1
|
Zannou AJ, Romeis J, Collatz J. Response of the tomato leaf miner Phthorimaea absoluta to wild and domesticated tomato genotypes. PEST MANAGEMENT SCIENCE 2024. [PMID: 39530398 DOI: 10.1002/ps.8534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Phthorimaea absoluta, a highly destructive invasive pest, poses a significant threat to tomato production globally. Exploring alternative control methods, such as host plant resistance can contribute to diminish reliance on insecticides and promote sustainable integrated pest management (IPM) practices. Thus, the identification of new P. absoluta-resistant tomato cultivars and potential wild sources for breeding programmes remains imperative. We evaluated the effect of 19 tomato genotypes, comprising 16 domesticated varieties and three wild tomato species, on oviposition output of female P. absoluta, as well as on larval performance under no-choice conditions using detached leaves. We also characterized and quantified glandular and nonglandular trichomes, exploring their potential correlation with the response of P. absoluta to the tomato plants. RESULTS Generally, fewer eggs were oviposited on domesticated plants, whereas the wild tomatoes Solanum arcanum and S. neorickii and the domesticated tomato Corona F1 impaired larval development. The pest larvae consumed a limited area of leaflets from S. arcanum and S. neorickii compared to other genotypes, leading to the lowest weights in both male and female pupae. All tomato plants exhibited a prevalence of nonglandular over glandular trichomes, except for S. arcanum, which exhibited a higher abundance of glandular trichomes. Although higher trichome density correlated with longer larval settlement on the leaflets, it did not influence female oviposition. CONCLUSION Our findings demonstrate that the wild tomatoes S. arcanum and S. neorickii could be considered as potential sources for breeding programmes, and the domesticated Corona F1 could offer IPM options against P. absoluta. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Zurich, Switzerland
| | - Jana Collatz
- Agroscope, Research Division Agroecology and Environment, Zurich, Switzerland
| |
Collapse
|
2
|
Azeez SO, Adeboye SE. Advances in understanding plant-pathogen interactions: insights from tomato as a model system. Virusdisease 2024; 35:537-552. [PMID: 39464738 PMCID: PMC11502661 DOI: 10.1007/s13337-024-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 10/29/2024] Open
Abstract
The impact of plant diseases coupled with climate change on agriculture worldwide cannot be overemphasized from negative effects on crop yield as well as economy to food insecurity. The model plants are essential for understanding the intricacies of plant-pathogen interactions. One of such plants is the tomato (Solanum lycopersicum L.). Researchers hope to increase tomato productivity and boost its resilience to pathogen attacks by utilizing OMICS and biotechnological methods. With an emphasis on tomato viral infections, this review summarizes significant discoveries and developments from earlier research. The analysis elucidates ongoing efforts to advance plant pathology by exploring the implications for sustainability and tomato production.
Collapse
Affiliation(s)
| | - Seyi Ebun Adeboye
- Agricultural Biotechnology Department, National Biotechnology Development Agency, Abuja, Nigeria
| |
Collapse
|
3
|
Ogawa T, Kato K, Asuka H, Sugioka Y, Mochizuki T, Nishiuchi T, Miyahara T, Kodama H, Ohta D. Multi-omics Analyses of Non-GM Tomato Scion Engrafted on GM Rootstocks. Food Saf (Tokyo) 2023; 11:41-53. [PMID: 37745161 PMCID: PMC10514396 DOI: 10.14252/foodsafetyfscj.d-23-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Grafting has been widely applied in agricultural production in order to utilize agriculturally valuable traits. The use of genetically modified (GM) plants for grafting with non-GM crops will soon be implemented to generate chimeric plants (transgrafting)*, and the non-GM edible portions thus obtained could fall outside of the current legal regulations. A number of metabolites and macromolecules are reciprocally exchanged between scion and rootstock, affecting the crop properties as food. Accordingly, the potential risks associated with grafting, particularly those related to transgrafting with GM plants, should be carefully evaluated based on scientific evidence. In this study, we prepared a hetero-transgraft line composed of non-GM tomato scion and GM-tobacco rootstock expressing firefly luciferase. We also prepared a homograft line (both rootstock and scion are from non-GM tomato) and a heterograft line (non-GM tobacco rootstock and non-GM tomato scion). The non-GM tomato fruits were harvested from these grafted lines and subjected to comprehensive characterization by multi-omics analysis. Proteomic analysis detected tobacco-derived proteins from both heterograft and hetero-transgraft lines, suggesting protein transfer from the tobacco rootstock to the tomato fruits. No allergenicity information is available for these two tobacco-derived proteins. The transcript levels of the genes encoding two allergenic tomato intrinsic proteins (Sola l 4.0101 and Sola l 4.0201) decreased in the heterograft and hetero-transgraft lines. Several differences were observed in the metabolic profiles, including α-tomatine and nicotine. The accumulation of tobacco-derived nicotine in the tomato fruits of both heterograft and hetero-transgraft lines indicated that the transfer of unfavorable metabolites from rootstock to scion should be assessed as a food safety concern. Further investigations are needed to clarify whether variable environmental conditions and growth periods may influence the qualities of the non-GM edible parts produced by such transgrafted plants.
Collapse
Affiliation(s)
- Takumi Ogawa
- Graduate School of Agriculture, Osaka Metropolitan University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kanae Kato
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Harue Asuka
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yumi Sugioka
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomofumi Mochizuki
- Graduate School of Agriculture, Osaka Metropolitan University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takumi Nishiuchi
- Division of Life Science, Graduate School of Natural Science and
Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
- Division of Integrated Omics Research, Bioscience Core Facility,
Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1
Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Taira Miyahara
- Graduate School of Horticulture, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Daisaku Ohta
- Graduate School of Agriculture, Osaka Metropolitan University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka
Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Szurman-Zubrzycka M, Kurowska M, Till BJ, Szarejko I. Is it the end of TILLING era in plant science? FRONTIERS IN PLANT SCIENCE 2023; 14:1160695. [PMID: 37674734 PMCID: PMC10477672 DOI: 10.3389/fpls.2023.1160695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
Since its introduction in 2000, the TILLING strategy has been widely used in plant research to create novel genetic diversity. TILLING is based on chemical or physical mutagenesis followed by the rapid identification of mutations within genes of interest. TILLING mutants may be used for functional analysis of genes and being nontransgenic, they may be directly used in pre-breeding programs. Nevertheless, classical mutagenesis is a random process, giving rise to mutations all over the genome. Therefore TILLING mutants carry background mutations, some of which may affect the phenotype and should be eliminated, which is often time-consuming. Recently, new strategies of targeted genome editing, including CRISPR/Cas9-based methods, have been developed and optimized for many plant species. These methods precisely target only genes of interest and produce very few off-targets. Thus, the question arises: is it the end of TILLING era in plant studies? In this review, we recap the basics of the TILLING strategy, summarize the current status of plant TILLING research and present recent TILLING achievements. Based on these reports, we conclude that TILLING still plays an important role in plant research as a valuable tool for generating genetic variation for genomics and breeding projects.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Marzena Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Abdul Aziz M, Masmoudi K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int J Mol Sci 2023; 24:9813. [PMID: 37372961 DOI: 10.3390/ijms24129813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop's salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant's adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant's physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs' genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop's adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
6
|
Kurina AB, Solovieva AE, Khrapalova IA, Artemyeva AM. Biochemical composition of tomato fruits of various colors. Vavilovskii Zhurnal Genet Selektsii 2021; 25:514-527. [PMID: 34595374 PMCID: PMC8453365 DOI: 10.18699/vj21.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/04/2022] Open
Abstract
Tomato (Lycopersicon esculentum Mill.) is an economically important and widely cultivated vegetable
crop that is consumed both fresh and processed. The nutritional value of tomato fruits is related to the content
of carotenoids,
polyphenols, sugars, organic acids, minerals and vitamins. Currently, there is a growing interest
in the qualitative and quantitative increase in the content of health-promoting compounds in tomato fruits. VIR
Lycopersicon (Tourn.) Mill. genetic resources collection includes 7678 accessions of one cultivated and nine wild
species, which in turn provides ample opportunities for searching for information on the variability of the content
of biologically active substances and searching for sources with a high content of them in the gene pool.
Our work presents the results of the study of 70 accessions of cultivated and wild tomato on the main biochemical
characteristics: the content of dry matter, ascorbic acid, sugars, carotenoids, chlorophylls and anthocyanins.
As the basis for the selection of accessions for the study, accessions with various colors of fruits, including new
accessions with varying content of anthocyanin, were taken. As a result of this study, the amplitude of variability
in the content of dry matter (3.72–8.88 and 9.62–11.33 %), sugars (1.50–5.65 and 2.20–2.70 %), ascorbic acid
(12.40–35.56 and 23.62– 28.14 mg/100 g), titratable acidity (0.14–0.46 and 0.33–0.48 %), chlorophylls (0.14–5.11
and 2.95–4.57 mg/100 g), carotenoids (0.97–99.86 and 1.03–10.06 mg/100 g) and anthocyanins (3.00–588.86 and
84.31–152.71 mg/100 g) in the fruits of cultivated and wild tomatoes, respectively, was determined. We have determined
correlations between the content of dry matter and monosaccharides (r = 0.40, p ≤ 0.05), total sugars
(r = 0.37, p ≤ 0.05) and ascorbic acid (r = 0.32, p ≤ 0.05); the content of ascorbic acid and carotenoids (r = 0.25,
p ≤ 0.05). A high dependence of the content of chlorophyll a and b among themselves (r = 0.89, p ≤ 0.05), as well
as between the content of chlorophyll b and anthocyanins (r = 0.47, p ≤ 0.05), the content of β-carotene (r = 0.26,
p ≤ 0.05) and the content of monosaccharides (r = –0.29, p ≤ 0.05) has been noted. We have identif ied tomato accessions
with a high content of individual chemical substances, as well as with a complex of traits that can be used
as sources in breeding for a high content of dry matter, sugars, ascorbic acid, pigments and anthocyanins.
Collapse
Affiliation(s)
- A B Kurina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A E Solovieva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - I A Khrapalova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A M Artemyeva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
7
|
Mellidou I, Koukounaras A, Kostas S, Patelou E, Kanellis AK. Regulation of Vitamin C Accumulation for Improved Tomato Fruit Quality and Alleviation of Abiotic Stress. Genes (Basel) 2021; 12:genes12050694. [PMID: 34066421 PMCID: PMC8148108 DOI: 10.3390/genes12050694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022] Open
Abstract
Ascorbic acid (AsA) is an essential multifaceted phytonutrient for both the human diet and plant growth. Optimum levels of AsA accumulation combined with balanced redox homeostasis are required for normal plant development and defense response to adverse environmental stimuli. Notwithstanding its moderate AsA levels, tomatoes constitute a good source of vitamin C in the human diet. Therefore, the enhancement of AsA levels in tomato fruit attracts considerable attention, not only to improve its nutritional value but also to stimulate stress tolerance. Genetic regulation of AsA concentrations in plants can be achieved through the fine-tuning of biosynthetic, recycling, and transport mechanisms; it is also linked to changes in the whole fruit metabolism. Emerging evidence suggests that tomato synthesizes AsA mainly through the l-galactose pathway, but alternative pathways through d-galacturonate or myo-inositol, or seemingly unrelated transcription and regulatory factors, can be also relevant in certain developmental stages or in response to abiotic factors. Considering the recent advances in our understanding of AsA regulation in model and other non-model species, this review attempts to link the current consensus with novel technologies to provide a comprehensive strategy for AsA enhancement in tomatoes, without any detrimental effect on plant growth or fruit development.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hao Elgo-Demeter, 57001 Thessaloniki, Greece
- Correspondence: (I.M.); (A.K.K.)
| | - Athanasios Koukounaras
- Department of Horticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (S.K.)
| | - Stefanos Kostas
- Department of Horticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (S.K.)
| | - Efstathia Patelou
- Laboratory of Pharmacognosy, Group of Biotechnology of Pharmaceutical Plants, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Angelos K. Kanellis
- Laboratory of Pharmacognosy, Group of Biotechnology of Pharmaceutical Plants, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (I.M.); (A.K.K.)
| |
Collapse
|
8
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
9
|
Erika C, Griebel S, Naumann M, Pawelzik E. Biodiversity in Tomatoes: Is It Reflected in Nutrient Density and Nutritional Yields Under Organic Outdoor Production? FRONTIERS IN PLANT SCIENCE 2020; 11:589692. [PMID: 33329651 PMCID: PMC7732668 DOI: 10.3389/fpls.2020.589692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
In many regions of the world, human nutrition is still characterized by an insufficient intake of essential nutrients like minerals such as iron (Fe) and zinc (Zn). In view of decreasing resources and a growing world population, the efficiency and the sustainability of cultivation systems should be considered not only in terms of crop yield and profit margin but also in terms of the yield of essential nutrients. Tomatoes are the most consumed vegetable in the world. Organic outdoor tomato cultivation is generally characterized by a higher diversity of varieties and lower fertilization input compared to conventional production. A 2-year field experiment with a set of 20 cultivars was performed to evaluate their variation regarding fruit mineral concentrations [potassium (K), calcium (Ca), magnesium (Mg), phosphorous (P), Fe, and Zn], their contribution to the dietary reference intake (DRI), and the nutritional yields (adults ha-1 year-1). Results show that mineral concentrations differed significantly by cultivar and by year. However, even though significant genotype-by-year effects appear, several cultivars exhibit high genotype stability across years for the single traits studied. Taking this together with medium-to-high heritability, genetics strongly controls most studied traits. Among the cultivars, the contribution of 100 g fresh fruits varied from 4.5 to 7.7% for K, 0.8 to 1.8% for Ca, 2.3 to 4.4% for Mg, 3 to 6.6% for P, 3.1 to 6.9% for Fe, and 1.9 to 4.2% for Zn to meet daily requirements. Based on average fruit yields per hectare, the cultivars varied with regard to the nutritional yields for all the studied minerals, but most strongly for Fe (44-120 adults ha-1 year-1) and Zn (22-84 adults ha-1 year-1). In terms of contribution to the DRI and nutritional yield for Fe, the cocktail cultivar "Bartelly F1" produced the highest results, while for Zn the salad cultivar "Bocati F1" showed the highest values. Our results show that the targeted use of tomato biodiversity in organic outdoor production can be suitable to achieve high fruit yields as well as to produce high nutritional yields per unit area, thus contributing to more effective land use and improved food security. These findings also provide valuable insights for tomato breeders to improve the tomato fruit quality while maintaining yield.
Collapse
Affiliation(s)
- Cut Erika
- Division Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| | - Stefanie Griebel
- Division Plant Breeding Methodology, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| | - Marcel Naumann
- Division Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| | - Elke Pawelzik
- Division Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Meza SLR, Egea I, Massaretto IL, Morales B, Purgatto E, Egea-Fernández JM, Bolarin MC, Flores FB. Traditional Tomato Varieties Improve Fruit Quality Without Affecting Fruit Yield Under Moderate Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:587754. [PMID: 33304365 PMCID: PMC7701295 DOI: 10.3389/fpls.2020.587754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 05/24/2023]
Abstract
Identification of tomato varieties able to exhibit higher accumulation of primary and secondary metabolites in their fruits is currently a main objective in tomato breeding. One tool to improve fruit quality is to cultivate the plants under salt stress, although improvement of fruit quality is generally accompanied by productivity losses. However, it is very interesting to implement strategies aiming at enhancing fruit quality of tomato by means of growing plants in moderate salt stress that allows for a sustainable fruit yield. The traditional tomato varieties adapted to the Mediterranean environmental constraints may be very attractive plant materials to achieve this goal, given the wide range of fruit quality traits because of their genetic diversity. Here, agronomic responses and fruit quality traits, including primary and secondary metabolites, were analyzed in fruits of two Mediterranean traditional tomato varieties named "Tomate Pimiento" ("TP") and "Muchamiel Aperado" ("MA") because of the pepper and pear shape of their fruits, using as reference the commercial cultivar "Moneymaker" ("MM"). Plants were grown without salt (control) and with moderate salt stress (50 mM NaCl), which did not affect fruit yield in any variety. "TP" is of great interest because of its high soluble solids content (SSC) in control, which is even higher in salt, whereas "MA" is very attractive because of its high Brix yield index (SSC × fruit yield), used as overall fruit quality measure. Similitude between both traditional varieties were found for primary metabolism, as they significantly increased sucrose contents compared with "MM" in red ripe fruits from plants in control and, especially, salt stress conditions. The most remarkable difference was the high constitutive levels of total amino acids in "TP" fruits, including the three major free amino acids found in tomato fruit, GABA, glutamate, and glutamine, which even increased under salinity. Regarding secondary metabolites, the most interesting change induced by salinity was the increase in α-tocopherol found in red ripe fruits of both "TP" and "MA." These results reveal the interest of traditional varieties as sources of genetic variation in breeding because of their improvement of tomato fruit quality without production losses under moderate salt stress.
Collapse
Affiliation(s)
- Silvia L. R. Meza
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Isabel L. Massaretto
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Belén Morales
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Eduardo Purgatto
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | | | - María C. Bolarin
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| |
Collapse
|
11
|
Bigard A, Romieu C, Sire Y, Torregrosa L. Vitis vinifera L. Diversity for Cations and Acidity Is Suitable for Breeding Fruits Coping With Climate Warming. FRONTIERS IN PLANT SCIENCE 2020; 11:01175. [PMID: 33072139 PMCID: PMC7536366 DOI: 10.3389/fpls.2020.01175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/20/2020] [Indexed: 05/31/2023]
Abstract
The selection of grapevine varieties is considered to be the smartest strategy for adapting the viticulture to climate warming. Present knowledge of the diversity of grape solutes known to be influenced by temperature is too limited to perform genetic improvement strategies. This study aimed to characterize the diversity for major cations (K+, Mg2+, Ca2+, NH4 +) of the Vitis vinifera fruit and their effect on acidity. Two developmental stages were targeted: the end of green growth, when organic acids reach a maximum, and the physiological ripe stage defined by the stopping of solutes and water import at the maximum volume of the berry. Twelve varieties and 21 microvines from the same segregating population were selected from preliminary phenotyping. The concentration of cations depended on the stage of fruit development, the genotype and the environment with GxE effects. In the ripe grape, K+ concentration varied from 28 to 57 mmol.L-1 with other cations being less concentrated. Combined with the variation in organic acids, cation concentration diversity resulted in titratable acidity of the ripe fruit ranging from 38 to 215 meq.L-1. These results open new perspectives for the selection of varieties to mitigate the adverse effects of climate warming on grape quality.
Collapse
Affiliation(s)
- Antoine Bigard
- AGAP, University of Montpellier, CIRAD, INRAe, Institut Agro, Montpellier, France
- UE INRAe de Pech Rouge, University of Montpellier, INRAe, Gruissan, France
| | - Charles Romieu
- AGAP, University of Montpellier, CIRAD, INRAe, Institut Agro, Montpellier, France
- GENOVIGNE, University of Montpellier, IFV, INRAe, Institut Agro, Montpellier, France
| | - Yannick Sire
- UE INRAe de Pech Rouge, University of Montpellier, INRAe, Gruissan, France
| | - Laurent Torregrosa
- AGAP, University of Montpellier, CIRAD, INRAe, Institut Agro, Montpellier, France
- UE INRAe de Pech Rouge, University of Montpellier, INRAe, Gruissan, France
- GENOVIGNE, University of Montpellier, IFV, INRAe, Institut Agro, Montpellier, France
| |
Collapse
|
12
|
Renau-Morata B, Carrillo L, Cebolla-Cornejo J, Molina RV, Martí R, Domínguez-Figueroa J, Vicente-Carbajosa J, Medina J, Nebauer SG. The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling. Sci Rep 2020; 10:10645. [PMID: 32606421 PMCID: PMC7326986 DOI: 10.1038/s41598-020-67537-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Tomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expansion during the fruit enlargement phase also increased. Furthermore, the larger amount of biomass partitioned to the fruit relied on the greater sink strength of the fruits induced by the increased activity of sucrose-metabolising enzymes. Additionally, our results suggest a positive role of SlCDF4 in the gibberellin-signalling pathway through the modulation of GA4 biosynthesis. Finally, the overexpression of SlCDF4 also promoted changes in the profile of carbon and nitrogen compounds related to fruit quality. Overall, our results unveil SlCDF4 as a new key factor controlling tomato size and composition.
Collapse
Affiliation(s)
- Begoña Renau-Morata
- Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain
| | - Jaime Cebolla-Cornejo
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Valencia, Spain
| | - Rosa V Molina
- Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain
| | - Raúl Martí
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Valencia, Spain
| | - José Domínguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, INIA-Universidad Politécnica de Madrid, Madrid, Spain.
| | - Sergio G Nebauer
- Plant Physiology Area, Department of Plant Production, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
13
|
Diretto G, Frusciante S, Fabbri C, Schauer N, Busta L, Wang Z, Matas AJ, Fiore A, K.C. Rose J, Fernie AR, Jetter R, Mattei B, Giovannoni J, Giuliano G. Manipulation of β-carotene levels in tomato fruits results in increased ABA content and extended shelf life. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1185-1199. [PMID: 31646753 PMCID: PMC7152610 DOI: 10.1111/pbi.13283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 05/18/2023]
Abstract
Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE β-CYCLASE (LCYb) resulted in increased β-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase in abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased β-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of β-carotene levels results in an improvement not only of the nutritional value of tomato fruits, but also of their shelf life.
Collapse
Affiliation(s)
- Gianfranco Diretto
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Sarah Frusciante
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Claudia Fabbri
- Department of Biology and BiotechnologySapienza University of RomeRomeItaly
| | - Nicolas Schauer
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Lucas Busta
- Department of ChemistryUniversity of British ColumbiaVancouverBCCanada
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska–LincolnLincolnNEUSA
| | - Zhonghua Wang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Antonio J. Matas
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Department of Plant BiologyInstitute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM‐UMA‐CSIC)University of MálagaMálagaSpain
| | - Alessia Fiore
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| | - Jocelyn K.C. Rose
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Reinhard Jetter
- Department of ChemistryUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| | - Benedetta Mattei
- Department of Biology and BiotechnologySapienza University of RomeRomeItaly
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Jim Giovannoni
- U.S. Department of Agriculture–Agricultural Research ServiceRobert W. Holley Center for Agriculture and HealthIthacaNYUSA
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Giovanni Giuliano
- Italian national Agency for New technologies, Energy, and Sustainable Development (ENEA)Casaccia Research CenterRomaItaly
| |
Collapse
|
14
|
Dono G, Rambla JL, Frusciante S, Granell A, Diretto G, Mazzucato A. Color Mutations Alter the Biochemical Composition in the San Marzano Tomato Fruit. Metabolites 2020; 10:E110. [PMID: 32183449 PMCID: PMC7143285 DOI: 10.3390/metabo10030110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 01/16/2023] Open
Abstract
San Marzano (SM) is a traditional Italian landrace characterized by red elongated fruits, originating in the province of Naples (Italy) and cultivated worldwide. Three mutations, yellow flesh (r), green flesh (gf) and colorless fruit epidermis (y) were introduced into SM by backcross and the resulting introgression lines (ILs) produced the expected yellow, brown and pink fruit variants. In addition, ILs carrying double combinations of those mutations were obtained. The six ILs plus the SM reference were analyzed for volatile (VOC), non-polar (NP) and polar (P) metabolites. Sixty-eight VOCs were identified, and several differences evidenced in the ILs; overall gf showed epistasis over r and y and r over y. Analysis of the NP component identified 54 metabolites; variation in early carotenoids (up to lycopene) and chlorophylls characterized respectively the ILs containing r and gf. In addition, compounds belonging to the quinone and xanthophyll classes were present in genotypes carrying the r mutation at levels higher than SM. Finally, the analysis of 129 P metabolites evidenced different levels of vitamins, amino acids, lipids and phenylpropanoids in the ILs. A correlation network approach was used to investigate metabolite-metabolite relationships in the mutant lines. Altogether these differences potentially modified the hedonistic and nutritional value of the berry. In summary, single and combined mutations in gf, r and y generated interesting visual and compositional diversity in the SM landrace, while maintaining its original typology.
Collapse
Affiliation(s)
- Gabriella Dono
- DAFNE Dept. of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100 Viterbo, Italy;
| | - Jose Luis Rambla
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Carrer de l’Enginyer Fausto Elio, s/n, 46022 Valencia, Spain; (J.L.R.); (A.G.)
- Department of Agricultural and Environmental Sciences, Jaume I University, Av. Vicent Sos Baynat, s/n. 12071 Castellòn de la Plana, Spain
| | - Sarah Frusciante
- ENEA, Casaccia Research Center, Via Anguillarese 301, S. Maria di Galeria, 00123 Rome, Italy; (S.F.); (G.D.)
| | - Antonio Granell
- IBMCP Institute for Plant Molecular and Cell Biology (CSIC-UPV), Carrer de l’Enginyer Fausto Elio, s/n, 46022 Valencia, Spain; (J.L.R.); (A.G.)
| | - Gianfranco Diretto
- ENEA, Casaccia Research Center, Via Anguillarese 301, S. Maria di Galeria, 00123 Rome, Italy; (S.F.); (G.D.)
| | - Andrea Mazzucato
- DAFNE Dept. of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100 Viterbo, Italy;
| |
Collapse
|
15
|
D'Angelo M, Zanor MI, Burgos E, Asprelli PD, Boggio SB, Carrari F, Peralta IE, Valle EM. Fruit metabolic and transcriptional programs differentiate among Andean tomato (Solanum lycopersicum L.) accessions. PLANTA 2019; 250:1927-1940. [PMID: 31529400 DOI: 10.1007/s00425-019-03274-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Andean tomatoes differed from the wild ancestor in the metabolic composition and the expression of genes related with mitochondrial functions, and environmental stresses, making them potentially suitable for breeding programmes. Traditional landraces or "criollo" tomatoes (Solanum lycopersicum L.) from Andean areas of Argentina, selected for their fruit quality, were analysed in this study. We explored the metabolome and transcriptome of the ripe fruit in nine landrace accessions representing the seven genetic groups and compared them to the mature fruit of the wild progenitor Solanum pimpinellifolium. The content of branched- (isoleucine and valine) and aromatic (phenylalanine and tryptophan) amino acids, citrate and sugars were significantly different in the fruit of several "criollo" tomatoes compared to S. pimpinellifolium. The transcriptomic profile of the ripe fruit showed several genes significantly and highly regulated in all varieties compared to S. pimpinellifolium, like genes encoding histones and mitochondrial proteins. Additionally, network analysis including transcripts and metabolites identified major hubs with the largest number of connections such as constitutive photomorphogenic protein 1 (a RING finger-type ubiquitin E3 ligase), five Zn finger transcription factors, ascorbate peroxidase, acetolactate synthase, and sucrose non-fermenting 1 kinase. Co-expression analysis of these genes revealed a potential function in acquiring tomato fruit quality during domestication.
Collapse
Affiliation(s)
- Matilde D'Angelo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Universitat Autónoma de Barcelona, 08193, Bellaterra, Spain
| | - María I Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Estanislao Burgos
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina
| | - Pablo D Asprelli
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvana B Boggio
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Fernando Carrari
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina
| | - Iris E Peralta
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
- IADIZA CCT-CONICET, Mendoza, Argentina
| | - Estela M Valle
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina.
| |
Collapse
|
16
|
Di Meo F, Aversano R, Diretto G, Demurtas OC, Villano C, Cozzolino S, Filosa S, Carputo D, Crispi S. Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
17
|
Roch L, Dai Z, Gomès E, Bernillon S, Wang J, Gibon Y, Moing A. Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:836. [PMID: 31354750 PMCID: PMC6632546 DOI: 10.3389/fpls.2019.00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/12/2019] [Indexed: 05/08/2023]
Abstract
Although fleshy fruit species are economically important worldwide and crucial for human nutrition, the regulation of their fruit metabolism remains to be described finely. Fruit species differ in the origin of the tissue constituting the flesh, duration of fruit development, coordination of ripening changes (climacteric vs. non-climacteric type) and biochemical composition at ripeness is linked to sweetness and acidity. The main constituents of mature fruit result from different strategies of carbon transport and metabolism. Thus, the timing and nature of phloem loading and unloading can largely differ from one species to another. Furthermore, accumulations and transformations of major soluble sugars, organic acids, amino acids, starch and cell walls are very variable among fruit species. Comparing fruit species therefore appears as a valuable way to get a better understanding of metabolism. On the one hand, the comparison of results of studies about species of different botanical families allows pointing the drivers of sugar or organic acid accumulation but this kind of comparison is often hampered by heterogeneous analysis approaches applied in each study and incomplete dataset. On the other hand, cross-species studies remain rare but have brought new insights into key aspects of primary metabolism regulation. In addition, new tools for multi-species comparisons are currently emerging, including meta-analyses or re-use of shared metabolic or genomic data, and comparative metabolic flux or process-based modeling. All these approaches contribute to the identification of the metabolic factors that influence fruit growth and quality, in order to adjust their levels with breeding or cultural practices, with respect to improving fruit traits.
Collapse
Affiliation(s)
- Léa Roch
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Eric Gomès
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Jiaojiao Wang
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Lin J, Massonnet M, Cantu D. The genetic basis of grape and wine aroma. HORTICULTURE RESEARCH 2019; 6:81. [PMID: 31645942 PMCID: PMC6804543 DOI: 10.1038/s41438-019-0163-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 05/23/2023]
Abstract
The grape is one of the oldest and most important horticultural crops. Grape and wine aroma has long been of cultural and scientific interest. The diverse compound classes comprising aroma result from multiple biosynthetic pathways. Only fairly recently have researchers begun to elucidate the genetic mechanisms behind the biosynthesis and metabolism of grape volatile compounds. This review summarizes current findings regarding the genetic bases of grape and wine aroma with an aim towards highlighting areas in need of further study. From the literature, we compiled a list of functionally characterized genes involved in berry aroma biosynthesis and present them with their corresponding annotation in the grape reference genome.
Collapse
Affiliation(s)
- Jerry Lin
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
19
|
Ho LH, Klemens PAW, Neuhaus HE, Ko HY, Hsieh SY, Guo WJ. SlSWEET1a is involved in glucose import to young leaves in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3241-3254. [PMID: 30958535 PMCID: PMC6598072 DOI: 10.1093/jxb/erz154] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 05/04/2023]
Abstract
Sugar allocation from source to sink (young) leaves, critical for plant development, relies on activities of plasma membrane sugar transporters. However, the key sugar unloading mechanism to sink leaves remains elusive. SWEET transporters mediate sugar efflux into reproductive sinks; therefore, they are promising candidates for sugar unloading during leaf growth. Transcripts of SlSWEET1a, belonging to clade I of the SWEET family, were markedly more abundant than those of all other 30 SlSWEET genes in young leaves of tomatoes. High expression of SlSWEET1a was also detected in reproductive sinks, such as flowers. SlSWEET1a was dominantly expressed in leaf unloading veins, and the green fluorescent protein (GFP) fusion protein was localized to the plasma membrane using Arabidopsis protoplasts, further implicating this carrier in sugar unloading. In addition, yeast growth assays and radiotracer uptake analyses further demonstrated that SlSWEET1a acted as a low-affinity (Km ~100 mM) glucose-specific carrier with a passive diffusion manner. Finally, virus-induced gene silencing of SlSWEET1a expression reduced hexose accumulation to ~50% in young leaves, with a parallel 2-fold increase in mature leaves. Thus, we propose a novel function for SlSWEET1a in the uptake of glucose into unloading cells as part of the sugar unloading mechanism in sink leaves of tomato.
Collapse
Affiliation(s)
- Li-Hsuan Ho
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Patrick A W Klemens
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, Germany
| | - Han-Yu Ko
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Shu-Ying Hsieh
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
20
|
Morton MJL, Awlia M, Al‐Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. Salt stress under the scalpel - dissecting the genetics of salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:148-163. [PMID: 30548719 PMCID: PMC6850516 DOI: 10.1111/tpj.14189] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 05/08/2023]
Abstract
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.
Collapse
Affiliation(s)
- Mitchell J. L. Morton
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mariam Awlia
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Nadia Al‐Tamimi
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Stephanie Saade
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Yveline Pailles
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mark Tester
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Moles TM, de Brito Francisco R, Mariotti L, Pompeiano A, Lupini A, Incrocci L, Carmassi G, Scartazza A, Pistelli L, Guglielminetti L, Pardossi A, Sunseri F, Hörtensteiner S, Santelia D. Salinity in Autumn-Winter Season and Fruit Quality of Tomato Landraces. FRONTIERS IN PLANT SCIENCE 2019; 10:1078. [PMID: 31611885 PMCID: PMC6769068 DOI: 10.3389/fpls.2019.01078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/07/2019] [Indexed: 05/02/2023]
Abstract
Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.
Collapse
Affiliation(s)
- Tommaso Michele Moles
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Rita de Brito Francisco
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Antonio Pompeiano
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Antonio Lupini
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Luca Incrocci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giulia Carmassi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems, National Research Council, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesco Sunseri
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
de Lillo E, Pozzebon A, Valenzano D, Duso C. An Intimate Relationship Between Eriophyoid Mites and Their Host Plants - A Review. FRONTIERS IN PLANT SCIENCE 2018; 9:1786. [PMID: 30564261 PMCID: PMC6288765 DOI: 10.3389/fpls.2018.01786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/16/2018] [Indexed: 05/20/2023]
Abstract
Eriophyoid mites (Acari Eriophyoidea) are phytophagous arthropods forming intimate relationships with their host plants. These mites are associated with annual and perennial plants including ferns, and are highly specialized with a dominant monophagy. They can be classified in different ecological classes, i.e., vagrant, gall-making and refuge-seeking species. Many of them are major pests and some of them are vectors of plant pathogens. This paper critically reviews the knowledge on eriophyoids of agricultural importance with emphasis on sources for host plant resistance to these mites. The role of species belonging to the family Eriophyidae as vectors of plant viruses is discussed. Eriophyoid-host plant interactions, the susceptibility within selected crops and main host plant tolerance/resistance mechanisms are discussed. Fundamental concepts, subjects, and problems emerged in this review are pointed out and studies are suggested to clarify some controversial points.
Collapse
Affiliation(s)
- Enrico de Lillo
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Domenico Valenzano
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Bigard A, Berhe DT, Maoddi E, Sire Y, Boursiquot JM, Ojeda H, Péros JP, Doligez A, Romieu C, Torregrosa L. Vitis vinifera L. Fruit Diversity to Breed Varieties Anticipating Climate Changes. FRONTIERS IN PLANT SCIENCE 2018; 9:455. [PMID: 29765379 PMCID: PMC5938353 DOI: 10.3389/fpls.2018.00455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 05/04/2023]
Abstract
The wine industry is facing critical issues due to climate changes since production is established on very tight Genotype × Environment interaction bases. While, some cultivation practices may reduce adverse effects of abiotic stresses on the vines, e.g., the use of irrigation to mitigate drought, the deleterious impacts of warming on fruit development are difficult to manage. Elevated temperature alters grapevine fruit growth and composition, with a critical increase of the sugars/organic acids ratio. Select grapes with improved metabolite balances to offset high temperature effects is a valuable option to sustain viticulture. Unfortunately, the lack of knowledge about the genetic diversity for fruit traits impacted by temperature impairs the design of breeding programs. This study aimed to assess the variation in berry volume, main sugars and organic acids amounts in genetic resources. Fruit phenotyping focused on two critical stages of development: the end of green lag phase when organic acidity reaches its maximum, and the ripe stage when sugar unloading and water uptake stop. For that purpose, we studied a panel of 33 genotypes, including 12 grapevine varieties and 21 microvine offspring. To determine the date of sampling for each critical stage, fruit texture and growth were carefully monitored. Analyses at both stages revealed large phenotypic variation for malic and tartaric acids, as well as for sugars and berry size. At ripe stage, fruit fresh weight ranged from 1.04 to 5.25 g and sugar concentration from 751 to 1353 mmol.L-1. The content in organic acids varied both in quantity (from 80 to 361 meq.L-1) and in composition, with malic to tartaric acid ratio ranging from 0.13 to 3.62. At the inter-genotypic level, data showed no link between berry growth and osmoticum accumulation per fruit unit, suggesting that berry water uptake is not dependent only on fruit osmotic potential. Diversity among varieties for berry size, sugar accumulation and malic to tartaric acid ratio could be exploited through cross-breeding. This provides interesting prospects for improving grapevine to mitigate some adverse effects of climate warming on grapevine fruit volume and quality.
Collapse
Affiliation(s)
- Antoine Bigard
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
| | - Dargie T Berhe
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
- SNNPRS, Dilla University, Dilla, Ethiopia
| | - Eleonora Maoddi
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Yannick Sire
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
| | | | - Hernan Ojeda
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
- UE INRA de Vassal, Grapevine Biological Resource Centre, University of Montpellier, INRA, Montpellier, France
| | - Jean-Pierre Péros
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Agnès Doligez
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Charles Romieu
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Laurent Torregrosa
- AGAP, University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- UE INRA de Pech-Rouge, University of Montpellier, INRA, Montpellier, France
| |
Collapse
|
24
|
Massaretto IL, Albaladejo I, Purgatto E, Flores FB, Plasencia F, Egea-Fernández JM, Bolarin MC, Egea I. Recovering Tomato Landraces to Simultaneously Improve Fruit Yield and Nutritional Quality Against Salt Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1778. [PMID: 30555505 PMCID: PMC6284034 DOI: 10.3389/fpls.2018.01778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/15/2018] [Indexed: 05/18/2023]
Abstract
Salt stress generally induces important negative effects on tomato (Solanum lycopersicum) productivity but it may also cause a positive effect improving fruit quality, one of the greatest challenges in nowadays agriculture. Because of the genetic erosion of this horticultural species, the recovery of locally adapted landraces could play a very important role in avoiding, at least partially, production losses and simultaneously improving fruit quality. Two tomato landraces endemic of the Spanish Southeast area, characterized by the harsh climatic conditions of the Mediterranean basin, have been selected: Negro Yeste (NY) characterized by its dark-red colored fruits and Verdal (V), which fruits did not achieve the characteristic red color at ripening. Here the agronomic, physiological, and metabolic responses of these landraces were compared with the reference tomato commercial cv. Moneymaker (MM), in plants grown without salt (control) and with salt stress (100 mM NaCl) for 70 days. The higher salt tolerance of both landraces was mainly reflected in the fruit number, as NY only reduced the fruit number in salt stress by 20% whereas in MM it was reduced till 43%, and in V the fruit number even showed an increase of 33% with salt stress. An important fruit quality parameter is soluble solids content, which increases induced by salinity were significantly higher in both landraces (60 and 78% in NY and V, respectively) compared with MM (34%). Although both landraces showed a similar response in relation to the high chlorophyll accumulation detected in their fruits, the fruit metabolic profiles were very different. Increased carotenoids levels were found in NY fruits, especially lycopene in ripe fruit, and this characteristic was observed in both control and salt stress. Contrarily, the carotenoid biosynthesis pathway was disrupted in V ripe fruits, but other metabolites, such as Ca2+, mannose, formate, and glutamate were accumulated. These results highlight the potential of tomato landraces to improve nutritional fruit quality and maintain fruit yield stability under salt stress.
Collapse
Affiliation(s)
- Isabel L. Massaretto
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC-CEPID), University of São Paulo, São Paulo, Brazil
| | - Irene Albaladejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | - Eduardo Purgatto
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC-CEPID), University of São Paulo, São Paulo, Brazil
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | - Félix Plasencia
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | | | - Maria C. Bolarin
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Murcia, Spain
- *Correspondence: Isabel Egea
| |
Collapse
|
25
|
Opportunities for genome editing in vegetable crops. Emerg Top Life Sci 2017; 1:193-207. [DOI: 10.1042/etls20170033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
Vegetables include high-value crops with health-promoting effects and reduced environmental impact. The availability of genomic and biotechnological tools in certain species, coupled with the recent development of new breeding techniques based on precise editing of DNA, provides unique opportunities to finally take advantage of the past decades of detailed genetic analyses, thus making improvement of traits related to quality and stress tolerance achievable in a reasonable time frame. Recent reports of such approaches in vegetables illustrate the feasibility of obtaining multiple homozygous mutations in a single generation, heritable by the progeny, using stable or transient transformation approaches, which may not rely on the integration of unwanted foreign DNA. Application of these approaches to currently non-sequenced/tissue culture recalcitrant crops will contribute to meet the challenges posed by the increase in population and climate change.
Collapse
|