S scavenger hypotaurine on the above flavor quality parameters were opposite to that of H2S, thus confirming the role of H2S in tomato flavor quality. Thus, these results provide insight into the significant roles of H2S in tomato fruit quality regulation and implicate the potential application of H2S in reducing the flavor loss of tomato fruit during postharvest.
Collapse
|
6
|
Oyserman BO, Flores SS, Griffioen T, Pan X, van der Wijk E, Pronk L, Lokhorst W, Nurfikari A, Paulson JN, Movassagh M, Stopnisek N, Kupczok A, Cordovez V, Carrión VJ, Ligterink W, Snoek BL, Medema MH, Raaijmakers JM. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat Commun 2022; 13:3228. [PMID: 35710629 PMCID: PMC9203511 DOI: 10.1038/s41467-022-30849-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/19/2022] [Indexed: 12/31/2022] Open
Abstract
Microbiomes play a pivotal role in plant growth and health, but the genetic factors involved in microbiome assembly remain largely elusive. Here, we map the molecular features of the rhizosphere microbiome as quantitative traits of a diverse hybrid population of wild and domesticated tomato. Gene content analysis of prioritized tomato quantitative trait loci suggests a genetic basis for differential recruitment of various rhizobacterial lineages, including a Streptomyces-associated 6.31 Mbp region harboring tomato domestication sweeps and encoding, among others, the iron regulator FIT and the water channel aquaporin SlTIP2.3. Within metagenome-assembled genomes of root-associated Streptomyces and Cellvibrio, we identify bacterial genes involved in metabolism of plant polysaccharides, iron, sulfur, trehalose, and vitamins, whose genetic variation associates with specific tomato QTLs. By integrating 'microbiomics' and quantitative plant genetics, we pinpoint putative plant and reciprocal rhizobacterial traits underlying microbiome assembly, thereby providing a first step towards plant-microbiome breeding programs.
Collapse
Affiliation(s)
- Ben O Oyserman
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| | - Stalin Sarango Flores
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Thom Griffioen
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Xinya Pan
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Elmar van der Wijk
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Lotte Pronk
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Wouter Lokhorst
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Azkia Nurfikari
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Joseph N Paulson
- Department of Data Sciences, Genentech, Inc. South San Francisco, South San Francisco, CA, USA
| | - Mercedeh Movassagh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Data Sciences Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nejc Stopnisek
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Anne Kupczok
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
7
|
Pennelliiside D, a New Acyl Glucose from Solanum pennellii and Chemical Synthesis of Pennelliisides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123728. [PMID: 35744854 PMCID: PMC9231340 DOI: 10.3390/molecules27123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Acyl glucoses are a group of specialized metabolites produced by Solanaceae. Solanum pennellii, a wild-type tomato plant, produces acyl glucoses in its hair-like epidermal structures known as trichomes. These compounds have been found to be herbicides, microbial growth inhibitors, or allelopathic compounds. However, there are a few reports regarding isolation and investigation of biological activities of acyl glucoses in its pure form due to the difficulty of isolation. Here, we report a new acyl glucose, pennelliiside D, isolated and identified from S. pennellii. Its structure was determined by 1D NMR and 2D NMR, together with FD-MS analysis. To clarify the absolute configuration of the acyl moiety of 2-methylbutyryl in the natural compound, two possible isomers were synthesized starting from β-D-glucose pentaacetate. By comparing the spectroscopic data of natural and synthesized compounds of isomers, the structure of pennelliiside D was confirmed to be 3,4-O-diisobutyryl-2-O-((S)-2-methylbutyryl)-D-glucose. Pennelliiside D and its constituent fatty acid moiety, (S)-2-methylbutanoic acid, did not show root growth-inhibitory activity. Additionally, in this study, chemical synthesis pathways toward pennelliisides A and B were adapted to give 1,6-O-dibenzylpennelliisides A and B.
Collapse
|
8
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
9
|
Martina M, Tikunov Y, Portis E, Bovy AG. The Genetic Basis of Tomato Aroma. Genes (Basel) 2021; 12:genes12020226. [PMID: 33557308 PMCID: PMC7915847 DOI: 10.3390/genes12020226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as "sweet", "smoky", or "fruity" aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast array of scientific studies has investigated the genetic component of tomato aroma in modern tomato cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the available literature on flavour-related QTLs in tomato. Three hundred and 5ifty nine (359) QTLs associated with tomato fruit VOCs were physically mapped on the genome and investigated for the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential donors described in literature for specific traits, (ii) highlight important QTL regions by combining information from different populations, and (iii) pinpoint potential candidate genes. This overview aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato flavour and for breeders who aim to improve tomato aroma.
Collapse
Affiliation(s)
- Matteo Martina
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - Ezio Portis
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| |
Collapse
|
10
|
Hivert G, Davidovich-Rikanati R, Bar E, Sitrit Y, Schaffer A, Dudareva N, Lewinsohn E. Prenyltransferases catalyzing geranyldiphosphate formation in tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110504. [PMID: 32540020 DOI: 10.1016/j.plantsci.2020.110504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Monoterpenes contribute either favorably or adversely to the flavor of tomato, yet modern tomato varieties generally lack monoterpenes in their fruit. The main immediate biosynthetic precursor of monoterpenes is geranyldiphosphate (GPP), produced by the action of GPP synthases (GPPSs). Plant GPPSs are often heteromeric enzymes consisting of a non-catalytic small subunit (GPPS.SSU) and a large subunit (GPPS.LSU), the latter similar to geranylgeranyldiphosphate synthases (GGPPSs) which generate longer prenylphosphate chains. We show here that LeGGPPS2, an enzyme previously reported to support carotenoid biosynthesis, can synthesize farnesyldiphosphate (FPP) and GPP in vitro, in addition to geranylgeranyldiphosphate, depending on the assay conditions. Moreover, GPP formation is favored in vitro by the interaction of LeGGPPS2 with GPPS.SSU from either Anthirrhinum majus (AmGPPS.SSU) or from a newly discovered GPPS.SSU ortholog present in the genome of M82 tomato. SlGPPS.SSU is not expressed in M82 tomato fruit but its orthologs are expressed in fruit of wild tomato relatives, such as Solanum pimpinelifollium and S. cheesmaniae that accumulate monoterpenes.
Collapse
Affiliation(s)
- Gal Hivert
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100001 Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yaron Sitrit
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Arthur Schaffer
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, P.O Box 6, Bet Dagan 50250, Israel
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100001 Israel.
| |
Collapse
|
11
|
Cheng G, Chang P, Shen Y, Wu L, El-Sappah AH, Zhang F, Liang Y. Comparing the Flavor Characteristics of 71 Tomato ( Solanum lycopersicum) Accessions in Central Shaanxi. FRONTIERS IN PLANT SCIENCE 2020; 11:586834. [PMID: 33362814 PMCID: PMC7758415 DOI: 10.3389/fpls.2020.586834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/06/2020] [Indexed: 05/21/2023]
Abstract
Flavor is an important quality of mature tomato fruits. Compared with heirloom tomatoes, modern commercial tomato cultivars are considerably less flavorful. This study aimed to compare the flavor of 71 tomato accessions (8 pink cherry, PC; 11 red cherry, RC; 15 pink large-fruited, PL; and 37 red large-fruited, RL) using hedonism scores and odor activity values. Taste compounds were detected using high-performance liquid chromatography. Volatiles were detected using gas chromatography-olfactometry-mass spectrometry. The flavor of tomato accessions can be evaluated using the DTOPSIS analysis method. According to the results of DTOPSIS analysis, 71 tomato accessions can be divided into 4 classes. Tomato accessions PL11, PC4, PC2, PC8, RL35, RC6, and RC10 had better flavor; accessions PC4, PC8, RC10, RL2, and RL35 had better tomato taste; and accessions PL11, PC2, and RC6 had better tomato odor. The concentrations of total soluble solids, fructose, glucose, and citric acid were shown to positively contribute to tomato taste. Tomato odor was mainly derived from 15 volatiles, namely, 1-hexanol, (Z)-3-hexen-1-ol, hexanal, (E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, (E,E)-2,4-decadienal, (Z)-3,7-dimethyl-2,6-octadieal, 2,6,6-timethyl-1-cyclohexene-1-carboxaldehyde, (2E)-3-(3-pentyl-2-oxiranyl)acrylaldehyde, 6-methyl-5-hepten-2-one, (E)-6,10-dimetyl-5,9-undecadien-2-one, methyl salicylate, 4-allyl-2-methoxyphenol, and 2-isobutylthiazole. Significant positive correlations (P < 0.05) were detected between the compound concentrations and flavor scores. The above-mentioned compounds can be used as parameters for the evaluation of flavor characteristics and as potential targets to improve the flavor quality of tomato varieties.
Collapse
Affiliation(s)
- Guoting Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Peipei Chang
- Institute of Agricultural Sciences, Dezhou, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Liting Wu
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Ahmed H. El-Sappah
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- *Correspondence: Fei Zhang,
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- Yan Liang,
| |
Collapse
|
12
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Calafiore R, Aliberti A, Ruggieri V, Olivieri F, Rigano MM, Barone A. Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. FRONTIERS IN PLANT SCIENCE 2019; 10:190. [PMID: 30853967 PMCID: PMC6395448 DOI: 10.3389/fpls.2019.00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
The Solanum pennellii Introgression Line (IL) population can be exploited to identify favorable alleles that can improve yield and fruit quality traits in commercial tomato varieties. Over the past few years, we have selected ILs that exhibit increased content of antioxidant compounds in the fruit compared to the cultivar M82, which represents the genetic background in which the different wild regions of the S. pennellii ILs were included. Recently, we have identified seven sub-lines of the IL7-3 accumulating different amounts of antioxidants in the ripe fruit. Since the wild region carried on chromosome 7 induces a low fruit production in IL7-3, the first aim of the present work was to evaluate yield performances of the selected sub-lines in three experimental fields located in the South of Italy. Another aim was to confirm in the same lines the high levels of antioxidants and evaluate other fruit quality traits. On red ripe fruit, the levels of soluble solids content, firmness, and ascorbic acid (AsA) were highly variable among the sub-lines grown in three environmental conditions, evidencing a significant genotype by environment interaction for soluble solids and AsA content. Only one sub-line (coded R182) exhibited a significantly higher firmness, even though no differences were observed for this trait between the parental lines M82 and IL7-3. The same sub-line showed significantly higher AsA content compared to M82, thus resembling IL7-3. Even though IL7-3 always exhibited a significantly lower yield, all the sub-lines showed yield variability over the three trials. Interestingly, the sub-line R182, selected for its better performances in terms of fruit quality, in all the trials showed a production comparable to that of the control line M82. A group of species-specific molecular markers was tested on R182 and on the parental genotypes in order to better define the wild genomic regions carried by the elite line R182. In these regions three candidate genes that could increase the level of AsA in the fruit were identified. In the future, the line R182 could be used as pre-breeding material in order to obtain new varieties improved for nutritional traits.
Collapse
Affiliation(s)
| | | | | | | | | | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
14
|
Sacco A, Raiola A, Calafiore R, Barone A, Rigano MM. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genomics 2019; 20:43. [PMID: 30646856 PMCID: PMC6332538 DOI: 10.1186/s12864-019-5428-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 01/31/2023] Open
Abstract
Background Tomato is an economically important crop with fruits that are a significant source of bioactive compounds such as ascorbic acid and phenolics. Nowadays, the majority of the enzymes of the biosynthetic pathways and of the structural genes controlling the production and the accumulation of antioxidants in plants are known; however, the mechanisms that regulate the expression of these genes are yet to be investigated. Here, we analyzed the transcriptomic changes occurring during ripening in the fruits of two tomato cultivars (E1 and E115), characterized by a different accumulation of antioxidants, in order to identify candidate genes potentially involved in the biosynthesis of ascorbic acid and phenylpropanoids. Results RNA sequencing analyses allowed identifying several structural and regulator genes putatively involved in ascorbate and phenylpropanoids biosynthesis in tomato fruits. Furthermore, transcription factors that may control antioxidants biosynthesis were identified through a weighted gene co-expression network analysis (WGCNA). Results obtained by RNA-seq and WGCNA analyses were further confirmed by RT-qPCR carried out at different ripening stages on ten cultivated tomato genotypes that accumulate different amount of bioactive compounds in the fruit. These analyses allowed us to identify one pectin methylesterase, which may affect the release of pectin-derived D-Galacturonic acid as metabolic precursor of ascorbate biosynthesis. Results reported in the present work allowed also identifying one L-ascorbate oxidase, which may favor the accumulation of reduced ascorbate in tomato fruits. Finally, the pivotal role of the enzymes chalcone synthases (CHS) in controlling the accumulation of phenolic compounds in cultivated tomato genotypes and the transcriptional control of the CHS genes exerted by Myb12 were confirmed. Conclusions By using transcriptomic analyses, candidate genes encoding transcription factors and structural genes were identified that may be involved in the accumulation of ascorbic acid and phenylpropanoids in tomato fruits of cultivated genotypes. These analyses provided novel insights into the molecular mechanisms controlling antioxidants accumulation in ripening tomato fruits. The structural genes and regulators here identified could also be used as efficient genetic markers for selecting high antioxidants tomato cultivars. Electronic supplementary material The online version of this article (10.1186/s12864-019-5428-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Sacco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Roberta Calafiore
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy.
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
15
|
Teh SL, Rostandy B, Awale M, Luby JJ, Fennell A, Hegeman AD. Genetic analysis of stilbenoid profiles in grapevine stems reveals a major mQTL hotspot on chromosome 18 associated with disease-resistance motifs. HORTICULTURE RESEARCH 2019; 6:121. [PMID: 31728196 PMCID: PMC6838171 DOI: 10.1038/s41438-019-0203-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 05/09/2023]
Abstract
Grapevine (Vitis spp.) contains a wealth of phytochemicals that have received considerable attention due to health-promoting properties and biological activities as phytoalexins. To date, the genetic basis of the quantitative variations for these potentially beneficial compounds has been limited. Here, metabolic quantitative trait locus (mQTL) mapping was conducted using grapevine stems of a segregating F2 population. Metabolic profiling of grapevine stems was performed using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), resulting in the detection of 1317 ions/features. In total, 19 of these features matched with literature-reported stilbenoid masses and were genetically mapped using a 1449-SNP linkage map and R/qtl software, resulting in the identification of four mQTLs. Two large-effect mQTLs that corresponded to a stilbenoid dimer and a trimer were mapped on chromosome 18, accounting for phenotypic variances of 29.0% and 38.4%. Functional annotations of these large-effect mQTLs on the VitisNet network database revealed a major hotspot of disease-resistance motifs on chromosome 18. This 2.8-Mbp region contains 48 genes with R-gene motifs, including variants of TIR, NBS, and LRR, that might potentially confer resistance to powdery mildew, downy mildew, or other pathogens. The locus also encompasses genes associated with flavonoid and biosynthetic pathways that are likely involved in the production of secondary metabolites, including phytoalexins. In addition, haplotype dosage effects of the five mQTLs further characterized the genomic regions for differential production of stilbenoids that can be applied in resistance breeding through manipulation of stilbenoid production in planta.
Collapse
Affiliation(s)
- Soon L. Teh
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
- Present Address: Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA 98801 USA
| | - Bety Rostandy
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
- Present Address: Department of Mathematics and Statistics, University of North Carolina, Greensboro, NC 27412 USA
| | - Mani Awale
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD 57007 USA
- Present Address: Grape and Wine Institute, University of Missouri, Columbia, MO 65211 USA
| | - James J. Luby
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | - Anne Fennell
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD 57007 USA
| | - Adrian D. Hegeman
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| |
Collapse
|
16
|
Chen J, Wang J, Chen W, Sun W, Peng M, Yuan Z, Shen S, Xie K, Jin C, Sun Y, Liu X, Fernie AR, Yu S, Luo J. Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations. PLANT PHYSIOLOGY 2018; 178:612-625. [PMID: 30139795 PMCID: PMC6181037 DOI: 10.1104/pp.18.00490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/14/2018] [Indexed: 05/05/2023]
Abstract
Metabolomic analysis coupled with advanced genetic populations represents a powerful tool with which to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the flag leaves from three interconnected chromosome segment substitution line populations with a common recurrent genetic background were used to dissect rice metabolic diversity. We effectively used multiple interconnected biparental populations, constructed by introducing genomic segments into Zhenshan 97 from ACC10 (A/Z), Minghui 63 (M/Z), and Nipponbare (N/Z), to map metabolic quantitative trait loci (mQTL). A total of 1,587 mQTL were generated, of which 684, 479, and 722 were obtained from the A/Z, M/Z, and N/Z chromosome segment substitution line populations, respectively, and we designated 99 candidate genes for 367 mQTL. In addition, 1,001 mQTL were generated specifically from joint linkage analysis with 25 candidate genes assigned. Several of these candidates were validated, such as LOC_Os07g01020 for the in vivo content of pyridoxine and its derivative and LOC_Os04g25980 for cis-zeatin glucosyltransferase activity. We propose a novel biosynthetic pathway for O-methylapigenin C-pentoside and demonstrated that LOC_Os04g11970 encodes a component of this pathway through fine-mapping. We postulate that the methylated apigenin may confer plant disease resistance. This study demonstrates the power of using multiple interconnected populations to generate a large number of veritable mQTL. The combined results are discussed in the context of functional metabolomics and the possible features of assigned candidates underlying respective metabolites.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jilin Wang
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wei Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyang Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, Hainan 572208, China
| |
Collapse
|
17
|
Rigano MM, Lionetti V, Raiola A, Bellincampi D, Barone A. Pectic enzymes as potential enhancers of ascorbic acid production through the D-galacturonate pathway in Solanaceae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:55-63. [PMID: 29241567 DOI: 10.1016/j.plantsci.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 05/24/2023]
Abstract
The increase of L-Ascorbic Acid (AsA) content in tomato (Solanum lycopersicum) is a common goal in breeding programs due to its beneficial effect on human health. To shed light into the regulation of fruit AsA content, we exploited a Solanum pennellii introgression line (IL12-4-SL) harbouring one quantitative trait locus that increases the content of total AsA in the fruit. Biochemical and transcriptomic analyses were carried out in fruits of IL12-4-SL in comparison with the cultivated line M82 at different stages of ripening. AsA content was studied in relation with pectin methylesterase (PME) activity and the degree of pectin methylesterification (DME). Our results indicated that the increase of AsA content in IL12-4-SL fruits was related with pectin de-methylesterification/degradation. Specific PME, polygalacturonase (PG) and UDP-D-glucuronic-acid-4-epimerase (UGlcAE) isoforms were proposed as components of the D-galacturonate pathway leading to AsA biosynthesis. The relationship between AsA content and PME activity was also exploited in PMEI tobacco plants expressing a specific PME inhibitor (PMEI). Here we report that tobacco PMEI plants, altered in PME activity and degree of pectin methylesterification, showed a reduction in low methylesterified pectic domains and exhibited a reduced AsA content. Overall, our results provide novel biochemical and genetic traits for increasing antioxidant content by marker-assisted selection in the Solanaceae family.
Collapse
Affiliation(s)
- Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Assunta Raiola
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy
| | - Daniela Bellincampi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Portici, Italy.
| |
Collapse
|
18
|
Wang D, Seymour GB. Tomato Flavor: Lost and Found? MOLECULAR PLANT 2017; 10:782-784. [PMID: 28478095 DOI: 10.1016/j.molp.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 05/03/2023]
Affiliation(s)
- Duoduo Wang
- University of Nottingham, School of Biosciences, Division of Plant and Crop Science, Sutton Bonington, Lough, Leics LE12 5RD, UK
| | - Graham B Seymour
- University of Nottingham, School of Biosciences, Division of Plant and Crop Science, Sutton Bonington, Lough, Leics LE12 5RD, UK.
| |
Collapse
|