1
|
Wang X, Liang X, Wang R, Gao Y, Li Y, Shi H, Gong W, Saleem S, Zou Q, Tao L, Kang Z, Yang J, Yu Q, Wu Q, Liu H, Fu S. A breeding method for Ogura CMS restorer line independent of restorer source in Brassica napus. Front Genet 2025; 15:1521277. [PMID: 39834543 PMCID: PMC11743515 DOI: 10.3389/fgene.2024.1521277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The Ogura cytoplasmic male sterility (CMS) line of Brassica napus has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of Brassica napus is derived from the distant hybridization of Raphanus sativus L. and B. napus, but it carried a large number of radish fragments into Brassica napus, because there is no homologous allele of the restorer gene in B. napus, transferring it becomes challenging. In this study, the double haploid induction line in B. napus was used as the male parent for hybridization with the Ogura CMS of B. napus. Surprisingly, fertile plants appeared in the offspring. Further analysis revealed that the cytoplasmic type, ploidy, and chromosome number of the fertile offspring were consistent with the sterile female parent. Moreover, the mitochondrial genome similarity between the fertile offspring and the sterile female parent was 97.7% indicates that the cytoplasm of the two is the same, while the nuclear gene difference between fertile offspring and sterile female parent was only 10.33%, indicates that new genes appeared in the offspring. To further investigate and locate the restorer gene, the BSA method was employed to construct extreme mixed pools. As a result, the restorer gene was mapped to three positions: A09 chromosome 10.99-17.20 Mb, C03 chromosome 5.07-5.34 Mb, and C09 chromosome 18.78-36.60 Mb. The experimental results have proved that induction does produce restorer genes. The induction of the Ogura CMS restorer gene through DH induction line provides a promising new approach for harnessing heterosis in B. napus.
Collapse
Affiliation(s)
- Xuesong Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xingyu Liang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yuan Gao
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yun Li
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Haoran Shi
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Wanzhuo Gong
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Saira Saleem
- Oilseeds Research Station, Khanpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Qiong Zou
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Lanrong Tao
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Zeming Kang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Jin Yang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qin Yu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qiaobo Wu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Hailan Liu
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Shaohong Fu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| |
Collapse
|
2
|
Peñalba JV, Runemark A, Meier JI, Singh P, Wogan GOU, Sánchez-Guillén R, Mallet J, Rometsch SJ, Menon M, Seehausen O, Kulmuni J, Pereira RJ. The Role of Hybridization in Species Formation and Persistence. Cold Spring Harb Perspect Biol 2024; 16:a041445. [PMID: 38438186 PMCID: PMC11610762 DOI: 10.1101/cshperspect.a041445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, 10115 Berlin, Germany
| | - Anna Runemark
- Department of Biology, Lund University, 22632 Lund, Sweden
| | - Joana I Meier
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
- Department of Zoology, University of Cambridge, Cambridgeshire CB2 3EJ, United Kingdom
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | - James Mallet
- Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sina J Rometsch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut 06511, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Jonna Kulmuni
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Biocenter 3, Helsinki, Finland
| | - Ricardo J Pereira
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart 70191, Germany
| |
Collapse
|
3
|
Bhattacharya J, Nitnavare RB, Bhatnagar-Mathur P, Reddy PS. Cytoplasmic male sterility-based hybrids: mechanistic insights. PLANTA 2024; 260:100. [PMID: 39302508 DOI: 10.1007/s00425-024-04532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop. The development of hybrids for achieving heterosis has been well-studied and proven to be robust and efficient. Cytoplasmic male sterility (CMS) has been explored extensively in the production of hybrids. The underlying mechanisms of CMS include the role of cytotoxic proteins, PCD of tapetal cells, and improper RNA editing of restoration factors. On the other hand, the restoration of fertility is caused by the presence of restorer-of-fertility (Rf) genes or restorer genes, which inhibit the effects of sterility-causing genes. The interaction between mitochondria and the nuclear genome is crucial for several regulatory pathways, as observed in the CMS-Rf system and occurs at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These CMS-Rf mechanisms have been validated in several crop systems. This review aims to summarize the nucleo-mitochondrial interaction mechanism of the CMS-Rf system. It also sheds light on biotechnological interventions, such as genetic engineering and genome editing, to achieve CMS-based hybrids.
Collapse
Affiliation(s)
- Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Rahul B Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, LE12 5RD, UK
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory of United Nation, International Atomic Energy Agency, 1400, Vienna, Austria.
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
4
|
Fu X, Yang Z, Guo L, Luo L, Tao Y, Lan T, Hu J, Li Z, Luo K, Xu C. Restorer of fertility like 30, encoding a mitochondrion-localized pentatricopeptide repeat protein, regulates wood formation in poplar. HORTICULTURE RESEARCH 2024; 11:uhae188. [PMID: 39247885 PMCID: PMC11377185 DOI: 10.1093/hr/uhae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Nuclear-mitochondrial communication is crucial for plant growth, particularly in the context of cytoplasmic male sterility (CMS) repair mechanisms linked to mitochondrial genome mutations. The restorer of fertility-like (RFL) genes, known for their role in CMS restoration, remain largely unexplored in plant development. In this study, we focused on the evolutionary relationship of RFL family genes in poplar specifically within the dioecious Salicaceae plants. PtoRFL30 was identified to be preferentially expressed in stem vasculature, suggesting a distinct correlation with vascular cambium development. Transgenic poplar plants overexpressing PtoRFL30 exhibited a profound inhibition of vascular cambial activity and xylem development. Conversely, RNA interference-mediated knockdown of PtoRFL30 led to increased wood formation. Importantly, we revealed that PtoRFL30 plays a crucial role in maintaining mitochondrial functional homeostasis. Treatment with mitochondrial activity inhibitors delayed wood development in PtoRFL30-RNAi transgenic plants. Further investigations unveiled significant variations in auxin accumulation levels within vascular tissues of PtoRFL30-transgenic plants. Wood development anomalies resulting from PtoRFL30 overexpression and knockdown were rectified by NAA and NPA treatments, respectively. Our findings underscore the essential role of the PtoRFL30-mediated mitochondrion-auxin signaling module in wood formation, shedding light on the intricate nucleus-organelle communication during secondary vascular development.
Collapse
Affiliation(s)
- Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ziwei Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lianjia Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanxun Tao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zeyu Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Dhillon HK, Sharma M, Dhatt AS, Meena OP, Khosa J, Sidhu MK. Insights into cellular crosstalk regulating cytoplasmic male sterility and fertility restoration. Mol Biol Rep 2024; 51:910. [PMID: 39150575 DOI: 10.1007/s11033-024-09855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Cytoplasmic male sterility has been a popular genetic tool in development of hybrids. The molecular mechanism behind maternal sterility varies from crop to crop. An understanding of underlying mechanism can help in development of new functional CMS gene in crops which lack effective and stable CMS systems. In crops where seed or fruit is the commercial product, fertility must be recovered in F1 hybrids so that higher yield gains can be realized. This necessitates the presence of fertility restorer gene (Rf) in nucleus of male parent to overcome the effect of sterile cytoplasm. Fertility restoring genes have been identified in crops like wheat, maize, sunflower, rice, pepper, sugar beet, pigeon pea etc. But in crops like eggplant, bell pepper, barley etc. unstable fertility restorers hamper the use of Cytoplasmic genic male sterility (CGMS) system. Stability of CGMS system is influenced by environment, genetic background or interaction of these factors. This review thus aims to understand the genetic mechanisms controlling mitochondrial-nuclear interactions required to design strong and stable restorers without any pleiotropic effects in F1 hybrids.
Collapse
Affiliation(s)
- Harnoor Kaur Dhillon
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India.
| | - A S Dhatt
- Director of Research, Punjab Agricultural University, Ludhiana, 141004, India
| | - O P Meena
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Jiffinvir Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - M K Sidhu
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
6
|
Jaqueth JS, Li B, Vollbrecht E. Pentatricopeptide repeat 153 (PPR153) restores maize C-type cytoplasmic male sterility in conjunction with RF4. PLoS One 2024; 19:e0303436. [PMID: 38985786 PMCID: PMC11236208 DOI: 10.1371/journal.pone.0303436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 07/12/2024] Open
Abstract
Maize (Zea mays L.) C-type cytoplasmic male sterility (CMS-C) is a highly used CMS system for maize commercial hybrid seed production. Rf4 is the major dominant restorer gene for CMS-C. Inbreds were recently discovered which contain the restoring Rf4 allele yet are unable to restore fertility due to the lack of an additional gene required for Rf4's restoration. To find this additional gene, QTL mapping and positional cloning were performed using an inbred that contained Rf4 but was incapable of restoring CMS-C. The QTL was mapped to a 738-kb interval on chromosome 2, which contains a Pentatricopeptide Repeat (PPR) gene cluster. Allele content comparisons of the inbreds identified three potential candidate genes responsible for fertility restoration in CMS-C. Complementation via transformation of these three candidate genes showed that PPR153 (Zm00001eb114660) is required for Rf4 to restore fertility to tassels. The PPR153 sequence is present in B73 genome, but it is not capable of restoring CMS-C without Rf4. Analysis using NAM lines revealed that Rf4 requires the presence of PPR153 to restore CMS-C in diverse germplasms. This research uncovers a major CMS-C genetic restoration pathway and can be used for identifying inbreds suitable for maize hybrid production with CMS-C cytoplasm.
Collapse
Affiliation(s)
| | - Bailin Li
- Corteva Agriscience™, Johnston, IA, United States of America
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
7
|
Eggers EJ, Su Y, van der Poel E, Flipsen M, de Vries ME, Bachem CWB, Visser RGF, Lindhout P. Identification, Elucidation and Deployment of a Cytoplasmic Male Sterility System for Hybrid Potato. BIOLOGY 2024; 13:447. [PMID: 38927327 PMCID: PMC11200408 DOI: 10.3390/biology13060447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Recent advances in diploid F1 hybrid potato breeding rely on the production of inbred lines using the S-locus inhibitor (Sli) gene. As a result of this method, female parent lines are self-fertile and require emasculation before hybrid seed production. The resulting F1 hybrids are self-fertile as well and produce many undesirable berries in the field. Utilization of cytoplasmic male sterility would eliminate the need for emasculation, resulting in more efficient hybrid seed production and male sterile F1 hybrids. We observed plants that completely lacked anthers in an F2 population derived from an interspecific cross between diploid S. tuberosum and S. microdontum. We studied the antherless trait to determine its suitability for use in hybrid potato breeding. We mapped the causal locus to the short arm of Chromosome 6, developed KASP markers for the antherless (al) locus and introduced it into lines with T and A cytoplasm. We found that antherless type male sterility is not expressed in T and A cytoplasm, proving that it is a form of CMS. We hybridized male sterile al/al plants with P cytoplasm with pollen from al/al plants with T and A cytoplasm and we show that the resulting hybrids set significantly fewer berries in the field. Here, we show that the antherless CMS system can be readily deployed in diploid F1 hybrid potato breeding to improve hybridization efficiency and reduce berry set in the field.
Collapse
Affiliation(s)
- Ernst-Jan Eggers
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
- Graduate School Experimental Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Ying Su
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
| | - Esmee van der Poel
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
| | - Martijn Flipsen
- Hogeschool Arnhem Nijmegen, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands
| | | | - Christian W. B. Bachem
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (R.G.F.V.)
| | - Pim Lindhout
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands (C.W.B.B.)
| |
Collapse
|
8
|
Yang F, Vincis Pereira Sanglard L, Lee CP, Ströher E, Singh S, Oh GGK, Millar AH, Small I, Colas des Francs-Small C. Mitochondrial atp1 mRNA knockdown by a custom-designed pentatricopeptide repeat protein alters ATP synthase. PLANT PHYSIOLOGY 2024; 194:2631-2647. [PMID: 38206203 PMCID: PMC10980415 DOI: 10.1093/plphys/kiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Spontaneous mutations are rare in mitochondria and the lack of mitochondrial transformation methods has hindered genetic analyses. We show that a custom-designed RNA-binding pentatricopeptide repeat (PPR) protein binds and specifically induces cleavage of ATP synthase subunit1 (atp1) mRNA in mitochondria, significantly decreasing the abundance of the Atp1 protein and the assembled F1Fo ATP synthase in Arabidopsis (Arabidopsis thaliana). The transformed plants are characterized by delayed vegetative growth and reduced fertility. Five-fold depletion of Atp1 level was accompanied by a decrease in abundance of other ATP synthase subunits and lowered ATP synthesis rate of isolated mitochondria, but no change to mitochondrial electron transport chain complexes, adenylates, or energy charge in planta. Transcripts for amino acid transport and a variety of stress response processes were differentially expressed in lines containing the PPR protein, indicating changes to achieve cellular homeostasis when ATP synthase was highly depleted. Leaves of ATP synthase-depleted lines showed higher respiratory rates and elevated steady-state levels of numerous amino acids, most notably of the serine family. The results show the value of using custom-designed PPR proteins to influence the expression of specific mitochondrial transcripts to carry out reverse genetic studies on mitochondrial gene functions and the consequences of ATP synthase depletion on cellular functions in Arabidopsis.
Collapse
Affiliation(s)
- Fei Yang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chun-Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Swati Singh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Glenda Guec Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Bishnoi R, Solanki R, Singla D, Mittal A, Chhuneja P, Meena OP, Dhatt AS. Comparative mitochondrial genome analysis reveals a candidate ORF for cytoplasmic male sterility in tropical onion. 3 Biotech 2024; 14:6. [PMID: 38074291 PMCID: PMC10700285 DOI: 10.1007/s13205-023-03850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/08/2023] [Indexed: 01/19/2024] Open
Abstract
Cytoplasmic male sterility (CMS) has been widely exploited for hybrid seed production in onions (Allium cepa L.). In contrast to long-day onion cultivars, short-day onion has not yet been investigated for mitochondrial genome structure and DNA rearrangements associated with CMS activity. Here, we report the 3,16,321 bp complete circular mitochondrial genome of tropical onion CMS line (97A). Due to the substantial number of repetitive regions, the assembled mitochondrial genome of maintainer line (97B) remained linear with 15 scaffolds. Additionally, 13 and 20 chloroplast-derived fragments with a size ranging from 143 to 13,984 bp and 153-17,725 bp were identified in the 97A and 97B genomes, respectively. Genome annotation revealed 24 core protein-coding genes along with 24 and 28 tRNA genes in the mitochondrial genomes of 97A and 97B, respectively. Furthermore, comparative genome analysis of the 97A and 97B mitochondrial genomes showed that gene content was almost similar except for the chimeric ORF725 gene which is the extended form of the COX1 gene. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03850-2.
Collapse
Affiliation(s)
- Ritika Bishnoi
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Ravindra Solanki
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Om Prakash Meena
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004 India
| | - Ajmer Singh Dhatt
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
10
|
Azarin K, Usatov A, Kasianova A, Makarenko M, Gavrilova V. Origin of CMS-PET1 cytotype in cultivated sunflower: A new insight. Gene 2023; 888:147801. [PMID: 37714278 DOI: 10.1016/j.gene.2023.147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The vast majority of commercial sunflower hybrids worldwide are produced using cytoplasmic male sterility (CMS) of the PET1 type, resulting from the interspecific hybridization of Helianthus petiolaris with Helianthus annuus. Due to the fact that CMS-PET1 was not previously detected in wild sunflower, it was believed that this cytotype could arise during interspecific hybridization and is specific solely for cultivated sunflower. In this study, the open reading frame, orfH522, associated with the CMS-PET1 phenotype, was revealed for the first time in the 3'-flanking region of the mitochondrial atpA gene in wild H. annuus. An analysis of whole genome data from 1089 accessions showed that the frequency of occurrence of CMS-orfH522 in wild H. annuus populations is 3.58%, while in wild H. petiolaris populations, it is 1.26%. In general, the analysis demonstrated that PET1-CMS is a natural cytotype of H. annuus, and the appearance of the CMS phenotype in cultivated sunflowers is associated with the loss of stabilizing nuclear genes of fertility restorers, which occurred during interspecific hybridization. These data can explain the patterns of differential cytoplasmic and nuclear introgression occurring in wild sunflower and are useful for further evolutionary studies.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, 344006 Rostov-on-Don, Russia.
| | | | | | - Maksim Makarenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Vera Gavrilova
- N.I. Vavilov All Russian Institute of Plant Genetic Resources, 190031 Saint Petersburg, Russia
| |
Collapse
|
11
|
Vincis Pereira Sanglard L, Small ID, Colas des Francs-Small C. Alteration of Mitochondrial Transcript Expression in Arabidopsis thaliana Using a Custom-Made Library of Pentatricopeptide Repeat Proteins. Int J Mol Sci 2023; 24:13233. [PMID: 37686040 PMCID: PMC10487680 DOI: 10.3390/ijms241713233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are considered a potential tool for manipulating organelle gene expression in plants because they can recognise a wide range of different RNA sequences, and the molecular basis for this sequence recognition is partially known and understood. A library of redesigned PPR proteins related to restorer-of-fertility proteins was created and transformed into plants in order to target mitochondrial transcripts. Ninety different variants tested in vivo showed a wide range of phenotypes. One of these lines, which displayed slow growth and downward curled leaves, showed a clear reduction in complex V. The phenotype was due to a specific cleavage of atp1 transcripts induced by a modified PPR protein from the library, validating the use of this library as a source of mitochondrial 'mutants'. This study is a step towards developing specific RNA targeting tools using PPR proteins that can be aimed at desired targets.
Collapse
Affiliation(s)
| | | | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
12
|
Jiang N, Feng MQ, Cheng LC, Kuang LH, Li CC, Yin ZP, Wang R, Xie KD, Guo WW, Wu XM. Spatiotemporal profiles of gene activity in stamen delineate nucleo-cytoplasmic interaction in a male-sterile somatic cybrid citrus. HORTICULTURE RESEARCH 2023; 10:uhad105. [PMID: 37577401 PMCID: PMC10419853 DOI: 10.1093/hr/uhad105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Cytoplasmic male sterility (CMS) has long been used to produce seedless fruits in perennial woody crops like citrus. A male-sterile somatic cybrid citrus (G1 + HBP) was generated by protoplast fusion between a CMS callus parent 'Guoqing No. 1' Satsuma mandarin (Citrus unshiu, G1) and a fertile mesophyll parent Hirado Buntan pummelo (Citrus grandis, HBP). To uncover the male-sterile mechanism of G1 + HBP, we compared the transcriptome profiles of stamen organ and cell types at five stages between G1 + HBP and HBP, including the initial stamen primordia, enlarged stamen primordia, pollen mother cells, tetrads, and microspores captured by laser microdissection. The stamen organ and cell types showed distinct gene expression profiles. A majority of genes involved in stamen development were differentially expressed, especially CgAP3.2, which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1 + HBP compared with HBP. Jasmonic acid- and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia, and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1 + HBP. In contrast, the content of auxin biosynthesis metabolites was lower in G1 + HBP. The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia, meiocytes, and microspores, indicating the dysfunction of mitochondria in stamen organ and cell types of G1 + HBP. Taken together, the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development, and thus lead to male sterility in the citrus cybrid.
Collapse
Affiliation(s)
- Nan Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lai-Chao Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Hua Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao-Chao Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhao-Ping Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Kitazaki K, Oda K, Akazawa A, Iwahori R. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:156. [PMID: 37330934 DOI: 10.1007/s00122-023-04398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is an increasingly important issue within the context of hybrid seed production. Its genetic framework is simple: S-cytoplasm for male sterility induction and dominant allele of the restorer-of-fertility gene (Rf) for suppression of S. However, breeders sometimes encounter a phenotype of CMS plants too complex to be explained via this simple model. The molecular basis of CMS provides clue to the mechanisms that underlie the expression of CMS. Mitochondria have been associated with S, and several unique ORFs to S-mitochondria are thought to be responsible for the induction of male sterility in various crops. Their functions are still the subject of debate, but they have been hypothesized to emit elements that trigger sterility. Rf suppresses the action of S by various mechanisms. Some Rfs, including those that encode the pentatricopeptide repeat (PPR) protein and other proteins, are now considered members of unique gene families that are specific to certain lineages. Additionally, they are thought to be complex loci in which several genes in a haplotype simultaneously counteract an S-cytoplasm and differences in the suite of genes in a haplotype can lead to multiple allelism including strong and weak Rf at phenotypic level. The stability of CMS is influenced by factors such as the environment, cytoplasm, and genetic background; the interaction of these factors is also important. In contrast, unstable CMS becomes inducible CMS if its expression can be controlled. CMS becomes environmentally sensitive in a genotype-dependent manner, suggesting the feasibility of controlling the expression of CMS.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kotoko Oda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoma Iwahori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Goto S, Fujii H, Hamada H, Ohta S, Endo T, Shimizu T, Nonaka K, Shimada T. Allelic haplotype combinations at the MS-P1 region, including P-class pentatricopeptide repeat family genes, influence wide phenotypic variation in pollen grain number through a cytoplasmic male sterility model in citrus. FRONTIERS IN PLANT SCIENCE 2023; 14:1163358. [PMID: 37342126 PMCID: PMC10278581 DOI: 10.3389/fpls.2023.1163358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
In citrus breeding programs, male sterility is an important trait for developing seedless varieties. Sterility associated with the male sterile cytoplasm of Kishu mandarin (Kishu-cytoplasm) has been proposed to fit the cytoplasmic male sterility (CMS) model. However, it remains undetermined whether CMS in citrus is controlled by interactions between sterile cytoplasm and nuclear restorer-of-fertility (Rf) genes. Accordingly, mechanisms underlying the control of the wide phenotypic variation in pollen number for breeding germplasm should be elucidated. This study aimed to identify complete linkage DNA markers responsible for male sterility at the MS-P1 region based on fine mapping. Two P-class pentatricopeptide repeat (PPR) family genes were identified as candidates for Rf based on predicted mitochondrial localization and higher expression in a male fertile variety/selected strain than in a male sterile variety. Eleven haplotypes (HT1-HT11) at the MS-P1 region were defined based on genotyping of DNA markers. Association analysis of diplotypes at the MS-P1 region and the number of pollen grains per anther (NPG) in breeding germplasms harboring Kishu-cytoplasm revealed that the diplotypes in this region influenced NPG. Among these haplotypes, HT1 is a non-functional restorer-of-fertility (rf) haplotype; HT2, a less-functional Rf; HT3-HT5 are semi-functional Rfs; and HT6 and HT7 are functional Rfs. However, the rare haplotypes HT8-HT11 could not be characterized. Therefore, P-class PPR family genes in the MS-P1 region may constitute the nuclear Rf genes within the CMS model, and a combination of the seven haplotypes could contribute to phenotypic variation in the NPG of breeding germplasms. These findings reveal the genomic mechanisms of CMS in citrus and will contribute to seedless citrus breeding programs by selecting candidate seedless seedlings using the DNA markers at the MS-P1 region.
Collapse
Affiliation(s)
- Shingo Goto
- Citrus Breeding and Production Group, Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
16
|
Montalt R, Cuenca J, Vives MC, Mournet P, Navarro L, Ollitrault P, Aleza P. Genotyping by Sequencing for SNP-Based Linkage Analysis and the Development of KASPar Markers for Male Sterility and Polyembryony in Citrus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1567. [PMID: 37050193 PMCID: PMC10096700 DOI: 10.3390/plants12071567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Polyembryony and male sterility (MS) are essential characters for citrus breeding. MS, coupled with parthenocarpy, allows for addressing the diversification of diploid seedless mandarin varieties, and nucleocytoplasmic MS is the most prevalent system. Polyembryony limits the use of seed parents in scion breeding programs, and the recovery of monoembryonic hybrids to be used as female parents is a crucial pre-breeding component. The objectives of this work were the identification of SNPs closely linked with the genes implied in these traits for marker-assisted selection. Genotyping by sequencing was used to genotype 61 diploid hybrids from an F1 progeny recovered from crossing 'Kiyomi' and 'Murcott' tangors. A total of 6444 segregating markers were identified and used to establish the two parental genetic maps. They consisted of 1374 and 697 markers encompassing 1416.287 and 1339.735 cM for 'Kiyomi' and 'Murcott', respectively. Phenotyping for MS and polyembryony was performed. The genotype-trait association study identified a genomic region on LG8 which was significantly associated with MS, and a genomic region on LG1 which was significantly associated with polyembryony. Annotation of the identified region for MS revealed 19 candidate genes. One SNP KASPar marker was developed and fully validated for each trait.
Collapse
Affiliation(s)
- Rafael Montalt
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - José Cuenca
- Agrupación de Viveristas de Agrios (AVASA), 12570 Castellón, Spain
| | - María Carmen Vives
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Pierre Mournet
- UMR AGAP, CIRAD, 34398 Montpellier, France
- UMR AGAP, Institut Agro, CIRAD, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Patrick Ollitrault
- UMR AGAP, CIRAD, 34398 Montpellier, France
- UMR AGAP, Institut Agro, CIRAD, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| |
Collapse
|
17
|
Raiyemo DA, Bobadilla LK, Tranel PJ. Genomic profiling of dioecious Amaranthus species provides novel insights into species relatedness and sex genes. BMC Biol 2023; 21:37. [PMID: 36804015 PMCID: PMC9940365 DOI: 10.1186/s12915-023-01539-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Amaranthus L. is a diverse genus consisting of domesticated, weedy, and non-invasive species distributed around the world. Nine species are dioecious, of which Amaranthus palmeri S. Watson and Amaranthus tuberculatus (Moq.) J.D. Sauer are troublesome weeds of agronomic crops in the USA and elsewhere. Shallow relationships among the dioecious Amaranthus species and the conservation of candidate genes within previously identified A. palmeri and A. tuberculatus male-specific regions of the Y (MSYs) in other dioecious species are poorly understood. In this study, seven genomes of dioecious amaranths were obtained by paired-end short-read sequencing and combined with short reads of seventeen species in the family Amaranthaceae from NCBI database. The species were phylogenomically analyzed to understand their relatedness. Genome characteristics for the dioecious species were evaluated and coverage analysis was used to investigate the conservation of sequences within the MSY regions. RESULTS We provide genome size, heterozygosity, and ploidy level inference for seven newly sequenced dioecious Amaranthus species and two additional dioecious species from the NCBI database. We report a pattern of transposable element proliferation in the species, in which seven species had more Ty3 elements than copia elements while A. palmeri and A. watsonii had more copia elements than Ty3 elements, similar to the TE pattern in some monoecious amaranths. Using a Mash-based phylogenomic analysis, we accurately recovered taxonomic relationships among the dioecious Amaranthus species that were previously identified based on comparative morphology. Coverage analysis revealed eleven candidate gene models within the A. palmeri MSY region with male-enriched coverages, as well as regions on scaffold 19 with female-enriched coverage, based on A. watsonii read alignments. A previously reported FLOWERING LOCUS T (FT) within A. tuberculatus MSY contig was also found to exhibit male-enriched coverages for three species closely related to A. tuberculatus but not for A. watsonii reads. Additional characterization of the A. palmeri MSY region revealed that 78% of the region is made of repetitive elements, typical of a sex determination region with reduced recombination. CONCLUSIONS The results of this study further increase our understanding of the relationships among the dioecious species of the Amaranthus genus as well as revealed genes with potential roles in sex function in the species.
Collapse
Affiliation(s)
- Damilola A Raiyemo
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Lucas K Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Chou JY, Hsu PC, Leu JY. Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiol Mol Biol Rev 2022; 86:e0009822. [PMID: 36098649 PMCID: PMC9769731 DOI: 10.1128/mmbr.00098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Santayana M, Aponte M, Kante M, Eyzaguirre R, Gastelo M, Lindqvist-Kreuze H. Cytoplasmic Male Sterility Incidence in Potato Breeding Populations with Late Blight Resistance and Identification of Breeding Lines with a Potential Fertility Restorer Mechanism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223093. [PMID: 36432822 PMCID: PMC9696232 DOI: 10.3390/plants11223093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 06/01/2023]
Abstract
Cytoplasmic male sterility (CMS) in potato is a common reproductive issue in late blight breeding programs since resistant sources usually have a wild cytoplasmic background (W or D). Nevertheless, in each breeding cycle male fertile lines have been observed within D- and T-type cytoplasms, indicating the presence of a fertility restorer (Rf) mechanism. Identifying sources of Rf and complete male sterility to implement a CMS-Rf system in potato is important since hybrid breeding is a feasible breeding strategy for potato. The objective of this study was to identify male fertile breeding lines and potential Rf candidate lines in the CIP late blight breeding pipeline. We characterized male fertility/sterility-related traits on 142 breeding lines of known cytoplasmic type. We found that pollen viability is not a reliable estimate of male sterility in diverse backgrounds. Breeding lines of the T-type cytoplasmic group had higher levels of male fertility than breeding lines of the D-type cytoplasmic group. With the help of pedigree records, reproductive traits evaluations and test crosses with female clones of diverse background, we identified four male parental lines segregating for Rf and three female parental lines that generated 100% male sterile progeny. These identified lines and generated test cross progenies will be valuable to develop validation populations for mitochondrial or nuclear markers for the CMS trait and for dihaploid generation of Rf+ lines that can be later employed in diploid hybrid breeding.
Collapse
|
20
|
|
21
|
Breton S, Stewart DT, Brémaud J, Havird JC, Smith CH, Hoeh WR. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? Bioessays 2022; 44:e2100283. [PMID: 35170770 PMCID: PMC9083018 DOI: 10.1002/bies.202100283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.
Collapse
Affiliation(s)
- Sophie Breton
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Julie Brémaud
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chase H Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
22
|
Gao B, Ren G, Wen T, Li H, Zhang X, Lin Z. A super PPR cluster for restoring fertility revealed by genetic mapping, homocap-seq and de novo assembly in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:637-652. [PMID: 34811574 DOI: 10.1007/s00122-021-03990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Rf candidate genes were related to the super D05_PPR-cluster and verified to be individually nonfunctional. Restorer of fertility (Rf) genes of cytoplasmic male sterility (CMS) is commonly found to be PPR (pentatricopeptide repeat) genes, which are mostly located in a cluster of PPR genes with high similarity. Here, Homocap-seq was applied to analyze PPR clusters in 'three lines,' and we found broad variations within the D05_PPR-cluster in a restorer line and deduced that the D05_PPR-cluster was associated with fertility restoration. Genetic mapping of Rf and Homocap-seq analysis of three genotypes in the F2 population validated that the D05_PPR-cluster was the origin of Rf. Three Rf candidates were cloned that were the most actively expressed genes in the D05_PPR-cluster in the restorer line as revealed by their high-depth amplicons. However, further transgenic experiments showed that none of the candidates could restore fertility of the CMS line independently. Then, the members of the brand-new super D05_PPR-cluster in the restorer line, containing 14 full-length PPRs and at least 13 PPR homologous sequences, were identified by long-read resequencing, which validated the effectiveness of variation and expression prediction of Homocap-seq. Additionally, we found that several PPR duplications, including 2 of the 3 Rf candidates, had undergone site-specific selection as potentially important anther development-associated genes. Finally, we proposed that multiple PPRs were coordinately responsible for the fertility restoration of the CMS line.
Collapse
Affiliation(s)
- Bin Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gaofeng Ren
- Yueyang Institute of Agricultural Science, Yueyang, 414000, Hunan, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiping Li
- Yueyang Institute of Agricultural Science, Yueyang, 414000, Hunan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Comparative Transcriptome Analysis of the Anthers from the Cytoplasmic Male-Sterile Pepper Line HZ1A and Its Maintainer Line HZ1B. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cytoplasmic male-sterility (CMS) is important for the utilization of crop heterosis and study of the molecular mechanisms involved in CMS could improve breeding programs. In the present study, anthers of the pepper CMS line HZ1A and its maintainer line HZ1B were collected from stages S1, S2, and S3 for transcriptome sequencing. A total of 47.95 million clean reads were obtained, and the reads were assembled into 31,603 unigenes. We obtained 42 (27 up-regulated and 15 down-regulated), 691 (346 up-regulated and 345 down-regulated), and 709 (281 up-regulated and 428 down-regulated) differentially expressed genes (DEGs) in stages S1, S2, and S3, respectively. Through Gene Ontology (GO) analysis, the DEGs were found to be composed of 46 functional groups. Two GO terms involved in photosynthesis, photosynthesis (GO:0015986) and photosystem I (GO:0009522), may be related to CMS. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, oxidative phosphorylation (ko00190) and phenylpropanoid biosynthesis (ko00940) were significantly enriched in the S1 and S2 stages, respectively. Through the analysis of 104 lipid metabolism-related DEGs, four significantly enriched KEGG pathways may help to regulate male sterility during anther development. The mitochondrial genes orf470 and atp6 were identified as candidate genes of male sterility for the CMS line HZ1A. Overall, the results will provide insights into the molecular mechanisms of pepper CMS.
Collapse
|
24
|
Wang T, He T, Ding X, Zhang Q, Yang L, Nie Z, Zhao T, Gai J, Yang S. Confirmation of GmPPR576 as a fertility restorer gene of cytoplasmic male sterility in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7729-7742. [PMID: 34397079 DOI: 10.1093/jxb/erab382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
In soybean, heterosis achieved through the three-line system has been gradually applied in breeding to increase yield, but the underlying molecular mechanism remains unknown. We conducted a genetic analysis using the pollen fertility of offspring of the cross NJCMS1A×NJCMS1C. All the pollen of F1 plants was semi-sterile; in F2, the ratio of pollen-fertile plants to pollen-semi-sterile plants was 208:189. This result indicates that NJCMS1A is gametophyte sterile, and the fertility restoration of NJCMS1C to NJCMS1A is a quality trait controlled by a single gene locus. Using bulked segregant analysis, the fertility restorer gene Rf in NJCMS1C was located on chromosome 16 between the markers BARCSOYSSR_16_1067 and BARCSOYSSR_16_1078. Sequence analysis of genes in that region showed that GmPPR576 was non-functional in rf cultivars. GmPPR576 has one functional allele in Rf cultivars but three non-functional alleles in rf cultivars. Phylogenetic analysis showed that the GmPPR576 locus evolved rapidly with the presence of male-sterile cytoplasm. GmPPR576 belongs to the RFL fertility restorer gene family and is targeted to the mitochondria. GmPPR576 was knocked out in soybean N8855 using CRISPR/Cas9. The T1 plants showed sterile pollen, and T2 plants produced few pods at maturity. The results indicate that GmPPR576 is the fertility restorer gene of NJCMS1A.
Collapse
Affiliation(s)
- Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiqi Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhixing Nie
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Kim S, Kim S. An insertion mutation located on putative enhancer regions of the MYB26-like gene induces inhibition of anther dehiscence resulting in novel genic male sterility in radish ( Raphanus sativus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:67. [PMID: 37309318 PMCID: PMC10236041 DOI: 10.1007/s11032-021-01254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
A novel male-sterility trait was identified in a radish (Raphanus sativus L.) population. Although the size of male-sterile anthers was comparable to that of normal flowers, no pollen grain was observed during anther dehiscence. However, dissection of male-sterile anthers revealed an abundance of normal pollen grains. Analysis of segregating populations showed that a single recessive locus, designated RsMs1, conferred male sterility. Based on two radish draft genome sequences, molecular markers were developed to delimit the genomic region harboring the RsMs1. The region was narrowed down to approximately 24 kb after analyzing recombinants selected from 7511 individuals of a segregating population. Sequencing of the delimited region yielded six putative genes including four genes expressed in the floral tissue, and one gene with significant differential expression between male-fertile and male-sterile individuals of a segregating population. This differentially expressed gene was orthologous to the Arabidopsis MYB26 gene, which played a critical role in anther dehiscence. Excluding a synonymous single nucleotide polymorphism in exon3, no polymorphism involving coding and putative promoter regions was detected between alleles. A 955-bp insertion was identified 7.5 kb upstream of the recessive allele. Highly conserved motifs among four Brassicaceae species were identified around this insertion site, suggesting the presence of putative enhancer sequences. A functional marker was developed for genotyping of the RsMs1 based on the 955-bp insertion. A total of 120 PI accessions were analyzed using this marker, and 11 accessions were shown to carry the recessive rsms1 allele. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01254-9.
Collapse
Affiliation(s)
- Seongjun Kim
- Jeollanamdo Agricultural Research and Extension Service, Naju-si, 58213 Republic of Korea
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
26
|
The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proc Natl Acad Sci U S A 2021; 118:2105274118. [PMID: 34433671 DOI: 10.1073/pnas.2105274118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf). In this study, we focused on the Ogura CMS system in rapeseed and showed that reversion to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific translation inhibition of the mitochondria-encoded CMS-causing mRNA orf138 We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.
Collapse
|
27
|
Yang Q, Nong X, Xu J, Huang F, Wang F, Wu J, Zhang C, Liu C. Unraveling the Genetic Basis of Fertility Restoration for Cytoplasmic Male Sterile Line WNJ01A Originated From Brassica juncea in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:721980. [PMID: 34531887 PMCID: PMC8438535 DOI: 10.3389/fpls.2021.721980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Crosses that lead to heterosis have been widely used in the rapeseed (Brassica napus L.) industry. Cytoplasmic male sterility (CMS)/restorer-of-fertility (Rf) systems represent one of the most useful tools for rapeseed production. Several CMS types and their restorer lines have been identified in rapeseed, but there are few studies on the mechanisms underlying fertility restoration. Here, we performed morphological observation, map-based cloning, and transcriptomic analysis of the F2 population developed by crossing the CMS line WNJ01A with its restorer line Hui01. Paraffin-embedded sections showed that the sporogenous cell stage was the critical pollen degeneration period, with major sporogenous cells displaying loose and irregular arrangement in sterile anthers. Most mitochondrial electron transport chain (mtETC) complex genes were upregulated in fertile compared to sterile buds. Using bulked segregant analysis (BSA)-seq to analyze mixed DNA pools from sterile and fertile F2 buds, respectively, we identified a 6.25 Mb candidate interval where Rfw is located. Using map-based cloning experiments combined with bacterial artificial chromosome (BAC) clone sequencing, the candidate interval was reduced to 99.75 kb and two pentatricopeptide repeat (PPR) genes were found among 28 predicted genes in this interval. Transcriptome sequencing showed that there were 1679 DEGs (1023 upregulated and 656 downregulated) in fertile compared to sterile F2 buds. The upregulated differentially expressed genes (DEGs) were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) lysine degradation pathway and phenylalanine metabolism, and the downregulated DEGs were enriched in cutin, suberine, and wax biosynthesis. Furthermore, 44 DEGs were involved in pollen and anther development, such as tapetum, microspores, and pollen wall development. All of them were upregulated except a few such as POE1 genes (which encode Pollen Ole e I allergen and extensin family proteins). There were 261 specifically expressed DEGs (9 and 252 in sterile and fertile buds, respectively). Regarding the fertile bud-specific upregulated DEGs, the ubiquitin-proteasome pathway was enriched. The top four hub genes in the protein-protein interaction network (BnaA09g56400D, BnaA10g18210D, BnaA10g18220D, and BnaC09g41740D) encode RAD23d proteins, which deliver ubiquitinated substrates to the 26S proteasome. These findings provide evidence on the pathways regulated by Rfw and improve our understanding of fertility restoration.
Collapse
|
28
|
Vendelbo NM, Mahmood K, Sarup P, Kristensen PS, Orabi J, Jahoor A. Genomic Scan of Male Fertility Restoration Genes in a 'Gülzow' Type Hybrid Breeding System of Rye ( Secale cereale L.). Int J Mol Sci 2021; 22:ijms22179277. [PMID: 34502186 PMCID: PMC8431178 DOI: 10.3390/ijms22179277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/03/2023] Open
Abstract
Efficient and stable restoration of male fertility (Rf) is a prerequisite for large-scale hybrid seed production but remains an inherent issue in the predominant fertility control system of rye (Secale cereale L.). The ‘Gülzow’ (G)-type cytoplasmic male sterility (CMS) system in hybrid rye breeding exhibits a superior Rf. While having received little scientific attention, one major G-type Rf gene has been identified on 4RL (Rfg1) and two minor genes on 3R (Rfg2) and 6R (Rfg3) chromosomes. Here, we report a comprehensive investigation of the genetics underlying restoration of male fertility in a large G-type CMS breeding system using recent advents in rye genomic resources. This includes: (I) genome-wide association studies (GWAS) on G-type germplasm; (II) GWAS on a biparental mapping population; and (III) an RNA sequence study to investigate the expression of genes residing in Rf-associated regions in G-type rye hybrids. Our findings provide compelling evidence of a novel major G-type non-PPR Rf gene on the 3RL chromosome belonging to the mitochondrial transcription termination factor gene family. We provisionally denote the identified novel Rf gene on 3RL RfNOS1. The discovery made in this study is distinct from known P- and C-type systems in rye as well as recognized CMS systems in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). We believe this study constitutes a stepping stone towards understanding the restoration of male fertility in the G-type CMS system and potential resources for addressing the inherent issues of the P-type system.
Collapse
Affiliation(s)
- Nikolaj Meisner Vendelbo
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
- Department of Agroecology, Faculty of Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200 Slagelse, Denmark
- Correspondence:
| | - Khalid Mahmood
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Pernille Sarup
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Peter Skov Kristensen
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Jihad Orabi
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
| | - Ahmed Jahoor
- Nordic Seed A/S, Grindsnabevej 25, 8300 Odder, Denmark; (K.M.); (P.S.); (P.S.K.); (J.O.); (A.J.)
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden
| |
Collapse
|
29
|
Cheng Q, Wang P, Li T, Liu J, Zhang Y, Wang Y, Sun L, Shen H. Complete Mitochondrial Genome Sequence and Identification of a Candidate Gene Responsible for Cytoplasmic Male Sterility in Celery ( Apium graveolens L.). Int J Mol Sci 2021; 22:ijms22168584. [PMID: 34445290 PMCID: PMC8395238 DOI: 10.3390/ijms22168584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Celery (Apium graveolens L.) is an important leafy vegetable worldwide. The development of F1 hybrids in celery is highly dependent on cytoplasmic male sterility (CMS) because emasculation is difficult. In this study, we first report a celery CMS, which was found in a high-generation inbred line population of the Chinese celery “tanzhixiangqin”. Comparative analysis, following sequencing and assembly of the complete mitochondrial genome sequences for this celery CMS line and its maintainer line, revealed that there are 21 unique regions in the celery CMS line and these unique regions contain 15 ORFs. Among these ORFs, only orf768a is a chimeric gene, consisting of 1497 bp sequences of the cox1 gene and 810 bp unidentified sequences located in the unique region, and the predicted protein product of orf768a possesses 11 transmembrane domains. In summary, the results of this study indicate that orf768a is likely to be a strong candidate gene for CMS induction in celery. In addition, orf768a can be a co-segregate marker, which can be used to screen CMS in celery.
Collapse
Affiliation(s)
- Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Peng Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Tiantian Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Jinkui Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Yingxue Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Yihao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Q.C.); (T.L.); (J.L.); (Y.Z.); (Y.W.); (L.S.)
- Correspondence:
| |
Collapse
|
30
|
Brownfield L. Plant breeding: Revealing the secrets of cytoplasmic male sterility in wheat. Curr Biol 2021; 31:R724-R726. [PMID: 34102121 DOI: 10.1016/j.cub.2021.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
While cytoplasmic male sterility is used for breeding in many crops, it has proved difficult to implement in wheat. A new study identifying the key molecules and their mode of action in cytoplasmic male sterility provides new opportunities for wheat breeding.
Collapse
|
31
|
Yamagishi H, Jikuya M, Okushiro K, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. Mol Genet Genomics 2021; 296:705-717. [PMID: 33772345 PMCID: PMC8144145 DOI: 10.1007/s00438-021-01777-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/04/2022]
Abstract
Cytoplasmic male sterility (CMS) observed in many plants leads defect in the production of functional pollen, while the expression of CMS is suppressed by a fertility restorer gene in the nuclear genome. Ogura CMS of radish is induced by a mitochondrial orf138, and a fertility restorer gene, Rfo, encodes a P-type PPR protein, ORF687, acting at the translational level. But, the exact function of ORF687 is still unclear. We found a Japanese variety showing male sterility even in the presence of Rfo. We examined the pollen fertility, Rfo expression, and orf138 mRNA in progenies of this variety. The progeny with Type H orf138 and Rfo showed male sterility when their orf138 mRNA was unprocessed within the coding region. By contrast, all progeny with Type A orf138 were fertile though orf138 mRNA remained unprocessed in the coding region, demonstrating that ORF687 functions on Type A but not on Type H. In silico analysis suggested a specific binding site of ORF687 in the coding region, not the 5′ untranslated region estimated previously, of Type A. A single nucleotide substitution in the putative binding site diminishes affinity of ORF687 in Type H and is most likely the cause of the ineffectiveness of ORF687. Furthermore, fertility restoration by RNA processing at a novel site in some progeny plants indicated a new and the third fertility restorer gene, Rfs, for orf138. This study clarified that direct ORF687 binding to the coding region of orf138 is essential for fertility restoration by Rfo.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan.
| | - Megumi Jikuya
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Kanako Okushiro
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Ayako Hashimoto
- Research Center of Botany, Kyoto Sangyo University, Kamigamo, Kita , Kyoto, 603-8555, Japan
| | - Asumi Fukunaga
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| | - Mizuki Takenaka
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toru Terachi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita, Kyoto, 603-8555, Japan
| |
Collapse
|
32
|
Wang L, Xie S, Zhang Y, Kang R, Zhang M, Wang M, Li H, Chen L, Yuan H, Ding S, Liang S, Li H. The FpPPR1 Gene Encodes a Pentatricopeptide Repeat Protein That Is Essential for Asexual Development, Sporulation, and Pathogenesis in Fusarium pseudograminearum. Front Genet 2021; 11:535622. [PMID: 33584782 PMCID: PMC7874006 DOI: 10.3389/fgene.2020.535622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Fusarium crown rot (FCR) and Fusarium head blight (FHB) are caused by Fusarium pseudograminearum and are newly emerging diseases of wheat in China. In this study, we characterized FpPPR1, a gene that encodes a protein with 12 pentatricopeptide repeat (PPR) motifs. The radial growth rate of the ΔFpppr1 deletion mutant was significantly slower than the wild type strain WZ-8A on potato dextrose agar plates and exhibited significantly smaller colonies with sector mutations. The aerial mycelium of the mutant was almost absent in culture tubes. The ΔFpppr1 mutant was able to produce spores, but spores of abnormal size and altered conidium septum shape were produced with a significant reduction in sporulation compared to wild type. ΔFpppr1 failed to cause disease on wheat coleoptiles and barley leaves using mycelia plugs or spore suspensions. The mutant phenotypes were successfully restored to the wild type levels in complemented strains. FpPpr1-GFP signals in spores and mycelia predominantly overlapped with Mito-tracker signals, which substantiated the mitochondria targeting signal prediction of FpPpr1. RNAseq revealed significant transcriptional changes in the ΔFpppr1 mutant with 1,367 genes down-regulated and 1,333 genes up-regulated. NAD-binding proteins, thioredoxin, 2Fe-2S iron-sulfur cluster binding domain proteins, and cytochrome P450 genes were significantly down-regulated in ΔFpppr1, implying the dysfunction of mitochondria-mediated reductase redox stress in the mutant. The mating type idiomorphic alleles MAT1-1-1, MAT1-1-2, and MAT1-1-3 in F. pseudograminearum were also down-regulated after deletion of FpPPR1 and validated by real-time quantitative PCR. Additionally, 21 genes encoding putative heterokaryon incompatibility proteins were down-regulated. The yellow pigmentation of the mutant was correlated with reduced expression of PKS12 cluster genes. Taken together, our findings on FpPpr1 indicate that this PPR protein has multiple functions in fungal asexual development, regulation of heterokaryon formation, mating-type, and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Limin Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shunpei Xie
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yinshan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Ruijiao Kang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China.,Xuchang Vocational Technical College, Xuchang, China
| | - Mengjuan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Min Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Haiyang Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Linlin Chen
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Hongxia Yuan
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shengli Ding
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Honglian Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
33
|
Durand S, Ricou A, Simon M, Dehaene N, Budar F, Camilleri C. A restorer-of-fertility-like pentatricopeptide repeat protein promotes cytoplasmic male sterility in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:124-135. [PMID: 33098690 DOI: 10.1111/tpj.15045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins form a large family of proteins targeted to organelles, where they post-transcriptionally modulate gene expression through binding to specific RNA sequences. Among them, the mitochondria-targeted restorer-of-fertility (Rf) PPRs inhibit peculiar mitochondrial genes that are detrimental to male gametes and cause cytoplasmic male sterility (CMS). Here, we revealed three nuclear loci involved in CMS in a cross between two distant Arabidopsis thaliana strains, Sha and Cvi-0. We identified the causal gene at one of these loci as RFL24, a conserved gene encoding a PPR protein related to known Rf PPRs. By analysing fertile revertants obtained in a male sterile background, we demonstrate that RFL24 promotes pollen abortion, in contrast with the previously described Rf PPRs, which allow pollen to survive in the presence of a sterilizing cytoplasm. We show that the sterility caused by the RFL24 Cvi-0 allele results from higher expression of the gene during early pollen development. Finally, we predict a binding site for RFL24 upstream of two mitochondrial genes, the CMS gene and the important gene cob. These results suggest that the conservation of RFL24 is linked to a primary role of ensuring a proper functioning of mitochondria, and that it was subsequently diverted by the CMS gene to its benefit.
Collapse
Affiliation(s)
- Stéphanie Durand
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Anthony Ricou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Matthieu Simon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Noémie Dehaene
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Univ. Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Christine Camilleri
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
34
|
Arakawa T, Kagami H, Katsuyama T, Kitazaki K, Kubo T. A Lineage-Specific Paralog of Oma1 Evolved into a Gene Family from Which a Suppressor of Male Sterility-Inducing Mitochondria Emerged in Plants. Genome Biol Evol 2020; 12:2314-2327. [PMID: 32853350 PMCID: PMC7846149 DOI: 10.1093/gbe/evaa186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Cytoplasmic male sterility (MS) in plants is caused by MS-inducing mitochondria, which have emerged frequently during plant evolution. Nuclear restorer-of-fertility (Rf)genes can suppress their cognate MS-inducing mitochondria. Whereas many Rfs encode a class of RNA-binding protein, the sugar beet (Caryophyllales) Rf encodes a protein resembling Oma1, which is involved in the quality control of mitochondria. In this study, we investigated the molecular evolution of Oma1 homologs in plants. We analyzed 37 plant genomes and concluded that a single copy is the ancestral state in Caryophyllales. Among the sugar beet Oma1 homologs, the orthologous copy is located in a syntenic region that is preserved in Arabidopsis thaliana. The sugar beet Rf is a complex locus consisting of a small Oma1 homolog family (RF-Oma1 family) unique to sugar beet. The gene arrangement in the vicinity of the locus is seen in some but not all Caryophyllalean plants and is absent from Ar. thaliana. This suggests a segmental duplication rather than a whole-genome duplication as the mechanism of RF-Oma1 evolution. Of thirty-seven positively selected codons in RF-Oma1, twenty-six of these sites are located in predicted transmembrane helices. Phylogenetic network analysis indicated that homologous recombination among the RF-Oma1 members played an important role to generate protein activity related to suppression. Together, our data illustrate how an evolutionarily young Rf has emerged from a lineage-specific paralog. Interestingly, several evolutionary features are shared with the RNA-binding protein type Rfs. Hence, the evolution of the sugar beet Rf is representative of Rf evolution in general.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan.,Gifu Prefectural Research Institute for Agricultural Technology in Hilly and Mountainous Areas, Nakatsugawa, Gifu, Japan
| | - Hiroyo Kagami
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takaya Katsuyama
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
35
|
Anisimova IN. Structural and Functional Organization of Genes That Induce and Suppress Cytoplasmic Male Sterility in Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, Pomiankowski A, Nuckolls NL, Montchamp-Moreau C, Mideo N, Martin OY, Manser A, Legros M, Larracuente AM, Holman L, Godwin J, Gemmell N, Courret C, Buchman A, Barrett LG, Lindholm AK. Resistance to natural and synthetic gene drive systems. J Evol Biol 2020; 33:1345-1360. [PMID: 32969551 PMCID: PMC7796552 DOI: 10.1111/jeb.13693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.
Collapse
Affiliation(s)
- Tom A. R. Price
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Andreas Sutter
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Perran A. Ross
- Bio21 and the School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Oliver Y. Martin
- Department of Biology (D-BIOL) & Institute of Integrative Biology (IBZ), ETH Zurich, Universitätsstrasse 16, CH 8092 Zurich, Switzerland
| | - Andri Manser
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Matthieu Legros
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | | | - Luke Holman
- School of Biosciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Neil Gemmell
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, Gif sur Yvette 91190, France
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Anna Buchman
- University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Verily Life Sciences, 269 E Grand Ave, South San Francisco, CA 94080
| | - Luke G. Barrett
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
37
|
Gudi S, Atri C, Goyal A, Kaur N, Akhtar J, Mittal M, Kaur K, Kaur G, Banga SS. Physical mapping of introgressed chromosome fragment carrying the fertility restoring (Rfo) gene for Ogura CMS in Brassica juncea L. Czern & Coss. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2949-2959. [PMID: 32661588 DOI: 10.1007/s00122-020-03648-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/01/2020] [Indexed: 05/18/2023]
Abstract
Rfo is located on a radish chromosome fragment (~ 108 Kb), which is seated in the middle of a pretty large C genome translocation at the distal region of chromosome A09 of B. juncea. Ogura cytoplasmic male sterility (CMS) is used to produce hybrids in Indian mustard (Brassica juncea L.). Fertility restorers for this CMS were developed by cross-hybridizing B. juncea (AABB; 2n = 36) with B. napus (AACC; 2n = 38) carrying radish Rfo gene. This hybrid production system is normally stable, but many commercial mustard hybrids show male sterile contaminants. We aimed to identify linkage drag associated with Rfo by comparing hybridity levels of 295 handmade CMS x Rfo crosses. Although Rfo was stably inherited, hybridity was < 85 percent in several combinations. Genome re-sequencing of five fertility restorers, mapping sequencing reads to B. juncea reference and synteny analysis with Raphanus sativus D81Rfo genomic region (AJ550021.2) helped to detect ~ 108 Kb of radish chromosome (R) fragment substitution in all fertility restorers. This radish segment substitution was itself located amidst a large C genome translocation on the terminal region of chromosome A09 of B. juncea. The size of alien segment substitution varied from 11.3 (NTCN-R9) to 22.0 Mb (NAJR-102B-R). We also developed an in silico SSR map for chromosome A09 and identified many homoeologous A to the C genome exchanges in the introgressed region. A to the R genome exchanges were rare. Annotation of the substituted fragment showed the gain of many novel genes from R and C genomes and the loss of B. juncea genes from the corresponding region. We have developed a KASPar marker for marker-aided transfer of Rfo and testing hybridity levels in seed production lots.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Javed Akhtar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kawalpreet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurpreet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
38
|
Xiao S, Zang J, Pei Y, Liu J, Liu J, Song W, Shi Z, Su A, Zhao J, Chen H. Activation of Mitochondrial orf355 Gene Expression by a Nuclear-Encoded DREB Transcription Factor Causes Cytoplasmic Male Sterility in Maize. MOLECULAR PLANT 2020; 13:1270-1283. [PMID: 32629120 DOI: 10.1016/j.molp.2020.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 05/25/2023]
Abstract
Coordination between mitochondria and the nucleus is crucial for fertility determination in plants with cytoplasmic male sterility (CMS). Using yeast one-hybrid screening, we identified a transcription factor, ZmDREB1.7, that is highly expressed in sterile microspores at the large vacuole stage and activates the expression of mitochondria-encoded CMS gene orf355. Δpro, a weak allele of ZmDREB1.7 with the loss of a key unfolded protein response (UPR) motif in the promoter, partially restores male fertility of CMS-S maize. ZmDREB1.7 expression increases rapidly in response to antimycin A treatment, but this response is attenuated in the Δpro allele. Furthermore, we found that expression of orf355 in mitochondria activates mitochondrial retrograde signaling, which in turn induces ZmDREB1.7 expression. Taken together, these findings demonstrate that positive-feedback transcriptional regulation between a nuclear regulator and a mitochondrial CMS gene determines male sterility in maize, providing new insights into nucleus-mitochondria communication in plants.
Collapse
Affiliation(s)
- Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Yuanrong Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zi Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Aiguo Su
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
39
|
Lin S, Su S, Jin L, Peng R, Sun D, Ji H, Yu Y, Xu J. Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (Brassica rapa ssp. rapifera) via high-throughput sequencing and degradome analysis. PLoS One 2020; 15:e0236829. [PMID: 32730367 PMCID: PMC7392268 DOI: 10.1371/journal.pone.0236829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait in angiosperms caused by perturbations in nucleus-mitochondrion interactions that suppress the production of functional pollen. MicroRNAs (miRNAs) are small non-coding RNAs that act as regulatory molecules of transcriptional or post-transcriptional gene silencing in plants. The discovery of miRNAs and their possible implications in CMS induction provides clues for the intricacies and complexity of this phenomenon. Previously, we characterized an Ogura-CMS line of turnip (Brassica rapa ssp. rapifera) that displays distinct impaired anther development with defective microspore production and premature tapetum degeneration. In the present study, high-throughput sequencing was employed for a genome-wide investigation of miRNAs. Six small RNA libraries of inflorescences collected from the Ogura-CMS line and its maintainer fertile (MF) line of turnip were constructed. A total of 120 pre-miRNAs corresponding to 89 mature miRNAs were identified, including 87 conversed miRNAs and 33 novel miRNAs. Among these miRNAs, the expression of 10 differentially expressed mature miRNAs originating from 12 pre-miRNAs was shown to have changed by more than two-fold between inflorescences of the Ogura-CMS line and inflorescences of the MF line, including 8 down- and 2 up-regulated miRNAs. The expression profiles of the differentially expressed miRNAs were confirmed by stem-loop quantitative real-time PCR. In addition, to identify the targets of the identified miRNAs, a degradome analysis was performed. A total of 22 targets of 25 miRNAs and 17 targets of 28 miRNAs were identified as being involved in the reproductive development for Ogura-CMS and MF lines of turnip, respectively. Negative correlations of expression patterns between partial miRNAs and their targets were detected. Some of these identified targets, such as squamosa promoter-binding-like transcription factor family proteins, auxin response factors and pentatricopeptide repeat-containing proteins, were previously reported to be involved in reproductive development in plants. Taken together, our results can help improve the understanding of miRNA-mediated regulatory pathways that might be involved in CMS occurrence in turnip.
Collapse
Affiliation(s)
- Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shiwen Su
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Youjian Yu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin’an, China
| | - Jian Xu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| |
Collapse
|
40
|
Selva C, Riboni M, Baumann U, Würschum T, Whitford R, Tucker MR. Hybrid breeding in wheat: how shaping floral biology can offer new perspectives. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:675-694. [PMID: 32534601 DOI: 10.1071/fp19372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Hybrid breeding in wheat (Triticum aestivum L.) has the potential to deliver major yield increases. This is a requisite to guarantee food security for increasing population demands and to counterbalance the effects of extreme environmental conditions. Successful hybrid breeding in wheat relies on forced outcrossing while preventing self-pollination. To achieve this, research has been directed towards identifying and improving fertility control systems. To maximise cross-pollination and seed set, however, fertility control systems need to be complemented by breeding phenotypically distinct male and female lines. This review summarises existing and novel male sterility systems for wheat hybridisation. We also consider the genetic resources that can be used to alter wheat's floral development and spike morphology, with a focus on the genetic variation already available. Exploiting these resources can lead to enhanced outcrossing, a key requirement in the progress towards hybrid wheat breeding.
Collapse
Affiliation(s)
- Caterina Selva
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Matteo Riboni
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ryan Whitford
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; and Corresponding authors. ;
| | - Matthew R Tucker
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; and Corresponding authors. ;
| |
Collapse
|
41
|
What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply? PLANTS 2020; 9:plants9030361. [PMID: 32182978 PMCID: PMC7154926 DOI: 10.3390/plants9030361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production. Although male sterility is caused by S cytoplasm (male-sterility inducing mitochondria), the action of S cytoplasm is suppressed by restorer-of-fertility (Rf), a nuclear gene. Hence, the genetics of Rf has attained particular interest among plant breeders. The genetic model posits Rf diversity in which an Rf specifically suppresses the cognate S cytoplasm. Molecular analysis of Rf loci in plants has identified various genes; however, pentatricopeptide repeat (PPR) protein (a specific type of RNA-binding protein) is so prominent as the Rf-gene product that Rfs have been categorized into two classes, PPR and non-PPR. In contrast, several shared features between PPR- and some non-PPR Rfs are apparent, suggesting the possibility of another grouping. Our present focus is to group Rfs by molecular genetic classes other than the presence of PPRs. We propose three categories that define partially overlapping groups of Rfs: association with post-transcriptional regulation of mitochondrial gene expression, resistance gene-like copy number variation at the locus, and lack of a direct link to S-orf (a mitochondrial ORF associated with CMS). These groups appear to reflect their own evolutionary background and their mechanism of conferring S cytoplasm specificity.
Collapse
|
42
|
Mapping of the New Fertility Restorer Gene Rf-PET2 Close to Rf1 on Linkage Group 13 in Sunflower ( Helianthus annuus L.). Genes (Basel) 2020; 11:genes11030269. [PMID: 32121545 PMCID: PMC7140827 DOI: 10.3390/genes11030269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023] Open
Abstract
The PET2-cytoplasm represents a well characterized new source of cytoplasmic male sterility (CMS) in sunflower. It is distinct from the PET1-cytoplasm, used worldwide for commercial hybrid breeding, although it was, as PET1, derived from an interspecific cross between Helianthus. petiolaris and H. annuus. Fertility restoration is essential for the use of CMS PET2 in sunflower hybrid breeding. Markers closely linked to the fertility restorer gene are needed to build up a pool of restorer lines. Fertility-restored F1-hybrids RHA 265(PET2) × IH-51 showed pollen viability of 98.2% ± 1.2, indicating a sporophytic mode of fertility restoration. Segregation analyses in the F2-population of the cross RHA 265(PET2) × IH-51 revealed that this cross segregated for one major restorer gene Rf-PET2. Bulked-segregant analyses investigating 256 amplified fragment length polymorphism (AFLP) primer combinations revealed a high degree of polymorphism in this cross. Using a subset of 24 AFLP markers, three sequence-tagged site (STS) markers and three microsatellite markers, Rf-PET2 could be mapped to the distal region of linkage group 13 between ORS1030 and ORS630. Three AFLP markers linked to Rf-PET2 were cloned and sequenced. Homology search against the sunflower genome sequence of HanXRQ v1r1 confirmed the physical location of Rf-PET2 close to the restorer gene Rf1 for CMS PET1. STS markers were mapped that can now be used for marker-assisted selection.
Collapse
|
43
|
Havird JC, McConie HJ. Sexually Antagonistic Mitonuclear Coevolution in Duplicate Oxidative Phosphorylation Genes. Integr Comp Biol 2020; 59:864-874. [PMID: 30942855 DOI: 10.1093/icb/icz021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial function is critical in eukaryotes. To maintain an adequate supply of energy, precise interactions must be maintained between nuclear- and mitochondrial-encoded gene products. Such interactions are paramount in chimeric enzymes such as the oxidative phosphorylation (OXPHOS) complexes. Mutualistic coevolution between the two genomes has therefore been suggested to be a critical, ubiquitous feature of eukaryotes that acts to maintain cellular function. However, mitochondrial genomes can also act selfishly and increase their own transmission at the expense of organismal function. For example, male-harming mutations are predisposed to accumulate in mitochondrial genomes due to their maternal inheritance ("mother's curse"). Here, we investigate sexually antagonistic mitonuclear coevolution in nuclear-encoded OXPHOS paralogs from mammals and Drosophila. These duplicate genes are highly divergent but must interact with the same set of mitochondrial-encoded genes. Many such paralogs show testis-specific expression, prompting previous hypotheses suggesting they may have evolved under selection to counteract male-harming mitochondrial mutations. We found increased rates of evolution in OXPHOS paralogs with testis-specific expression in mammals and Drosophila, supporting this hypothesis. However, further analyses suggested such patterns may be due to relaxed, not positive selection, especially in Drosophila. Structural data also suggest that mitonuclear interactions do not play a major role in the evolution of many OXPHOS paralogs in a consistent way. In conclusion, no single OXPHOS paralog met all our criteria for being under selection to counteract male-harming mitochondrial mutations. We discuss alternative explanations for the drastic patterns of evolution in these genes, including mutualistic mitonuclear coevolution, adaptive subfunctionalization after gene duplication, and relaxed selection on OXPHOS in male tissues.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hunter J McConie
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
44
|
Jaqueth JS, Hou Z, Zheng P, Ren R, Nagel BA, Cutter G, Niu X, Vollbrecht E, Greene TW, Kumpatla SP. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:101-111. [PMID: 31487408 DOI: 10.1111/tpj.14521] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 05/24/2023]
Abstract
Type C cytoplasmic male sterility (CMS-C) is the most commonly used form of CMS in maize hybrid seed production. Restorer of fertility 4 (Rf4), the major fertility restorer gene of CMS-C, is located on chromosome 8S. To positionally clone Rf4, a large F3 population derived from a cross between a non-restorer and restorer (n = 5104) was screened for recombinants and then phenotyped for tassel fertility, resulting in a final map-based cloning interval of 12 kb. Within this 12-kb interval, the only likely candidate for Rf4 was GRMZM2G021276, a basic helix-loop-helix (bHLH) transcription factor with tassel-specific expression. The Rf4 gene product contains a nuclear localization signal and is likely to not interact directly with the mitochondria. Sequence analysis of Rf4 revealed four encoded amino acid substitutions between restoring and non-restoring inbreds, however only one substitution, F187Y, was within the highly conserved bHLH domain. The hypothesis that Rf4 restoration is altered by a single amino acid was tested by using clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated protein 9 (Cas9) homology directed repair (HDR) to create isogenic lines that varied for the F187Y substitution. In a population of these CRISPR-Cas9 edited plants (n = 780) that was phenotyped for tassel fertility, plants containing F187 were completely fertile, indicating fertility restoration, and plants containing Y187 were sterile, indicating lack of fertility restoration. Structural modeling shows that this amino acid residue 187 is located within the four helix bundle core, a critical region for stabilizing dimer conformation and affecting interaction partner selection.
Collapse
Affiliation(s)
| | - Zhenglin Hou
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Peizhong Zheng
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Ruihua Ren
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Bruce A Nagel
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Gary Cutter
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Xiaomu Niu
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Thomas W Greene
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Siva P Kumpatla
- Corteva Agriscience™, 8325 NW 62nd Ave, Johnston, IA, 50131, USA
| |
Collapse
|
45
|
Rodríguez-Suárez C, Bagnaresi P, Cattivelli L, Pistón F, Castillo A, Martín AC, Atienza SG, Ramírez C, Martín A. Transcriptomics, chromosome engineering and mapping identify a restorer-of-fertility region in the CMS wheat system msH1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:283-295. [PMID: 31624874 DOI: 10.1007/s00122-019-03457-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/09/2019] [Indexed: 05/24/2023]
Abstract
An original RNA-seq mapping strategy, validated with chromosome engineering and physical mapping, identifies candidate genes for fertility restoration in the 6HchS chromosome of Hordeum chilense in the wheat msH1 system. Cytoplasmic male sterility (CMS) is a valuable trait for hybrid seed production. The msH1 CMS system in common wheat results from the incompatibility between the nuclear genome of wheat and the cytoplasm of the wild barley Hordeum chilense. This work aims to identify H. chilense candidate genes for fertility restoration in the msH1 system with a multidisciplinary strategy based on chromosome engineering, differential expression analysis and genome mapping. Alloplasmic isogenic wheat lines differing for fertility, associated with the presence of an acrocentric chromosome Hchac resulting from the rearrangement of the short arms of H. chilense chromosomes 1Hch and 6Hch, were used for transcriptome sequencing. Two novel RNA-seq mapping approaches were designed and compared to identify differentially expressed genes of H. chilense associated with male fertility restoration. Minichromosomes (Hchmi), new smaller reorganizations of the Hchac also restoring fertility, were obtained and used to validate the candidate genes. This strategy was successful identifying a putative restorer-of-fertility region on 6HchS, with six candidate genes, including the ortholog of the barley restorer gene Rfm1. Additionally, transcriptomics gave preliminary insights on sterility and restoration networks showing the importance of energy supply, stress, protein metabolism and RNA processing.
Collapse
Affiliation(s)
- Cristina Rodríguez-Suárez
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (IAS-CSIC), Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain.
| | - Paolo Bagnaresi
- Research Centre for Genomics and Bioinformatics, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Luigi Cattivelli
- Research Centre for Genomics and Bioinformatics, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Via S. Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Fernando Pistón
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (IAS-CSIC), Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain
| | - Almudena Castillo
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (IAS-CSIC), Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain
| | - Azahara C Martín
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sergio G Atienza
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (IAS-CSIC), Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain
| | - Carmen Ramírez
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (IAS-CSIC), Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain
| | - Antonio Martín
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (IAS-CSIC), Avda. Menéndez Pidal s/n, 14080, Córdoba, Spain
| |
Collapse
|
46
|
Karabitsina YI, Gavrilova VA, Alpatieva NV, Kuznetsova EB, Anisimova IN. Peculiarities of Inheritance of Pollen Fertility Restoration Trait in Sunflower with Cytoplasmic Male Sterility. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Arakawa T, Sugaya H, Katsuyama T, Honma Y, Matsui K, Matsuhira H, Kuroda Y, Kitazaki K, Kubo T. How did a duplicated gene copy evolve into a restorer-of-fertility gene in a plant? The case of Oma1. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190853. [PMID: 31827833 PMCID: PMC6894571 DOI: 10.1098/rsos.190853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/08/2019] [Indexed: 05/24/2023]
Abstract
Restorer-of-fertility (Rf) is a suppressor of cytoplasmic male sterility (CMS), a mitochondrion-encoded trait that has been reported in many plant species. The occurrence of CMS is considered to be independent in each lineage; hence, the question of how Rf evolved was raised. Sugar beet Rf resembles Oma1, a gene for quality control of the mitochondrial inner membrane. Oma1 homologues comprise a small gene family in the sugar beet genome, unlike Arabidopsis and other eukaryotes. The sugar beet sequence that best matched Arabidopsis atOma1 was named bvOma1; sugar beet Rf (RF1-Oma1) was another member. During anther development, atOma1 mRNA was detected from the tetrad to the microspore stages, whereas bvOma1 mRNA was detected at the microspore stage and RF1-Oma1 mRNA was detected during the meiosis and tetrad stages. A transgenic study revealed that, whereas RF1-Oma1 can bind to a CMS-specific protein and alter the higher-order structure of the CMS-specific protein complex, neither bvOma1 nor atOma1 show such activity. We favour the hypothesis that an ancestral Oma1 gene duplicated to form a small gene family, and that one of the copies evolved and acquired a novel expression pattern and protein function as an Rf, i.e. RF1-Oma1 evolved via neofunctionalization.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Hajime Sugaya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takaya Katsuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yujiro Honma
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan
| | - Katsunori Matsui
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido 082-0081, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido 082-0081, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
48
|
Lloyd Evans D, Hlongwane TT, Joshi SV, Riaño Pachón DM. The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. PeerJ 2019; 7:e7558. [PMID: 31579570 PMCID: PMC6764373 DOI: 10.7717/peerj.7558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chloroplast genomes provide insufficient phylogenetic information to distinguish between closely related sugarcane cultivars, due to the recent origin of many cultivars and the conserved sequence of the chloroplast. In comparison, the mitochondrial genome of plants is much larger and more plastic and could contain increased phylogenetic signals. We assembled a consensus reference mitochondrion with Illumina TruSeq synthetic long reads and Oxford Nanopore Technologies MinION long reads. Based on this assembly we also analyzed the mitochondrial transcriptomes of sugarcane and sorghum and improved the annotation of the sugarcane mitochondrion as compared with other species. METHODS Mitochondrial genomes were assembled from genomic read pools using a bait and assemble methodology. The mitogenome was exhaustively annotated using BLAST and transcript datasets were mapped with HISAT2 prior to analysis with the Integrated Genome Viewer. RESULTS The sugarcane mitochondrion is comprised of two independent chromosomes, for which there is no evidence of recombination. Based on the reference assembly from the sugarcane cultivar SP80-3280 the mitogenomes of four additional cultivars (R570, LCP85-384, RB72343 and SP70-1143) were assembled (with the SP70-1143 assembly utilizing both genomic and transcriptomic data). We demonstrate that the sugarcane plastome is completely transcribed and we assembled the chloroplast genome of SP80-3280 using transcriptomic data only. Phylogenomic analysis using mitogenomes allow closely related sugarcane cultivars to be distinguished and supports the discrimination between Saccharum officinarum and Saccharum cultum as modern sugarcane's female parent. From whole chloroplast comparisons, we demonstrate that modern sugarcane arose from a limited number of Saccharum cultum female founders. Transcriptomic and spliceosomal analyses reveal that the two chromosomes of the sugarcane mitochondrion are combined at the transcript level and that splice sites occur more frequently within gene coding regions than without. We reveal one confirmed and one potential cytoplasmic male sterility (CMS) factor in the sugarcane mitochondrion, both of which are transcribed. CONCLUSION Transcript processing in the sugarcane mitochondrion is highly complex with diverse splice events, the majority of which span the two chromosomes. PolyA baited transcripts are consistent with the use of polyadenylation for transcript degradation. For the first time we annotate two CMS factors within the sugarcane mitochondrion and demonstrate that sugarcane possesses all the molecular machinery required for CMS and rescue. A mechanism of cross-chromosomal splicing based on guide RNAs is proposed. We also demonstrate that mitogenomes can be used to perform phylogenomic studies on sugarcane cultivars.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- Cambridge Sequence Services (CSS), Waterbeach, Cambridgeshire, UK
- Department of Computer Sciences, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | | | - Shailesh V. Joshi
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Diego M. Riaño Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
49
|
Anisimova IN, Alpatieva NV, Karabitsina YI, Gavrilenko TA. Nucleotide sequence polymorphism in the RFL-PPR genes of potato. J Genet 2019; 98:87. [PMID: 31544787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytoplasmic male sterility (CMS) is widely used for hybrid seed production in cultivated Solanaceae species. However, there is very limited information about CMS-Rf genetic systems in potato (Solanum tuberosum). Studying the CMS-Rf systems in potato is both of theoretical and practical significance due to the emergence of a new revolutionary strategy of reinventing potato as adiploid inbred line-based crop to develop F1 hybrid seed potato breeding (Lindhout et al. 2011; Jansky et al. 2016). To search for potato Rf gene candidates, the comparative genetic approach was applied. Based on similarity to petunia Rf-PPR592 gene, 38 fragments were identified in five loci of the whole-genome nucleotide sequence of the accession DM 1-3 516 R44 S. tuberosum Phureja group (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The putative encoded mitochondrial proteins have 589-597 amino acid residues, similarto RF-PPR proteins of petunia and chili pepper and contain 14 or 15 PPR motifs. Primers have been developed flanking the most variable 782-865 bp regions of the selected loci, and polymorphism of the cloned fragments has been investigated in a subset of nine potato genotypes. The amplified fragments included seven or eight PPR motifs and lacked introns. The SNP frequencies ranged from 7.0 to 19.8% depending on the locus, while the ratio of nonsynonymous to synonymous substitutions varied between 0.9 and 2.1. Positions 1, 3 and 6 were the most variable in the studied PPR motifs. Our results demonstrated that the analysed sequences belong to the RFL-PPR gene subfamily and may be considered as Rf gene candidates in potato.
Collapse
Affiliation(s)
- Irina N Anisimova
- Federal Research Centre, The N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg 190000, Russia.
| | | | | | | |
Collapse
|
50
|
Wei C, Wang H, Heng S, Wen J, Yi B, Ma C, Tu J, Shen J, Fu T. Construction of restorer lines and molecular mapping for restorer gene of hau cytoplasmic male sterility in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2525-2539. [PMID: 31165223 DOI: 10.1007/s00122-019-03368-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Successfully constructing restorer lines for the hau CMS line and molecular mapping of Rfh to a 94 kb candidate region on chromosome A03 in Brassica napus. Cytoplasmic male sterility is a general phenomenon in almost 200 species, and the interaction between chimeric genes in mitochondria and restorer genes in nucleus may be responsible for restoration of male fertility. Orf288 has been identified as a CMS-associated gene in the hau CMS line of Brassica napus and Brassica juncea; however, the restorer lines/genes have not been found yet. We therefore have successfully constructed two restorer lines in B. napus by extensive testcrossing and have mapped a major restorer gene Rfh to a physical distance of 94 kb on chromosome A03 by whole-genome resequencing and molecular markers. We found that the restorer line is indeed restored to male fertility at histological level. Comparative genomics and collinearity analysis between close relatives revealed that rearrangements and recombination may have happened and thus caused the production of Rfh or components of the restoration of fertility complex. Meanwhile, nuclear backgrounds with multiple loci and temperature were related to the variation and instability of restoration of fertility in three different populations. Our study provides new sights into the coevolution between restorer genes and CMS-associated genes as well as the cultivation of superior hybrids via molecular breeding.
Collapse
Affiliation(s)
- Chao Wei
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
- College of Life Science, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan City, 430070, People's Republic of China
| |
Collapse
|