1
|
Vesala T. Opening Pandora's box of transport phenomena. THE NEW PHYTOLOGIST 2024; 243:1281-1283. [PMID: 38581180 DOI: 10.1111/nph.19749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
This article is a Commentary on Griffani et al. (2024), 243: 1301–1311.
Collapse
Affiliation(s)
- Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, PO Box 64, FI-00014, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, PO Box 27, FI-00014, Finland
| |
Collapse
|
2
|
Griffani DS, Rognon P, Farquhar GD. The role of thermodiffusion in transpiration. THE NEW PHYTOLOGIST 2024; 243:1301-1311. [PMID: 38453691 DOI: 10.1111/nph.19642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Plant leaf temperatures can differ from ambient air temperatures. A temperature gradient in a gas mixture gives rise to a phenomenon known as thermodiffusion, which operates in addition to ordinary diffusion. Whilst transpiration is generally understood to be driven solely by the ordinary diffusion of water vapour along a concentration gradient, we consider the implications of thermodiffusion for transpiration. We develop a new modelling framework that introduces the effects of thermodiffusion on the transpiration rate, E. By applying this framework, we quantify the proportion of E attributable to thermodiffusion for a set of physiological and environmental conditions, varied over a wide range. Thermodiffusion is found to be most significant (in some cases > 30% of E) when a leaf-to-air temperature difference coincides with a relatively small water vapour concentration difference across the boundary layer; a boundary layer conductance that is large as compared to the stomatal conductance; or a relatively low transpiration rate. Thermodiffusion also alters the conditions required for the onset of reverse transpiration, and the rate at which this water vapour uptake occurs.
Collapse
Affiliation(s)
- Danielle S Griffani
- Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, 2480, Australia
| | - Pierre Rognon
- School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
3
|
Araújo KC, Souza BC, Carvalho ECD, Freire RS, Teixeira AS, Muniz CR, Martins FR, Oliveira RS, Eller CB, Soares AA. The multiple roles of trichomes in two Croton species. PLANT, CELL & ENVIRONMENT 2024; 47:1685-1700. [PMID: 38282477 DOI: 10.1111/pce.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Trichomes are common in plants from dry environments, and despite their recognized role in protection and defense, little is known about their role as absorptive structures and in other aspects of leaf ecophysiology. We combine anatomical and ecophysiological data to evaluate how trichomes affect leaf gas exchange and water balance during drought. We studied two congeneric species with pubescent leaves which co-occur in Brazilian Caatinga: Croton blanchetianus (dense trichomes) and Croton adenocalyx (sparse trichomes). We found a novel foliar water uptake (FWU) pathway in C. blanchetianus composed of stellate trichomes and underlying epidermal cells and sclereids that interconnect the trichomes from both leaf surfaces. The water absorbed by these trichomes is redistributed laterally by pectin protuberances on mesophyll cell walls. This mechanism enables C. blanchetianus leaves to absorb water more efficiently than C. adenocalyx. Consequently, the exposure of C. blanchetianus to dew during drought improved its leaf gas exchange and water status more than C. adenocalyx. C. blanchetianus trichomes also increase their leaf capacity to reflect light and maintain lower temperatures during drought. Our results emphasize the multiple roles that trichomes might have on plant functioning and the importance of FWU for the ecophysiology of Caatinga plants during drought.
Collapse
Affiliation(s)
- Karina Crisóstomo Araújo
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Cruz Souza
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ellen Cristina Dantas Carvalho
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosemeyre Souza Freire
- Centro de Ciências, Central Analítica, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Adunias Santos Teixeira
- Departament of Agricultural Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Fernando Roberto Martins
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cleiton Breder Eller
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Arlete Aparecida Soares
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
4
|
Mishra A, Gupta R, Joshi RK, Garkoti SC. Topography-mediated light environment regulates intra-specific seasonal and diurnal patterns of photosynthetic plasticity and plant ecophysiological adaptation strategies. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:435-452. [PMID: 38633276 PMCID: PMC11018732 DOI: 10.1007/s12298-024-01439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Due to substantial topographic variations in the Himalaya, incident solar radiation in the forest canopy is highly unequal. This results in significant environmental differences at finer scales and may lead to considerable differences in photosynthetic productivity in montane forests. Therefore, local-scale ecophysiological investigations, may be more effective and instructive than landscape-level inventories and models. We investigated leaf ecophysiological differences and related adaptations between two Quercus semecarpifolia forests in aspect-mediated, significantly varying light regimes in the same mountain catchment. Seasonal and diurnal rates of photosynthesis (A) were significantly higher in south aspect (S) than the north (N). Although temperature was a key contributor to seasonal fluctuations in photosynthetic physiology, photoperiod significantly determined intraspecific variations in seasonal and diurnal plasticity of leaf ecophysiological traits between the two topography-mediated light environments. The regression model for A as a function of stomatal conductivity (gsw) explained the critical role of gsw in triggering photosynthetic plasticity as an adaptive function against varying environmental stresses due to seasonal solar differences. We also examined, modifications in chlorophyll content between the two light regimes across seasons to determine the chlorophyll adaptation strategy. The N aspect had higher leaf chl a, b, and chl a + b and a lower chl-allocation ratio (a/b) than S, which helped to optimize the required light reception in the photoreaction centers for improved photosynthetic performance. The leaf light response curves for A and gsw were observed against varying incident photosynthetic photon flux densities (0-2000 mol.m2 s-1 PPFD) for both aspects. We found that the same species developed significantly distinct light response strategies and photosynthetic capacities in S than in N for the given magnitudes of PPFD. Such acquired ecophysiological adaptations owing to varying light environments may provide significant clues for understanding the impact of future climate change on Himalayan tree species.
Collapse
Affiliation(s)
- Ambuj Mishra
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajman Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Kr. Joshi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
5
|
Beckett HAA, Webb D, Turner M, Sheppard A, Ball MC. Bark water uptake through lenticels increases stem hydration and contributes to stem swelling. PLANT, CELL & ENVIRONMENT 2024; 47:72-90. [PMID: 37811590 DOI: 10.1111/pce.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Foliar water uptake can recharge water storage tissue and enable greater hydration than through access to soil water alone; however, few studies have explored the role of the bark in facilitating water uptake. We investigated pathways and dynamics of bark water uptake (BWU) in stems of the mangrove Avicennia marina. We provide novel evidence that specific entry points control dynamics of water uptake through the outer bark surface. Furthermore, using a fluorescent symplastic tracer dye we provide the first evidence that lenticels on the outer bark surface facilitate BWU, thus increasing stem water content by up to 3.7%. X-ray micro-computed tomography showed that BWU was sufficient to cause measurable swelling of stem tissue layers increasing whole stem cross-sectional area by 0.83 mm2 or 2.8%, implicating it as a contributor to the diel patterns of water storage recharge that buffer xylem water potential and maintain hydration of living tissue.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, Australia
| | - Michael Turner
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Adrian Sheppard
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Tulva I, Välbe M, Merilo E. Plants lacking OST1 show conditional stomatal closure and wildtype-like growth sensitivity at high VPD. PHYSIOLOGIA PLANTARUM 2023; 175:e14030. [PMID: 37882302 DOI: 10.1111/ppl.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023]
Abstract
Climate change-associated rise in VPD (atmospheric vapor pressure deficit) results in increased plant transpiration and reduced stomatal conductance, photosynthesis, biomass, and yield. High VPD-induced stomatal closure of Arabidopsis is an active process regulated via the kinase SnRK2.6 (OPEN STOMATA 1, OST1). Here, we performed gas exchange, leaf water potential and rosette growth measurements to study, whether (1) high VPD-induced stomatal closure is detected in plants carrying loss-of-function mutations in OST1 (ost1-3) when they are grown at reduced soil water content or measured at increased air temperature; (2) ost1-3 plants expressing OST1 construct with no ABA-activation domain, but intact ABA-independent activation, show stronger stomatal VPD response compared with ost1-3 plants; and (3) rosette area and biomass of ost1-3 are more affected by growth at high VPD compared with Col-0. The stomata of well-watered ost1-3 plants were insensitive to high VPD regardless of air temperature, but in deficit-irrigated ost1-3, leaf water potential decreased the most and stomata closed at high VPD. Differences between VPD-induced stomatal closures of ost1-3 plants and ost1-3 plants expressing OST1 with no ABA-activation domain point at gradual VPD-induced ABA-independent activation of OST1. High VPD conditions led to similar reductions in rosette area and specific leaf area of well-watered Col-0 and ost1-3 plants. Rosette dry mass was unaffected by high VPD. Our results show that OST1 loss-of-function plants display conditional stomatal closure and no extra sensitivity of rosette area growth compared with Col-0 wildtype under high VPD conditions.
Collapse
Affiliation(s)
- Ingmar Tulva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mikk Välbe
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Roth-Nebelsick A, Hacke UG, Voigt D, Schreiber SG, Krause M. Foliar water uptake in Pinus species depends on needle age and stomatal wax structures. ANNALS OF BOTANY 2023; 131:287-300. [PMID: 36420705 PMCID: PMC9992939 DOI: 10.1093/aob/mcac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Foliar water uptake (FWU) has been documented in many species and is increasingly recognized as a non-trivial factor in plant-water relationships. However, it remains unknown whether FWU is a widespread phenomenon in Pinus species, and how it may relate to needle traits such as the form and structure of stomatal wax plugs. In this contribution, these questions were addressed by studying FWU in current-year and 1-year-old needles of seven Pinus species. METHODS We monitored FWU gravimetrically and analysed the needle surface via cryo-scanning electron microscopy. Additionally, we considered the effect of artificial wax erosion by application of the surfactant Triton X-100, which is able to alter wax crystals. KEY RESULTS The results show for all species that (1) FWU occurred, (2) FWU is higher in old needles compared to young needles and (3) there is substantial erosion of stomatal wax plugs in old needles. FWU was highest in Pinus canariensis, which has a thin stomatal wax plug. Surfactant treatment enhanced FWU. CONCLUSIONS The results of this study provide evidence for (1) widespread FWU in Pinus, (2) the influence of stomatal wax plugs on FWU and (3) age-related needle surface erosion.
Collapse
Affiliation(s)
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Dagmar Voigt
- Technische Universität Dresden, Faculty of Biology, Institute of Botany, 01062 Dresden, Germany
| | - Stefan G Schreiber
- EnviroStats Solutions Inc., 4715 117A ST NW, Edmonton, Alberta, T6H 3R9, Canada
| | - Matthias Krause
- State Museum of Natural History, Rosenstein 1, 70191 Stuttgart, Germany
| |
Collapse
|
8
|
Schweiger R, Maidel AM, Renziehausen T, Schmidt-Schippers R, Müller C. Effects of drought, subsequent waterlogging and redrying on growth, physiology and metabolism of wheat. PHYSIOLOGIA PLANTARUM 2023; 175:e13874. [PMID: 36775898 DOI: 10.1111/ppl.13874] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
With climate change, longer periods without precipitation but also heavy rains will become more frequent. Thus, understanding and predicting the implications of drought-waterlogging-redrying cycles for plants is essential. We examined the effects of such events on wheat (Triticum aestivum). We measured the impacts of subsequent water treatments (drought-waterlogging-redrying) on plant shoot and root biomass, photosynthesis and transpiration, as well as on primary metabolites and transcripts of leaves. Drought and drought followed by waterlogging severely reduced shoot and root biomass. Chlorophyll fluorescence parameters and the CO2 assimilation rate per unit leaf area were not affected by the treatments but, after the redrying phase, plants grown under the stress treatments showed a higher transpiration rate per unit leaf area and a lower instantaneous water use efficiency. Many organic acids of the citrate cycle were less concentrated in leaves of stressed plants, while most amino acids were more concentrated. Transcript analysis of genes involved in signalling and metabolism revealed different expression patterns. While some genes responded only to drought or drought followed by waterlogging, several genes were induced upon both treatments and some were still upregulated at the end of the redrying phase. We provide insights into how wheat responds to changes in water regimes, with some of the changes probably allowing the plants to cope with these stressors, at least to a certain degree.
Collapse
Affiliation(s)
- Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Alena-Maria Maidel
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Tilo Renziehausen
- Department of Plant Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Wang H, Li Z, Ji S, Lv G. Response of water and photosynthetic physiological characteristics to leaf humidification in Calligonum ebinuricum. PLoS One 2023; 18:e0285130. [PMID: 37141258 PMCID: PMC10159122 DOI: 10.1371/journal.pone.0285130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
Foliar water uptake (FWU) has increasingly been regarded as a common approach for plants to obtain water under water-limited conditions. At present, the research on FWU has mostly focused on short-term experiments; the long-term FWU plant response remains unclear; Methods: Through a field in-situ humidification control experiment, the leaves of Calligonum ebinuricum N. A. Ivanova ex Soskov were humidified, and the changes of leaf water potential, gas exchange parameters and fluorescence physiological parameters of plants after long-term and short-term FWU were discussed; The main results were as follows: (1) After short-term humidification, the water potential of Calligonum ebinuricum decreased, the non-photochemical quenching (NPQ) increased, and the plant produced photoinhibition phenomenon, indicating that short-term FWU could not alleviate drought stress. (2) After long-term humidification, the leaf water potential, chlorophyll fluorescence parameter and net photosynthetic rate (Pn) increased significantly. That is to say, after long-term FWU, the improvement of plant water status promoted the occurrence of light reaction and carbon reaction, and then increased the net photosynthetic rate (Pn); Therefore, long-term FWU is of great significance to alleviate drought stress and promote Calligonum ebinuricum growth. This study will be helpful to deepen our understanding of the drought-tolerant survival mechanism of plants in arid areas.
Collapse
Affiliation(s)
- Huimin Wang
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| | - Zhoukang Li
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| | - Suwan Ji
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| | - Guanghui Lv
- College of Ecology and the Environmental, Xinjiang University, Urumqi, China
| |
Collapse
|
10
|
Kagawa A. Foliar water uptake as a source of hydrogen and oxygen in plant biomass. TREE PHYSIOLOGY 2022; 42:2153-2173. [PMID: 35554604 PMCID: PMC9652008 DOI: 10.1093/treephys/tpac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/08/2022] [Indexed: 05/11/2023]
Abstract
Introductory biology lessons around the world typically teach that plants absorb water through their roots, but, unfortunately, absorption of water through leaves and subsequent transport and use of this water for biomass formation remains a field limited mostly to specialists. Recent studies have identified foliar water uptake as a significant net water source for terrestrial plants. The growing interest in the development of a new model that includes both foliar water uptake (in liquid form) and root water uptake to explain hydrogen and oxygen isotope ratios in leaf water and tree rings demands a method for distinguishing between these two water sources. Therefore, in this study, I have devised a new labelling method that utilizes two different water sources, one enriched in deuterium (HDO + D2O; δD = 7.0 × 10 4‰, δ18O = 4.1‰) and one enriched in oxygen-18 (H218O; δD = -85‰, δ18O = 1.1 × 104‰), to simultaneously label both foliar-absorbed and root-absorbed water and quantify their relative contributions to plant biomass. Using this new method, I here present evidence that, in the case of well-watered Cryptomeria japonica D. Don, hydrogen and oxygen incorporated into new leaf cellulose in the rainy season derives mostly from foliar-absorbed water (69% from foliar-absorbed water and 31% from root-absorbed water), while that of new root cellulose derives mostly from root-absorbed water (20% from foliar-absorbed water and 80% from root-absorbed water), and new branch xylem is somewhere in between (55% from foliar-absorbed water and 45% from root-absorbed water). The dual-labelling method first implemented in this study enables separate and simultaneous labelling of foliar-absorbed and root-absorbed water and offers a new tool to study the uptake, transport and assimilation processes of these waters in terrestrial plants.
Collapse
|
11
|
Kagawa A. Foliar water uptake as a source of hydrogen and oxygen in plant biomass. TREE PHYSIOLOGY 2022; 42:2153-2173. [PMID: 35554604 DOI: 10.1101/2020.08.20.260372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/08/2022] [Indexed: 05/25/2023]
Abstract
Introductory biology lessons around the world typically teach that plants absorb water through their roots, but, unfortunately, absorption of water through leaves and subsequent transport and use of this water for biomass formation remains a field limited mostly to specialists. Recent studies have identified foliar water uptake as a significant net water source for terrestrial plants. The growing interest in the development of a new model that includes both foliar water uptake (in liquid form) and root water uptake to explain hydrogen and oxygen isotope ratios in leaf water and tree rings demands a method for distinguishing between these two water sources. Therefore, in this study, I have devised a new labelling method that utilizes two different water sources, one enriched in deuterium (HDO + D2O; δD = 7.0 × 10 4‰, δ18O = 4.1‰) and one enriched in oxygen-18 (H218O; δD = -85‰, δ18O = 1.1 × 104‰), to simultaneously label both foliar-absorbed and root-absorbed water and quantify their relative contributions to plant biomass. Using this new method, I here present evidence that, in the case of well-watered Cryptomeria japonica D. Don, hydrogen and oxygen incorporated into new leaf cellulose in the rainy season derives mostly from foliar-absorbed water (69% from foliar-absorbed water and 31% from root-absorbed water), while that of new root cellulose derives mostly from root-absorbed water (20% from foliar-absorbed water and 80% from root-absorbed water), and new branch xylem is somewhere in between (55% from foliar-absorbed water and 45% from root-absorbed water). The dual-labelling method first implemented in this study enables separate and simultaneous labelling of foliar-absorbed and root-absorbed water and offers a new tool to study the uptake, transport and assimilation processes of these waters in terrestrial plants.
Collapse
Affiliation(s)
- Akira Kagawa
- Forestry and Forest Products Research Institute, Wood Anatomy and Quality Laboratory, Tsukuba 305-8687, Japan
| |
Collapse
|
12
|
Rockwell FE, Holbrook NM, Jain P, Huber AE, Sen S, Stroock AD. Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm? ANNALS OF BOTANY 2022; 130:301-316. [PMID: 35896037 PMCID: PMC9486918 DOI: 10.1093/aob/mcac094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/21/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Recent reports of extreme levels of undersaturation in internal leaf air spaces have called into question one of the foundational assumptions of leaf gas exchange analysis, that leaf air spaces are effectively saturated with water vapour at leaf surface temperature. Historically, inferring the biophysical states controlling assimilation and transpiration from the fluxes directly measured by gas exchange systems has presented a number of challenges, including: (1) a mismatch in scales between the area of flux measurement, the biochemical cellular scale and the meso-scale introduced by the localization of the fluxes to stomatal pores; (2) the inaccessibility of the internal states of CO2 and water vapour required to define conductances; and (3) uncertainties about the pathways these internal fluxes travel. In response, plant physiologists have adopted a set of simplifying assumptions that define phenomenological concepts such as stomatal and mesophyll conductances. SCOPE Investigators have long been concerned that a failure of basic assumptions could be distorting our understanding of these phenomenological conductances, and the biophysical states inside leaves. Here we review these assumptions and historical efforts to test them. We then explore whether artefacts in analysis arising from the averaging of fluxes over macroscopic leaf areas could provide alternative explanations for some part, if not all, of reported extreme states of undersaturation. CONCLUSIONS Spatial heterogeneities can, in some cases, create the appearance of undersaturation in the internal air spaces of leaves. Further refinement of experimental approaches will be required to separate undersaturation from the effects of spatial variations in fluxes or conductances. Novel combinations of current and emerging technologies hold promise for meeting this challenge.
Collapse
Affiliation(s)
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Piyush Jain
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Annika E Huber
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sabyasachi Sen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Abraham D Stroock
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Int J Mol Sci 2022; 23:ijms23126639. [PMID: 35743077 PMCID: PMC9224206 DOI: 10.3390/ijms23126639] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.
Collapse
|
14
|
Lintunen A, Preisler Y, Oz I, Yakir D, Vesala T, Hölttä T. Bark Transpiration Rates Can Reach Needle Transpiration Rates Under Dry Conditions in a Semi-arid Forest. FRONTIERS IN PLANT SCIENCE 2021; 12:790684. [PMID: 34987535 PMCID: PMC8721219 DOI: 10.3389/fpls.2021.790684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
Drought can cause tree mortality through hydraulic failure and carbon starvation. To prevent excess water loss, plants typically close their stomata before massive embolism formation occurs. However, unregulated water loss through leaf cuticles and bark continues after stomatal closure. Here, we studied the diurnal and seasonal dynamics of bark transpiration and how it is affected by tree water availability. We measured continuously for six months water loss and CO2 efflux from branch segments and needle-bearing shoots in Pinus halepensis growing in a control and an irrigation plot in a semi-arid forest in Israel. Our aim was to find out how much passive bark transpiration is affected by tree water status in comparison with shoot transpiration and bark CO2 emission that involve active plant processes, and what is the role of bark transpiration in total tree water use during dry summer conditions. Maximum daily water loss rate per bark area was 0.03-0.14 mmol m-2 s-1, which was typically ~76% of the shoot transpiration rate (on leaf area basis) but could even surpass the shoot transpiration rate during the highest evaporative demand in the control plot. Irrigation did not affect bark transpiration rate. Bark transpiration was estimated to account for 64-78% of total water loss in drought-stressed trees, but only for 6-11% of the irrigated trees, due to differences in stomatal control between the treatments. Water uptake through bark was observed during most nights, but it was not high enough to replenish the lost water during the day. Unlike bark transpiration, branch CO2 efflux decreased during drought due to decreased metabolic activity. Our results demonstrate that although bark transpiration represents a small fraction of the total water loss through transpiration from foliage in non-stressed trees, it may have a large impact during drought.
Collapse
Affiliation(s)
- Anna Lintunen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Yakir Preisler
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot,Israel
| | - Itay Oz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot,Israel
| | - Dan Yakir
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot,Israel
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
- Laboratory of Ecosystem-Atmospheric Interactions of Forest - Mire Complexes, Yugra State University, Khanty-Mansiysk, Russia
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Bryant C, Fuenzalida TI, Zavafer A, Nguyen HT, Brothers N, Harris RJ, Beckett HAA, Holmlund HI, Binks O, Ball MC. Foliar water uptake via cork warts in mangroves of the Sonneratia genus. PLANT, CELL & ENVIRONMENT 2021; 44:2925-2937. [PMID: 34118083 DOI: 10.1111/pce.14129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Foliar water uptake (FWU) occurs in plants of diverse ecosystems; however, the diversity of pathways and their associated FWU kinetics remain poorly resolved. We characterized a novel FWU pathway in two mangrove species of the Sonneratia genus, S. alba and S. caseolaris. Further, we assessed the influence of leaf wetting duration, wet-dry seasonality and leaf dehydration on leaf conductance to surface water (Ksurf ). The symplastic tracer dye, disodium fluorescein, revealed living cells subtending and encircling leaf epidermal structures known as cork warts as a pathway of FWU entry into the leaf. Rehydration kinetics experiments revealed a novel mode of FWU, with slow and steady rates of water uptake persistent over a duration of 12 hr. Ksurf increased with longer durations of leaf wetting and was greater in leaves with more negative water potentials at the initiation of leaf wetting. Ksurf declined by 68% between wet and dry seasons. Our results suggest that FWU via cork warts in Sonneratia sp. may be rate limited and under active regulation. We conclude that FWU pathways in halophytes may require ion exclusion to avoid uptake of salt when inundated, paralleling the capacity of halophyte roots for ion selectivity during water acquisition.
Collapse
Affiliation(s)
- Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Tomas I Fuenzalida
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Alonso Zavafer
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Nigel Brothers
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Rosalie J Harris
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Helen I Holmlund
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Pepperdine University, Natural Science Division, Malibu, CA, 90263, USA
| | - Oliver Binks
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Coopman RE, Nguyen HT, Mencuccini M, Oliveira RS, Sack L, Lovelock CE, Ball MC. Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. THE NEW PHYTOLOGIST 2021; 231:1401-1414. [PMID: 33983649 DOI: 10.1111/nph.17461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The mangrove Avicennia marina adjusts internal salt concentrations by foliar salt secretion. Deliquescence of accumulated salt causes leaf wetting that may provide a water source for salt-secreting plants in arid coastal wetlands where high nocturnal humidity can usually support deliquescence whereas rainfall events are rare. We tested the hypotheses that salt deliquescence on leaf surfaces can drive top-down rehydration, and that such absorption of moisture from unsaturated atmospheres makes a functional contribution to dry season shoot water balances. Sap flow and water relations were monitored to assess the uptake of atmospheric water by branches during shoot wetting events under natural and manipulated microclimatic conditions. Reverse sap flow rates increased with increasing relative humidity from 70% to 89%, consistent with function of salt deliquescence in harvesting moisture from unsaturated atmospheres. Top-down rehydration elevated branch water potentials above those possible from root water uptake, subsidising transpiration rates and reducing branch vulnerability to hydraulic failure in the subsequent photoperiod. Absorption of atmospheric moisture harvested through deliquescence of salt on leaf surfaces enhances water balances of Avicennia marina growing in hypersaline wetlands under arid climatic conditions. Top-down rehydration from these frequent, low intensity wetting events contributes to prevention of carbon starvation and hydraulic failure during drought.
Collapse
Affiliation(s)
- Rafael E Coopman
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Department of Botany, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 131000, Vietnam
| | - Maurizio Mencuccini
- CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles 08193, Barcelona, Spain
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
17
|
Guzmán-Delgado P, Laca E, Zwieniecki MA. Unravelling foliar water uptake pathways: The contribution of stomata and the cuticle. PLANT, CELL & ENVIRONMENT 2021; 44:1728-1740. [PMID: 33665817 DOI: 10.1111/pce.14041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plants can absorb water through their leaf surfaces, a phenomenon commonly referred to as foliar water uptake (FWU). Despite the physiological importance of FWU, the pathways and mechanisms underlying the process are not well known. Using a novel experimental approach, we parsed out the contribution of the stomata and the cuticle to FWU in two species with Mediterranean (Prunus dulcis) and temperate (Pyrus communis) origin. The hydraulic parameters of FWU were derived by analysing mass and water potential changes of leaves placed in a fog chamber. Leaves were previously treated with abscisic acid to force stomata to remain closed, with fusicoccin to remain open, and with water (control). Leaves with open stomata rehydrated two times faster than leaves with closed stomata and attained approximately three times higher maximum fluxes and hydraulic conductance. Based on FWU rates, we propose that rehydration through stomata occurs primarily via diffusion of water vapour rather than in liquid form even when leaf surfaces are covered with a water film. We discuss the potential mechanisms of FWU and the significance of both stomatal and cuticular pathways for plant productivity and survival.
Collapse
Affiliation(s)
- Paula Guzmán-Delgado
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Emilio Laca
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
18
|
EMS Derived Wheat Mutant BIG8-1 ( Triticum aestivum L.)-A New Drought Tolerant Mutant Wheat Line. Int J Mol Sci 2021; 22:ijms22105314. [PMID: 34070033 PMCID: PMC8158095 DOI: 10.3390/ijms22105314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.
Collapse
|
19
|
Optimal Irrigation Regime for Woody Species Potentially Suitable for Effective and Sustainable Afforestation in the Desert Region of Mongolia. LAND 2021. [DOI: 10.3390/land10020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Long-term studies on plant response mechanisms to different irrigation regimes will provide a better understanding of the survivability and establishment of plant communities in a desert environment. Thus, across 10 years, we regularly investigated the effects of the rainfall (control), rainfall + 4 L h−1, rainfall + 8 L h−1, and rainfall + 12 L h−1 irrigation regimes on the growth and leaf morpho-physiology of Tamarix ramosissima Ledeb., Ulmus pumila L., Elaeagnus moorcroftii Wall. ex Schltdl., and Hippophae rhamnoides L. to suggest an optimal irrigation regime for each woody species for effective and sustainable afforestation in Mongolia. We measured the root collar diameter (RCD), annual height growth, survivability, leaf area (LA), specific leaf area (SLA), leaf biomass (LB), total chlorophyll concentration, and predawn (ψp) and midday (ψm) leaf water potentials across the treatments and species. Results showed that trees grown at 12 L h−1 grew taller per year and generally resulted in a higher SLA, but generally resulted in a lower survival rate compared with those in the other treatments in all species. Total chlorophyll content was higher in trees grown under 4 and/or 8 L h−1, particularly for T. ramosissima and E. moorcroftii. Lastly, leaf water potentials were found more negative for trees subjected to 4 L h−1, especially in T. ramosissima and U. pumila, but still resulted in a higher survival rate and LB compared with 12 L h−1. H. rhamnoides showed higher survivability at 8 and/or 12 L h−1 than at 4 L h−1. Therefore, we suggest 4 L h−1 to be the optimal irrigation regime for irrigating T. ramosissima, U. pumila and E. moorcroftii, and 8 and/or 12 L h−1 for H. rhamnoides. Our findings are relevant to ensuring the sustainability of afforestation programs in arid and semiarid landscapes in Mongolia.
Collapse
|
20
|
Fernández V, Gil-Pelegrín E, Eichert T. Foliar water and solute absorption: an update. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:870-883. [PMID: 33219553 DOI: 10.1111/tpj.15090] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The absorption of water and solutes by plant leaves has been recognised since more than two centuries. Given the polar nature of water and solutes, the mechanisms of foliar uptake have been proposed to be similar for water and electrolytes, including nutrient solutions. Research efforts since the 19th century focussed on characterising the properties of cuticles and applying foliar sprays to crop plants as a tool for improving crop nutrition. This was accompanied by the development of hundreds of studies aimed at characterising the chemical and structural nature of plant cuticles from different species and the mechanisms of cuticular and, to a lower extent, stomatal penetration of water and solutes. The processes involved are complex and will be affected by multiple environmental, physico-chemical and physiological factors which are only partially clear to date. During the last decades, the body of evidence that water transport across leaf surfaces of native species may contribute to water balances (absorption and loss) at an ecosystem level has grown. Given the potential importance of foliar water absorption for many plant species and ecosystems as shown in recent studies, the aim of this review is to first integrate current knowledge on plant surface composition, structure, wettability and physico-chemical interactions with surface-deposited matter. The different mechanisms of foliar absorption of water and electrolytes and experimental procedures for tracing the uptake process are discussed before posing several outstanding questions which should be tackled in future studies.
Collapse
Affiliation(s)
- Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, 50059, Spain
| | - Thomas Eichert
- University of Applied Sciences Erfurt, Erfurt, 99051, Germany
| |
Collapse
|
21
|
Akram MA, Wang X, Hu W, Xiong J, Zhang Y, Deng Y, Ran J, Deng J. Convergent Variations in the Leaf Traits of Desert Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E990. [PMID: 32759791 PMCID: PMC7463800 DOI: 10.3390/plants9080990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
Convergence is commonly caused by environmental filtering, severe climatic conditions and local disturbance. The basic aim of the present study was to understand the pattern of leaf traits across diverse desert plant species in a common garden, in addition to determining the effect of plant life forms (PLF), such as herb, shrub and subshrub, phylogeny and soil properties on leaf traits. Six leaf traits, namely carbon (C), nitrogen (N), phosphorus (P), potassium (K), δ13C and leaf water potential (LWP) of 37 dominant desert plant species were investigated and analyzed. The C, N, K and δ13C concentrations in leaves of shrubs were found higher than herbs and subshrubs; however, P and LWP levels were higher in the leaves of subshrubs following herbs and shrubs. Moreover, leaf C showed a significant positive correlation with N and a negative correlation with δ13C. Leaf N exhibited a positive correlation with P. The relationship between soil and plant macro-elements was found generally insignificant but soil C and N exhibited a significant positive correlation with leaf P. Taxonomy showed a stronger effect on leaf C, N, P and δ13C than soil properties, explaining >50% of the total variability. C3 plants showed higher leaf C, N, P, K and LWP concentration than C4 plants, whereas C4 plants had higher δ13C than C3 plants. Legumes exhibited higher leaf C, N, K and LWP than nonlegumes, while nonlegumes had higher P and δ13C concentration than legumes. In all the species, significant phylogenetic signals (PS) were detected for C and N and nonsignificant PS for the rest of the leaf traits. In addition, these phylogenetic signals were found lower (K-value < 1), and the maximum K-value was noted for C (K = 0.35). The plants of common garden evolved and adapted themselves for their survival in the arid environment and showed convergent variations in their leaf traits. However, these variations were not phylogenetics-specific. Furthermore, marks of convergence found in leaf traits of the study area were most likely due to the environmental factors.
Collapse
Affiliation(s)
- Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiaoting Wang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junlan Xiong
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yahui Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yan Deng
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
22
|
Cardoso AA, Brodribb TJ, Kane CN, DaMatta FM, McAdam SAM. Osmotic adjustment and hormonal regulation of stomatal responses to vapour pressure deficit in sunflower. AOB PLANTS 2020; 12:plaa025. [PMID: 32665827 PMCID: PMC7346309 DOI: 10.1093/aobpla/plaa025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/11/2020] [Indexed: 05/14/2023]
Abstract
Dynamic variation of the stomatal pore in response to changes in leaf-air vapour pressure difference (VPD) constitutes a critical regulation of daytime gas exchange. The stomatal response to VPD has been associated with both foliage abscisic acid (ABA) and leaf water potential (Ψ l ); however, causation remains a matter of debate. Here, we seek to separate hydraulic and hormonal control of stomatal aperture by manipulating the osmotic potential of sunflower leaves. In addition, we test whether stomatal responses to VPD in an ABA-deficient mutant (w-1) of sunflower are similar to the wild type. Stomatal apertures during VPD transitions were closely linked with foliage ABA levels in sunflower plants with contrasting osmotic potentials. In addition, we observed that the inability to synthesize ABA at high VPD in w-1 plants was associated with no dynamic or steady-state stomatal response to VPD. These results for sunflower are consistent with a hormonal, ABA-mediated stomatal responses to VPD rather than a hydraulic-driven stomatal response to VPD.
Collapse
Affiliation(s)
- Amanda A Cardoso
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
23
|
Schreel JDM, Leroux O, Goossens W, Brodersen C, Rubinstein A, Steppe K. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:769-780. [PMID: 32279362 DOI: 10.1111/tpj.14770] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
Foliar water uptake (FWU), the direct uptake of water into leaves, is a global phenomenon, having been observed in an increasing number of plant species. Despite the growing recognition of its functional relevance, our understanding of how FWU occurs and which foliar surface structures are implicated, is limited. In the present study, fluorescent and ionic tracers, as well as microcomputed tomography, were used to assess potential pathways for water entry in leaves of beech, a widely distributed tree species from European temperate regions. Although none of the tracers entered the leaf through the stomatal pores, small amounts of silver precipitation were observed in some epidermal cells, indicating moderate cuticular uptake. Trichomes, however, were shown to absorb and redistribute considerable amounts of ionic and fluorescent tracers. Moreover, microcomputed tomography indicated that 72% of empty trichomes refilled during leaf surface wetting and microscopic investigations revealed that trichomes do not have a cuticle but are covered with a pectin-rich cell wall layer. Taken together, our findings demonstrate that foliar trichomes, which exhibit strong hygroscopic properties as a result of their structural and chemical design, constitute a major FWU pathway in beech.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Craig Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Adriana Rubinstein
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
24
|
Schreel JDM, Steppe K. Foliar Water Uptake in Trees: Negligible or Necessary? TRENDS IN PLANT SCIENCE 2020; 25:590-603. [PMID: 32407698 DOI: 10.1016/j.tplants.2020.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Foliar water uptake (FWU) has been identified as a mechanism commonly used by trees and other plants originating from various biomes. However, many questions regarding the pathways and the implications of FWU remain, including its ability to mitigate climate change-driven drought. Therefore, answering these questions is of primary importance to adequately address and comprehend drought stress responses and associated growth. In this review, we discuss the occurrence, pathways, and consequences of FWU, with a focus predominantly on tree species. Subsequently, we highlight the tight coupling between FWU and foliar fertilizer applications, discuss FWU in a changing climate, and conclude with the importance of including FWU in mechanistic vegetation models.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|
25
|
Kumarathunge DP, Drake JE, Tjoelker MG, López R, Pfautsch S, Vårhammar A, Medlyn BE. The temperature optima for tree seedling photosynthesis and growth depend on water inputs. GLOBAL CHANGE BIOLOGY 2020; 26:2544-2560. [PMID: 31883292 DOI: 10.1111/gcb.14975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Understanding how tree growth is affected by rising temperature is a key to predicting the fate of forests in future warmer climates. Increasing temperature has direct effects on plant physiology, but there are also indirect effects of increased water limitation because evaporative demand increases with temperature in many systems. In this study, we experimentally resolved the direct and indirect effects of temperature on the response of growth and photosynthesis of the widely distributed species Eucalyptus tereticornis. We grew E. tereticornis in an array of six growth temperatures from 18 to 35.5°C, spanning the climatic distribution of the species, with two watering treatments: (a) water inputs increasing with temperature to match plant demand at all temperatures (Wincr ), isolating the direct effect of temperature; and (b) water inputs constant for all temperatures, matching demand for coolest grown plants (Wconst ), such that water limitation increased with growth temperature. We found that constant water inputs resulted in a reduction of temperature optima for both photosynthesis and growth by ~3°C compared to increasing water inputs. Water limitation particularly reduced the total amount of leaf area displayed at Topt and intermediate growth temperatures. The reduction in photosynthesis could be attributed to lower leaf water potential and consequent stomatal closure. The reduction in growth was a result of decreased photosynthesis, reduced total leaf area display and a reduction in specific leaf area. Water availability had no effect on the response of stem and root respiration to warming, but we observed lower leaf respiration rates under constant water inputs compared to increasing water inputs at higher growth temperatures. Overall, this study demonstrates that the indirect effect of increasing water limitation strongly modifies the potential response of tree growth to rising global temperatures.
Collapse
Affiliation(s)
- Dushan P Kumarathunge
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Plant Physiology Division, Coconut Research Institute of Sri Lanka, Lunuwila, Sri Lanka
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
26
|
Binks O, Coughlin I, Mencuccini M, Meir P. Equivalence of foliar water uptake and stomatal conductance? PLANT, CELL & ENVIRONMENT 2020; 43:524-528. [PMID: 31677188 DOI: 10.1111/pce.13663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Oliver Binks
- Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
| | - Ingrid Coughlin
- Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
| | | | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, 2601, Australian Capital Territory, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
27
|
Prodanovic V, Wang A, Deletic A. Assessing water retention and correlation to climate conditions of five plant species in greywater treating green walls. WATER RESEARCH 2019; 167:115092. [PMID: 31557711 DOI: 10.1016/j.watres.2019.115092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/06/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Green walls are becoming a popular infrastructure choice in densely built urban environments, due to their multiple benefits. However, high and vastly variable water requirements of these systems are preventing their further widespread. Only a small number of studies have investigated water needs of green walls, even though this can help to design more optimal systems with increased benefits. Additionally, the knowledge on interactions between plant uptake and climate conditions (temperature and humidity) is lacking. The aim of this study was to understand daily water requirements of five plant species (C. appressa, N. obliterata, L. muscari, M. parvifolium and O. japonicus) used in greywater treating green walls, across different seasons, temperature, and humidity conditions of temperate-oceanic climate (common in parts of Australia, US and Europe). The results showed that during summer, dominant water uptake processes were plant uptake and transpiration, resulting in three to four times higher water needs than during winter, when evaporation is a major effect. Top levels of the multi-level green wall exhibited significantly higher plant activity compared to bottom levels, showing four times greater water uptake. Temperature and humidity changes during winter caused the change in water uptake of plants, pointing to different growing and activity patterns of tested plants. During summer only N. obliterata showed temperature and humidity dependence. Annual plant water uptake and other practical recommendations are given based on the results. Even though this study focused on water requirements of greywater treating green walls, its findings can also inform traditional green wall designs.
Collapse
Affiliation(s)
- Veljko Prodanovic
- School of Civil and Environmental Engineering, UNSW, Sydney, NSW, 2052, Australia.
| | - Ankun Wang
- Department of Civil Engineering, Monash University, VIC, 3800, Australia
| | - Ana Deletic
- School of Civil and Environmental Engineering, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
28
|
McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC. A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. PLANT, CELL & ENVIRONMENT 2019; 42:2789-2807. [PMID: 31273812 DOI: 10.1111/pce.13607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The vast majority of measurements in the field of plant hydraulics have been on small-diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root-to-leaf areas and soil texture on vulnerability to hydraulic failure along the soil-to-leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root-to-leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole-plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.
Collapse
Affiliation(s)
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| |
Collapse
|
29
|
Influence of Drought on Foliar Water Uptake Capacity of Temperate Tree Species. FORESTS 2019. [DOI: 10.3390/f10070562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Foliar water uptake (FWU) has been investigated in an increasing number of species from a variety of areas but has remained largely understudied in deciduous, temperate tree species from non-foggy regions. As leaf wetting events frequently occur in temperate regions, FWU might be more important than previously thought and should be investigated. As climate change progresses, the number of drought events is expected to increase, basically resulting in a decreasing number of leaf wetting events, which might make FWU a seemingly less important mechanism. However, the impact of drought on FWU might not be that unidirectional because drought will also cause a more negative tree water potential, which is expected to result in more FWU. It yet remains unclear whether drought results in a general increase or decrease in the amount of water absorbed by leaves. The main objectives of this study are, therefore: (i) to assess FWU-capacity in nine widely distributed key tree species from temperate regions, and (ii) to investigate the effect of drought on FWU in these species. Based on measurements of leaf and soil water potential and FWU-capacity, the effect of drought on FWU in temperate tree species was assessed. Eight out of nine temperate tree species were able to absorb water via their leaves. The amount of water absorbed by leaves and the response of this plant trait to drought were species-dependent, with a general increase in the amount of water absorbed as leaf water potential decreased. This relationship was less pronounced when using soil water potential as an independent variable. We were able to classify species according to their response in FWU to drought at the leaf level, but this classification changed when using drought at the soil level, and was driven by iso- and anisohydric behavior. FWU hence occurred in several key tree species from temperate regions, be it with some variability, which potentially allows these species to partly reduce the effects of drought stress. We recommend including this mechanism in future research regarding plant–water relations and to investigate the impact of different pathways used for FWU.
Collapse
|
30
|
Boanares D, Kozovits AR, Lemos-Filho JP, Isaias RMS, Solar RRR, Duarte AA, Vilas-Boas T, França MGC. Foliar water-uptake strategies are related to leaf water status and gas exchange in plants from a ferruginous rupestrian field. AMERICAN JOURNAL OF BOTANY 2019; 106:935-942. [PMID: 31281976 DOI: 10.1002/ajb2.1322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Fog is a frequent event in Brazilian rupestrian field and plays an important role in the physiology of several plant species. Foliar water uptake (FWU) of fog may be fast or slow depending on the species. However, fog water may negatively affect CO2 assimilation. Thus, the interference in the water and carbon balance as a result of different strategies of FWU was evaluated to verify whether fog may mitigate possible water deficit in leaves. METHODS Four plant species with different FWU strategies were studied in a ferruginous rupestrian field with frequent fog. Gas exchange and water potential were measured before dawn and at midday during the dry and rainy seasons, separating foggy from non-foggy days during the dry season. RESULTS The FWU speed negatively influences CO2 assimilation in the dry season, possibly because of its negative relationship with stomatal conductance, since reduced stomatal aperture impairs carbon entrance. Fog presence increased leaf water potential both in early morning and midday during the dry season. However, during the rainy season, the values of leaf water potential were lower at midday, than during the dry season with fog at midday, which favors leaf gas exchanges. CONCLUSIONS FWU interferes negatively, but briefly with CO2 assimilation. Nevertheless, FWU prevents water loss through transpiration and increases the water status of plants in the dry season. That is, FWU results in a compensation between CO2 assimilation and foliar hydration, which, in fact, is beneficial to the plants of this ecosystem.
Collapse
Affiliation(s)
- Daniela Boanares
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Alessandra R Kozovits
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, MG, Brasil
| | - José P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rosy M S Isaias
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo R R Solar
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Alexandre A Duarte
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Tiago Vilas-Boas
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Marcel G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
31
|
Rahimzadeh Karvansara P, Razavi SM. Physiological and biochemical responses of sugar beet ( Beta vulgaris L) to ultraviolet-B radiation. PeerJ 2019; 7:e6790. [PMID: 31110917 PMCID: PMC6501760 DOI: 10.7717/peerj.6790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/12/2019] [Indexed: 01/24/2023] Open
Abstract
Ultraviolet radiation can cause many serious problems for all living organisms. With a growing population, the UV sensitivity of crop plants presents a particular problem. To evaluate the suitability of growing in areas under UV irradiance, the influence of different doses of UV-B (3.042, 6.084 and 9.126 kJm-2d-1) on the sugar beet (Beta vulgaris L) plants was studied. UV-B induced a significant decrease in growth displayed as reduced height and fresh and dry weight. This reduction is not dose dependent and was associated with diminishing photosynthetic O2 evolution, relative chlorophyll content, photosynthetic pigments and chlorophyll fluorescence. On the other hand, antioxidant enzyme activities, total protein content, compatible solutes, total free amino acids and total betalain content were increased under 9.126 kJm-2d-1 UV-B treatments, representing mechanisms by which the plants coped with the stress. The oxidative stress upon UV-B treatment was evident by increased malondialdehyde (MDA) content, however, hydrogen peroxide (H2O2) was not affected in UV-B exposed plants. Thus, the studied sugar beet variety BR1seems to be suitable particularly for areas with high doses of UV-B irradiation.
Collapse
Affiliation(s)
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
32
|
Berry ZC, Emery NC, Gotsch SG, Goldsmith GR. Foliar water uptake: Processes, pathways, and integration into plant water budgets. PLANT, CELL & ENVIRONMENT 2019; 42:410-423. [PMID: 30194766 DOI: 10.1111/pce.13439] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 05/04/2023]
Abstract
Nearly all plant families, represented across most major biomes, absorb water directly through their leaves. This phenomenon is commonly referred to as foliar water uptake. Recent studies have suggested that foliar water uptake provides a significant water subsidy that can influence both plant water and carbon balance across multiple spatial and temporal scales. Despite this, our mechanistic understanding of when, where, how, and to what end water is absorbed through leaf surfaces remains limited. We first review the evidence for the biophysical conditions necessary for foliar water uptake to occur, focusing on the plant and atmospheric water potentials necessary to create a gradient for water flow. We then consider the different pathways for uptake, as well as the potential fates of the water once inside the leaf. Given that one fate of water from foliar uptake is to increase leaf water potentials and contribute to the demands of transpiration, we also provide a quantitative synthesis of observed rates of change in leaf water potential and total fluxes of water into the leaf. Finally, we identify critical research themes that should be addressed to effectively incorporate foliar water uptake into traditional frameworks of plant water movement.
Collapse
Affiliation(s)
- Z Carter Berry
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Nathan C Emery
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Sybil G Gotsch
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, USA
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
33
|
Cernusak LA, Ubierna N, Jenkins MW, Garrity SR, Rahn T, Powers HH, Hanson DT, Sevanto S, Wong SC, McDowell NG, Farquhar GD. Unsaturation of vapour pressure inside leaves of two conifer species. Sci Rep 2018; 8:7667. [PMID: 29769592 PMCID: PMC5955884 DOI: 10.1038/s41598-018-25838-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/30/2018] [Indexed: 11/09/2022] Open
Abstract
Stomatal conductance (gs) impacts both photosynthesis and transpiration, and is therefore fundamental to the global carbon and water cycles, food production, and ecosystem services. Mathematical models provide the primary means of analysing this important leaf gas exchange parameter. A nearly universal assumption in such models is that the vapour pressure inside leaves (ei) remains saturated under all conditions. The validity of this assumption has not been well tested, because so far ei cannot be measured directly. Here, we test this assumption using a novel technique, based on coupled measurements of leaf gas exchange and the stable isotope compositions of CO2 and water vapour passing over the leaf. We applied this technique to mature individuals of two semiarid conifer species. In both species, ei routinely dropped below saturation when leaves were exposed to moderate to high air vapour pressure deficits. Typical values of relative humidity in the intercellular air spaces were as low 0.9 in Juniperus monosperma and 0.8 in Pinus edulis. These departures of ei from saturation caused significant biases in calculations of gs and the intercellular CO2 concentration. Our results refute the longstanding assumption of saturated vapour pressure in plant leaves under all conditions.
Collapse
Affiliation(s)
- Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia.
| | - Nerea Ubierna
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael W Jenkins
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, USA
| | | | - Thom Rahn
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Heath H Powers
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Suan Chin Wong
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nate G McDowell
- Earth Systems Analysis and Modelling Group, Pacific Northwest National Laboratory Richland, Washington, USA
| | - Graham D Farquhar
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
34
|
Inferring foliar water uptake using stable isotopes of water. Oecologia 2017; 184:763-766. [DOI: 10.1007/s00442-017-3917-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
|