1
|
O’Rourke JA, Graham MA. Investigating the Role of Known Arabidopsis Iron Genes in a Stress Resilient Soybean Line. Int J Mol Sci 2024; 25:11480. [PMID: 39519033 PMCID: PMC11545859 DOI: 10.3390/ijms252111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Genes involved in iron deficiency responses have been well characterized in Arabidopsis thaliana, but their roles in crop species have not been well explored. Reliance on model species may fail to identify novel iron stress mechanisms present within crop species, likely selected by hundreds of years of selection. Fiskeby III (PI 438471) is a soybean line from Sweden that demonstrates high levels of resilience to numerous stresses. Earlier Fiskeby III studies have identified a suite of genes responding to iron deficiency stress in Fiskeby III that are also associated with Arabidopsis iron deficiency responses. We were interested in determining how canonical iron genes function in Fiskeby III under normal and iron stress conditions. To investigate this, we used virus-induced gene silencing to knock down gene expression of three iron deficiency response genes (FER-like iron deficiency induced transcription factor (FIT), elongated hypocotyl 5 (HY5) and popeye (PYE)) in Fiskeby III. Analyses of RNAseq data generated from silenced plants in iron-sufficient and -deficient conditions found silencing FIT and HY5 altered general stress responses but did not impact iron deficiency tolerance, confirming Fiskeby III utilizes novel mechanisms to tolerate iron deficiency stress.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- Agricultural Research Service, Corn Insects, and Crop Genetics Research Unit, United States Department of Agriculture, Ames, IA 50010, USA;
| | | |
Collapse
|
2
|
Kabir AH, Bennetzen JL. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol Res 2024; 281:127630. [PMID: 38295681 DOI: 10.1016/j.micres.2024.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, LA 71209, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
3
|
Chen G, Shu Y, Jian Z, Duan L, Mo Z, Liu R. The NtDEGP5 gene improves drought tolerance in tobacco (Nicotiana tabacum L.) by dampening plastid extracellular Ca 2+ and flagellin signaling and thereby reducing ROS production. PLANT MOLECULAR BIOLOGY 2023; 113:265-278. [PMID: 37985581 DOI: 10.1007/s11103-023-01388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Tobacco is an essential cash crop, but drought has become a major factor in the decline of global tobacco production as a result of changes in the global climate. The HtrA protease is an oligomeric serine endopeptidase that responds to stress in plants. DEGP5 is a member of the gene family that encodes HtrA protease, which promotes plant adaptation to adversity. The aim of this study was to investigate the role and mechanism employed by the DEGP5 gene in response to drought stress in tobacco. NtDEGP5-overexpression lines were obtained by genetic transformation and the phenotypes and transcriptomes of NtDEGP5-overexpression lines and wild-type (K326) tobacco seedlings were compared under drought stress. The results demonstrated that plants overexpressing NtDEGP5 exhibited greater drought tolerance. The differentially expressed genes involved in the regulation of drought tolerance by DEGP5 were enriched in metabolic pathways, such as plant-pathogen interaction and glutathione metabolism, with the plant-pathogen interaction pathway having the most differentially expressed genes. An analysis of the plant-pathogen interaction pathway revealed that these genes contributed to the suppression of plastid extracellular Ca2+ signaling and flagellin signaling to inhibit reactive oxygen species production, and that lower levels of reactive oxygen species act as a signal to regulate the activation of the antioxidant system, further balancing the production and removal of reactive oxygen species in tobacco seedlings under drought stress. These findings suggest that the NtDEGP5 gene can enhance the drought tolerance of tobacco by regulating the homeostasis of reactive oxygen species by inhibiting extracellular plastids.
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Tobacco Quality Research, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yanqi Shu
- Key Laboratory of Tobacco Quality Research, College of Tobacco, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zilin Jian
- Key Laboratory of Tobacco Quality Research, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Lili Duan
- Key Laboratory of Tobacco Quality Research, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zejun Mo
- Key Laboratory of Tobacco Quality Research, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality Research, College of Tobacco, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Sun Q, Zhao D, Gao M, Wu Y, Zhai L, Sun S, Wu T, Zhang X, Xu X, Han Z, Wang Y. MxMPK6-2-mediated phosphorylation enhances the response of apple rootstocks to Fe deficiency by activating PM H + -ATPase MxHA2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:69-86. [PMID: 37340905 DOI: 10.1111/tpj.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Iron (Fe) deficiency significantly affects the growth and development, fruit yield and quality of apples. Apple roots respond to Fe deficiency stress by promoting H+ secretion, which acidifies the soil. In this study, the plasma membrane (PM) H+ -ATPase MxHA2 promoted H+ secretion and root acidification of apple rootstocks under Fe deficiency stress. H+ -ATPase MxHA2 is upregulated in Fe-efficient apple rootstock of Malus xiaojinensis at the transcription level. Fe deficiency also induced kinase MxMPK6-2, a positive regulator in Fe absorption that can interact with MxHA2. However, the mechanism involving these two factors under Fe deficiency stress is unclear. MxMPK6-2 overexpression in apple roots positively regulated PM H+ -ATPase activity, thus enhancing root acidification under Fe deficiency stress. Moreover, co-expression of MxMPK6-2 and MxHA2 in apple rootstocks further enhanced PM H+ -ATPase activity under Fe deficiency. MxMPK6-2 phosphorylated MxHA2 at the Ser909 site of C terminus, Thr320 and Thr412 sites of the Central loop region. Phosphorylation at the Ser909 and Thr320 promoted PM H+ -ATPase activity, while phosphorylation at Thr412 inhibited PM H+ -ATPase activity. MxMPK6-2 also phosphorylated the Fe deficiency-induced transcription factor MxbHLH104 at the Ser169 site, which then could bind to the promoter of MxHA2, thus enhancing MxHA2 upregulation. In conclusion, the MAP kinase MxMPK6-2-mediated phosphorylation directly and indirectly regulates PM H+ -ATPase MxHA2 activity at the protein post-translation and transcription levels, thus synergistically enhancing root acidification under Fe deficiency stress.
Collapse
Affiliation(s)
- Qiran Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Danrui Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Min Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| |
Collapse
|
5
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Chen Y, Bao W, Hong W, Dong X, Gong M, Cheng Q, Mao K, Yao C, Liu Z, Wang N. Evaluation of eleven kiwifruit genotypes for bicarbonate tolerance and characterization of two tolerance-contrasting genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:202-213. [PMID: 36427382 DOI: 10.1016/j.plaphy.2022.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Screening bicarbonate-tolerant genotypes is an environmentally-friendly and long-term effective strategy to cope with bicarbonate-induced chlorosis in fruit crops grown on calcareous soils. We investigated eleven genotypes from four kiwifruit species (Actinidia chinensis, A. macrosperma, A. polygama, and A. valvata) for differences in bicarbonate tolerance. We also characterized the physiological and molecular differences in two contrasting genotypes of this group. In the first experiment, bicarbonate-treated plantlets were irrigated with 3.0 g L-1 CaCO3 and 5.04 g L-1 NaHCO3 in peat and perlite medium culture. Based on principal component analysis, weight-based membership function method and cluster analysis, the tested genotypes were classified into three groups: (1) tolerant, including YX, Av-1, Acd, Ap, Av-2, and QM; (2) moderately tolerant, including Av-3, Am, Av-4, and HWD; and (3) sensitive, including only QH. In the second experiment, QH (bicarbonate-sensitive) and YX (bicarbonate-tolerant) were grown in sand culture with 4.0 g L-1 CaCO3 and 0.84 g L-1 or 1.26 g L-1 NaHCO3. Compared with QH, YX showed a better ability to take up iron (Fe) by roots and to transport Fe from roots to shoots in the bicarbonate treatments, probably due to a better capacity to protect from oxidative damage and to excrete protons, and a differential expression of genes associated with Fe uptake and translocation, including HA8, IRT1, YSL3 and NRAMP3. The results can facilitate identifying potential resources for bicarbonate tolerance and breeding new rootstocks, and contribute to the elucidation of the bicarbonate tolerance mechanisms in the genus Actinidia.
Collapse
Affiliation(s)
- Yuanlei Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenwu Bao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weijin Hong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoke Dong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manyu Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quanqi Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke Mao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunchao Yao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Nannan Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Kabir AH, Rahman MA, Rahman MM, Brailey‐Jones P, Lee K, Bennetzen JL. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. J Appl Microbiol 2022; 133:2760-2778. [PMID: 35665578 PMCID: PMC9796762 DOI: 10.1111/jam.15651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
AIMS Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Md Mostafizur Rahman
- Molecular Plant Physiology Laboratory, Department of BotanyUniversity of RajshahiRajshahiBangladesh
| | - Philip Brailey‐Jones
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| | - Ki‐Won Lee
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Jeffrey L. Bennetzen
- Grassland and Forage Division, National Institute of Animal ScienceRural Development AdministrationCheonanRepublic of Korea
| |
Collapse
|
8
|
Zhai L, Sun Q, Gao M, Cheng X, Liao X, Wu T, Zhang X, Xu X, Wang Y, Han Z. MxMPK4-1 phosphorylates NADPH oxidase to trigger the MxMPK6-2-MxbHLH104 pathway mediated Fe deficiency responses in apple. PLANT, CELL & ENVIRONMENT 2022; 45:2810-2826. [PMID: 35748023 DOI: 10.1111/pce.14384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) deficiency is a nutritional stress in plants that commonly occurs in alkaline and calcareous soils. Mitogen-activated protein kinases (MPKs), the terminal player of MAPK cascade, are involved in distinct physiological processes. Once plants suffer from Fe deficiency stress, the mechanism of MPK function remains unclear owing to limited study on the MPK networks including substrate proteins and downstream pathways. Here, the MAP kinase MPK4-1 was induced in roots of Fe efficient apple rootstock Malus xiaojinensis but not in Fe inefficient rootstock Malus baccata under Fe deficiency conditions. Overexpression of MxMPK4-1 in apple calli and apple roots enhanced the responses to Fe deficiency. We found that MxMPK4-1 interacted with NADPH oxidases (NOX)-respiratory burst oxidase homologs MxRBOHD1 and MxRBOHD2, which positively regulated responses to Fe deficiency. Moreover, MxMPK4-1 phosphorylated the C terminus of MxRBOHD2 at Ser797 and Ser906 and positively and negatively regulated NOX activity through these phospho-sites, respectively. When compared with apple calli that overexpressed MxRBOHD2, the coexpression of MxMPK4-1 and MxRBOHD2 prominently enhanced the Fe deficiency responses. We also demonstrated that hydrogen peroxide derived from MxMPK4-1-MxRBOHD2 regulated the MxMPK6-2-MxbHLH104 pathway, illuminating a systematic network that involves different MPK proteins in M. xiaojinensis under Fe deficiency stress.
Collapse
Affiliation(s)
- Longmei Zhai
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Qiran Sun
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Min Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xinxin Cheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xiaojun Liao
- Department of Food Science and Engineering, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
- Beijing Key Laboratory for Food Nonthermal Processing, Chinese National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, People's Republic of China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ting Wu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xinzhong Zhang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xuefeng Xu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Yi Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Zhenhai Han
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
9
|
Sun Z, Guo D, Lv Z, Bian C, Ma C, Liu X, Tian Y, Wang C, Zheng X. Brassinolide alleviates Fe deficiency-induced stress by regulating the Fe absorption mechanism in Malus hupehensis Rehd. PLANT CELL REPORTS 2022; 41:1863-1874. [PMID: 35781542 DOI: 10.1007/s00299-022-02897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Exogenous brassinolide promotes Fe absorption through mechanism I strategy, thus improving the tolerance of Malus hupehensis seedlings to Fe deficiency stress. Iron (Fe) deficiency is a common nutritional disorder that results in decreased yield and poor fruit quality in apple production. As a highly active synthetic analog of brassinosteroids, brassinolide (BL) plays numerous roles in plant responses to abiotic stresses. However, its role in Fe deficiency stress in apple plants has never been reported. Herein, we found that the exogenous application of 0.2 mg L-1 BL could significantly enhance the tolerance of apple seedlings to Fe deficiency stress and result in a low etiolation rate and a high photosynthetic rate. The functional mechanisms of this effect were also explored. We found that first, exogenous BL could improve Fe absorption through the mechanism I strategy. BL induced the activity of H+-ATPase and the expression of MhAHA family genes, resulting in rhizosphere acidification. Moreover, BL could enhance the activity of Fe chelate reductase and absorb Fe through direct binding with the E-box of the MhIRT1 or MhFRO2 promoter via the transcription factors MhBZR1 and MhBZR2. Second, exogenous BL alleviated osmotic stress by increasing the contents of osmolytes (proline, solution proteins, and solution sugar) and scavenged reactive oxygen species by improving the activities of antioxidant enzymes. Lastly, exogenous BL could cooperate with other endogenous plant hormones, such as indole-3-acetic acid, isopentenyl adenosine, and gibberellic acid 4, that respond to Fe deficiency stress indirectly. This work provided a theoretical basis for the application of exogenous BL to alleviate Fe deficiency stress in apple plants.
Collapse
Affiliation(s)
- Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dianming Guo
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhichao Lv
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Chuanjie Bian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China.
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China.
| |
Collapse
|
10
|
Song H, Chen F, Wu X, Hu M, Geng Q, Ye M, Zhang C, Jiang L, Cao S. MNB1 gene is involved in regulating the iron-deficiency stress response in Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:151. [PMID: 35346040 PMCID: PMC8961904 DOI: 10.1186/s12870-022-03553-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/23/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Iron (Fe) is an essential mineral element that involves in many biological processes important for most plants growth and development. Fe-deficiency induces a complex series of responses in plants, involving physiological and developmental changes, to increase Fe uptake from soil. However, the molecular mechanism involved in plant Fe-deficiency is not well understood. RESULTS Here, we found that the MNB1 (mannose-binding-lectin 1) gene is involved in the regulation of Fe-deficiency stress response in Arabidopsis thaliana. The expression abundance of MNB1 was inhibited by Fe-deficiency stress. Knockout of MNB1 led to enhanced Fe accumulation and tolerance, whereas the MNB1-overexpressing plants were sensitive to Fe-deficiency stress. Under conditions of normal and Fe-deficiency, lower H2O2 concentrations were detected in mnb1 mutant plants compared to wild type. On the contrary, higher H2O2 concentrations were found in MNB1-overexpressing plants, which was negatively correlated with malondialdehyde (MDA) levels. Furthermore, in mnb1 mutants, the transcription level of the Fe uptake- and translocation-related genes, FIT, IRT1, FRO2, ZIF, FRD3, NAS4, PYE and MYB72, were considerably elevated during Fe-deficiency stress, resulting in enhanced Fe uptake and translocation, thereby increasing Fe accumulation. CONCLUSIONS Together, our findings show that the MNB1 gene negatively controls the Fe-deficiency response in Arabidopsis via modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling pathway, thereby affecting the expression of Fe uptake- and translocation-related genes.
Collapse
Affiliation(s)
- Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Feng Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
11
|
Zhai L, Sun C, Li K, Sun Q, Gao M, Wu T, Zhang X, Xu X, Wang Y, Han Z. MxRop1-MxrbohD1 interaction mediates ROS signaling in response to iron deficiency in the woody plant Malus xiaojinensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111071. [PMID: 34763862 DOI: 10.1016/j.plantsci.2021.111071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) deficiency affects crop production and quality. Rho of plants (ROPs) involves in multiple physiological processes in plants. While it has not been well characterized under Fe deficiency, especially in perennial woody plants. In our study, we cloned ROP homologous gene MxRop1 from Malus xiaojinenesis, then overexpressed it in Arabidopsis, showing enhanced plant tolerance to Fe deficiency, which demonstrated its gene function during this stress. Overexpression of MxRop1 also increased reactive oxygen species (ROS) levels. Moreover, active state of MxRop1 (CA-MxRop1) interacted with N-terminal region of MxrbohD1, one ROS synthesis gene. When MxrbohD1 was overexpressed in apple calli, it showed significantly increased H2O2 content, fresh weight and FCR activity, while ROS inhibitor application dramatically inhibited FCR activity, demonstrating ROS produced by MxrbohD1 regulated Fe deficiency responses. Furthermore, using Agrobacterium rhizogenes transformation, MxrbohD1 was overexpressed in apple roots, with increased expression of Fe deficiency-induced genes and increased root FCR activity. Under Fe deficiency, it exhibited slight leaf yellowing phenotype. Co-expression of CA-MxRop1 and MxrbohD1 significantly induced ROS generation. Finally, we proposed that MxRop1 interacted with MxrbohD1 to modulate ROS mediated Fe deficiency adaptive responses in Malus xiaojinensis, which will provide a guidance of cultivation of Fe-deficiency tolerant apple plant.
Collapse
Affiliation(s)
- Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Chaohua Sun
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Qiran Sun
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Min Gao
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing 100193, P.R. China.
| |
Collapse
|
12
|
Gratz R, von der Mark C, Ivanov R, Brumbarova T. Fe acquisition at the crossroad of calcium and reactive oxygen species signaling. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102048. [PMID: 34015752 DOI: 10.1016/j.pbi.2021.102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Due to its redox properties, iron is both essential and toxic. Therefore, soil iron availability variations pose a significant problem for plants. Recent evidence suggests that calcium and reactive oxygen species coordinate signaling events related to soil iron acquisition. Calcium was found to affect directly IRT1-mediated iron import through the lipid-binding protein EHB1 and to trigger a CBL-CIPK-mediated signaling influencing the activity of the key iron-acquisition transcription factor FIT. In parallel, under prolonged iron deficiency, reactive oxygen species both inhibit FIT function and depend on FIT through the function of the catalase CAT2. We discuss the role of calcium and reactive oxygen species signaling in iron acquisition, with post-translational mechanisms influencing the localization and activity of iron-acquisition regulators and effectors.
Collapse
Affiliation(s)
- Regina Gratz
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Claudia von der Mark
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
13
|
Zheng X, Chen H, Su Q, Wang C, Sha G, Ma C, Sun Z, Yang X, Li X, Tian Y. Resveratrol improves the iron deficiency adaptation of Malus baccata seedlings by regulating iron absorption. BMC PLANT BIOLOGY 2021; 21:433. [PMID: 34556040 PMCID: PMC8459475 DOI: 10.1186/s12870-021-03215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Resveratrol (Res), a phytoalexin, has been widely reported to participate in plant resistance to fungal infections. However, little information is available on its role in abiotic stress, especially in iron deficiency stress. Malus baccata is widely used as apple rootstock in China, but it is sensitive to iron deficiency. RESULTS In this study, we investigated the role of exogenous Res in M. baccata seedings under iron deficiency stress. Results showed that applying 100 μM exogenous Res could alleviate iron deficiency stress. The seedlings treated with Res had a lower etiolation rate and higher chlorophyll content and photosynthetic rate compared with the apple seedlings without Res treatment. Exogenous Res increased the iron content in the roots and leaves by inducing the expression of MbAHA genes and improving the H+-ATPase activity. As a result, the rhizosphere pH decreased, iron solubility increased, the expression of MbFRO2 and MbIRT1 was induced, and the ferric-chelated reductase activity was enhanced to absorb large amounts of Fe2+ into the root cells under iron deficiency conditions. Moreover, exogenous Res application increased the contents of IAA, ABA, and GA3 and decreased the contents of DHZR and BL for responding to iron deficiency stress indirectly. In addition, Res functioned as an antioxidant that strengthened the activities of antioxidant enzymes and thus eliminated reactive oxygen species production induced by iron deficiency stress. CONCLUSION Resveratrol improves the iron deficiency adaptation of M. baccata seedlings mainly by regulating iron absorption.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Huifang Chen
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Qiufang Su
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Guangli Sha
- Qingdao Academy of Agricultrual Science, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China.
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China.
| |
Collapse
|
14
|
Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep 2021; 11:9195. [PMID: 33911161 PMCID: PMC8080623 DOI: 10.1038/s41598-021-88695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
The geomagnetic field (GMF) is one of the environmental stimuli that plants experience continuously on Earth; however, the actions of the GMF on plants are poorly understood. Here, we carried out a time-course microarray experiment to identify genes that are differentially regulated by the GMF in shoot and roots. We also used qPCR to validate the activity of some genes selected from the microarray analysis in a dose-dependent magnetic field experiment. We found that the GMF regulated genes in both shoot and roots, suggesting that both organs can sense the GMF. However, 49% of the genes were regulated in a reverse direction in these organs, meaning that the resident signaling networks define the up- or downregulation of specific genes. The set of GMF-regulated genes strongly overlapped with various stress-responsive genes, implicating the involvement of one or more common signals, such as reactive oxygen species, in these responses. The biphasic dose response of GMF-responsive genes indicates a hormetic response of plants to the GMF. At present, no evidence exists to indicate any evolutionary advantage of plant adaptation to the GMF; however, plants can sense and respond to the GMF using the signaling networks involved in stress responses.
Collapse
Affiliation(s)
- Ivan A Paponov
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
15
|
Tavanti TR, Melo AARD, Moreira LDK, Sanchez DEJ, Silva RDS, Silva RMD, Reis ARD. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:386-396. [PMID: 33556754 DOI: 10.1016/j.plaphy.2021.01.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide at low concentrations act as signaling of several abiotic stresses. Overproduction of hydrogen peroxide causes the oxidation of plant cell lipid phosphate layer promoting senescence and cell death. To mitigate the effect of ROS, plants develop antioxidant defense mechanisms (superoxide dismutase, catalase, guaiacol peroxidase), ascorbate-glutathione cycle enzymes (ASA-GSH) (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase), which have the function of removing and transforming ROS into non-toxic substances to maintain cellular homeostasis. Foliar or soil application of fertilizers containing B, Cu, Fe, Mn, Mo, Ni, Se and Zn at low concentrations has the ability to elicit and activate antioxidative enzymes, non-oxidizing metabolism, as well as sugar metabolism to mitigate damage by oxidative stress. Plants treated with micronutrients show higher tolerance to abiotic stress and better nutritional status. In this review, we summarized results indicating micronutrient actions in order to reduce ROS resulting the increase of photosynthetic capacity of plants for greater crop yield. This meta-analysis provides information on the mechanism of action of micronutrients in combating ROS, which can make plants more tolerant to several types of abiotic stress such as extreme temperatures, salinity, heavy metals and excess light.
Collapse
Affiliation(s)
- Tauan Rimoldi Tavanti
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | | | | | | | - Rafael Dos Santos Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - Ricardo Messias da Silva
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), 15385-000, Ilha Solteira, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
16
|
Li D, Sun Q, Zhang G, Zhai L, Li K, Feng Y, Wu T, Zhang X, Xu X, Wang Y, Han Z. MxMPK6-2-bHLH104 interaction is involved in reactive oxygen species signaling in response to iron deficiency in apple rootstock. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1919-1932. [PMID: 33216933 DOI: 10.1093/jxb/eraa547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/15/2020] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is a trace element necessary for plant growth. Many land plants have evolved a set of mechanisms associated with the Fe absorption process to deal with the problem of insufficient Fe supply in the soil. During Fe absorption, reactive oxygen species (ROS) can be used as a signal to initiate a response to stress caused by Fe deficiency. However, the molecular mechanisms underlying the involvement of ROS in the Fe deficiency stress response remains unclear. In this study, we have identified a kinase, MxMPK6-2, from Malus xiaojinensis, an apple rootstock that is highly efficient at Fe absorption. MxMPK6-2 has been shown to be responsive to ROS signals during Fe deficiency, and MxMPK6-2 overexpression in apple calli enhanced its tolerance to Fe deficiency. We further screened for proteins in the Fe absorption pathway and identified MxbHLH104, a transcription factor which interacts with MxMPK6-2. MxbHLH104 can be phosphorylated by MxMPK6-2 in vivo, and we confirmed that its phosphorylation increased Fe absorption in apple calli under Fe deficiency, with the presence of ROS promoting this process. Overall, we have demonstrated that MxMPK6-2 is responsive to ROS signaling during Fe deficiency, and is able to control its response by regulating MxbHLH104.
Collapse
Affiliation(s)
- Duyue Li
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Qiran Sun
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Guifen Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Yi Feng
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| |
Collapse
|
17
|
Cheng N, Yu H, Rao X, Park S, Connolly EL, Hirschi KD, Nakata PA. Alteration of iron responsive gene expression in Arabidopsis glutaredoxin S17 loss of function plants with or without iron stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1758455. [PMID: 32351167 PMCID: PMC8570760 DOI: 10.1080/15592324.2020.1758455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 05/25/2023]
Abstract
Iron (Fe) is a mineral nutrient and a metal cofactor essential for plants. Iron limitation can have detrimental effects on plant growth and development, while excess iron inside plant cells leads to oxidative damage. As a result, plants have evolved complex regulatory networks to respond to fluctuations in cellular iron concentrations. The mechanisms that regulate these responses however, are not fully understood. Heterologous expression of an Arabidopsis thaliana monothiol glutaredoxin S17 (GRXS17) suppresses the over-accumulation of iron in the Saccharomyces cerevisiae Grx3/Grx4 mutant and disruption of GRXS17 causes plant sensitivity to exogenous oxidants and iron deficiency stress. GRXS17 may act as an important regulator in the plant's ability to respond to iron deficiency stress and maintain redox homeostasis. Here, we extend this investigation by analyzing iron-responsive gene expression of the Fer-like iron deficiency-induced transcription factor (FIT) network (FIT, IRT1, FRO1, and FRO2) and the bHLH transcription factor POPEYE (PYE) network (PYE, ZIF1, FRO3, NAS4, and BTS) in GRXS17 KO plants and wildtype controls grown under iron sufficiency and deficiency conditions. Our findings suggest that GRXS17 is required for tolerance to iron deficiency, and plays a negative regulatory role under conditions of iron sufficiency.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Han Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, College of Sciences, University of North Texas, Denton, TX, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, USA
| | - Erin L. Connolly
- Department of Plant Science, Penn State University, State College, PA, USA
| | - Kendal D. Hirschi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Paul A. Nakata
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Santos CS, Ozgur R, Uzilday B, Turkan I, Roriz M, Rangel AO, Carvalho SM, Vasconcelos MW. Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis. PLANTS 2019; 8:plants8090348. [PMID: 31540266 PMCID: PMC6784024 DOI: 10.3390/plants8090348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants.
Collapse
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Mariana Roriz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - António O.S.S. Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Susana M.P. Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- GreenUPorto – Research Centre for Sustainable Agrifood Production, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- Correspondence:
| |
Collapse
|
19
|
Feng Y, Liu J, Zhai L, Gan Z, Zhang G, Yang S, Wang Y, Wu T, Zhang X, Xu X, Han Z. Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. PLANT, CELL & ENVIRONMENT 2019; 42:424-436. [PMID: 29989184 DOI: 10.1111/pce.13403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 05/20/2023]
Abstract
Plants experiencing salt-induced stress often reduce cytokinin levels during the early phases of stress-response. Interestingly, we found that the cytokinin content in the apple rootstock "robusta" was maintained at a high level under salt stress. Through screening genes involved in cytokinin biosynthesis and catabolism, we found that the high expression levels of IPT5b in robusta roots were involved in maintaining the high cytokinin content. We identified a 42 bp deletion in the promoter region of IPT5b, which elevated IPT5b expression levels, and this deletion was linked to salt tolerance in robusta×M.9 segregating population. The 42 bp deletion resulted in the deletion of a Proline Response Element (ProRE), and our results suggest that ProRE negatively regulates IPT5b expression in response to proline. Under salt stress, the robusta cultivar maintains high cytokinin levels as IPT5b expression cannot be inhibited by proline due to the deletion of ProRE, leading to improve salt tolerance.
Collapse
Affiliation(s)
- Yi Feng
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zengyu Gan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Guifen Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Zhai L, Sun C, Feng Y, Li D, Chai X, Wang L, Sun Q, Zhang G, Li Y, Wu T, Zhang X, Xu X, Wang Y, Han Z. At
ROP
6
is involved in reactive oxygen species signaling in response to iron‐deficiency stress in
Arabidopsis thaliana. FEBS Lett 2018; 592:3446-3459. [DOI: 10.1002/1873-3468.13257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Longmei Zhai
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Chaohua Sun
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Yi Feng
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Duyue Li
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Xiaofen Chai
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Lei Wang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Qiran Sun
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Guifen Zhang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Yi Li
- Department of Plant Science and Landscape Architecture University of Connecticut Storrs CT USA
| | - Ting Wu
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Xinzhong Zhang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Xuefeng Xu
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Yi Wang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Zhenhai Han
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| |
Collapse
|
21
|
Vigani G, Murgia I. Iron-Requiring Enzymes in the Spotlight of Oxygen. TRENDS IN PLANT SCIENCE 2018; 23:874-882. [PMID: 30077479 DOI: 10.1016/j.tplants.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
Iron (Fe) is a cofactor required for a variety of essential redox reactions in plant metabolism. Thus, plants have developed a complex network of interacting pathways to withstand Fe deficiency, including metabolic reprogramming. This opinion aims at revisiting such reprogramming by focusing on: (i) the functional relationships of Fe-requiring enzymes (FeREs) with respect to oxygen; and (ii) the progression of FeREs engagement, occurring under Fe deficiency stress. In particular, we considered such progression of FeREs engagement as strain responses of increasing severity during the stress phases of alarm, resistance, and exhaustion. This approach can contribute to reconcile the variety of experimental results obtained so far from different plant species and/or different Fe supplies.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, via Quarello 15/A 10135, Torino, Italy.
| | - Irene Murgia
- Department of Biosciences, University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|