1
|
Xu X, Wang Y, Lu H, Zhao X, Jiang J, Liu M, Yang C. Morphological characterization and transcriptome analysis of rolled and narrow leaf mutant in soybean. BMC PLANT BIOLOGY 2024; 24:686. [PMID: 39026194 PMCID: PMC11264519 DOI: 10.1186/s12870-024-05389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND In plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. In soybean, leaf type traits, including leaf shape, leaf area, leaf width, and leaf width so on, are considered to be associated with yield. In this study, we performed morphological characterization, transcriptome analysis, and endogenous hormone analysis of a rolled and narrow leaf mutant line (rl) in soybean. RESULTS Compared with wild type HX3, mutant line rl showed rolled and narrower leaflet, and smaller leaf, meanwhile rl also performed narrower pod and narrower seed. Anatomical analysis of leaflet demonstrated that cell area of upper epidermis was bigger than the cell area of lower epidermis in rl, which may lead rolled and narrow leaf. Transcriptome analysis revealed that several cytokinin oxidase/dehydrogenase (CKX) genes (Glyma.06G028900, Glyma.09G225400, Glyma.13G104700, Glyma.14G099000, and Glyma.17G054500) were up-regulation dramatically, which may cause lower cytokinin level in rl. Endogenous hormone analysis verified that cytokinin content of rl was lower. Hormone treatment results indicated that 6-BA rescued rolled leaf enough, rescued partly narrow leaf. And after 6-BA treatment, the cell area was similar between upper epidermis and lower epidermis in rl. Although IAA content and ABA content were reduced in rl, but exogenous IAA and ABA didn't affect leaf type of HX3 and rl. CONCLUSIONS Our results suggest abnormal cytokinin metabolism caused rolled and narrow leaf in rl, and provide valuable clues for further understanding the mechanisms underlying leaf development in soybean.
Collapse
Affiliation(s)
- Xiaomin Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Housheng Lu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xueqian Zhao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zeng W, Wang X, Li M. PINOID-centered genetic interactions mediate auxin action in cotyledon formation. PLANT DIRECT 2024; 8:e587. [PMID: 38766507 PMCID: PMC11099747 DOI: 10.1002/pld3.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Auxin plays a key role in plant growth and development through auxin local synthesis, polar transport, and auxin signaling. Many previous reports on Arabidopsis have found that various types of auxin-related genes are involved in the development of the cotyledon, including the number, symmetry, and morphology of the cotyledon. However, the molecular mechanism by which auxin is involved in cotyledon formation remains to be elucidated. PID, which encodes a serine/threonine kinase localized to the plasma membrane, has been found to phosphorylate the PIN1 protein and regulate its polar distribution in the cell. The loss of function of pid resulted in an abnormal number of cotyledons and defects in inflorescence. It was interesting that the pid mutant interacted synergistically with various types of mutant to generate the severe developmental defect without cotyledon. PID and these genes were indicated to be strongly correlated with cotyledon formation. In this review, PID-centered genetic interactions, related gene functions, and corresponding possible pathways are discussed, providing a perspective that PID and its co-regulators control cotyledon formation through multiple pathways.
Collapse
Affiliation(s)
- Wei Zeng
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Xiutao Wang
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Mengyuan Li
- College of Life ScienceXinyang Normal UniversityXinyangChina
| |
Collapse
|
3
|
Li S, Ran S, Yuan S, Chang K, Han M, Zhong F. Gibberellin-mediated far-red light-induced leaf expansion in cucumber seedlings. PROTOPLASMA 2024; 261:571-579. [PMID: 38170395 DOI: 10.1007/s00709-023-01923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Our experiments explored the effects of far-red (FR) light on cucumber (Cucumis sativus L. 'Zhongnong No. 26') seedling growth. Our results indicated that FR light significantly promoted the growth of cucumber seedlings. Specifically, it promoted the accumulation of shoot biomass and the elongation of internodes and leaves (except the first leaf at the bottom). Further analysis showed that FR light had no effect on the accumulation contents of abscisic acid (ABA) and auxin (IAA) in seedling leaves. Still, it significantly caused the increase of the gibberellin (GA3, GA4, and GA7) contents and the decrease of GA1 content, which suggested that the leaf expansion progress under FR light may be primarily related to GA. Therefore, the cucumber seedling leaf expansion response to GA was evaluated under different light sources. The exogenous spraying of different GA4/7 contents significantly promoted the leaf expansion of cucumber seedlings under white light, while the GA biosynthesis inhibitor paclobutrazol (PAC) significantly promoted the expression of GA hydrolytic genes (GA2ox2 and GA2ox4) and decreased the content of endogenous active GA, which inhibited the leaf expansion induced by FR light. As expected, the combination of exogenous GA4/7 and PAC restored the growth promotion effect of FR light on cucumber seedling leaves. It increased the contents of endogenous active GA (GA1, GA3, GA4, and GA7), and the expression trend in GA synthetic/hydrolytic-related genes was the opposite of that of PAC was applied alone. All of the above results indicated that FR light regulates leaf expansion progress in cucumber seedlings through GA.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Shengxiang Ran
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Song Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Kaizhen Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Mingxuan Han
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
4
|
Guo X, Liang R, Lou S, Hou J, Chen L, Liang X, Feng X, Yao Y, Liu J, Liu H. Natural variation in the SVP contributes to the pleiotropic adaption of Arabidopsis thaliana across contrasted habitats. J Genet Genomics 2023; 50:993-1003. [PMID: 37633338 DOI: 10.1016/j.jgg.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Coordinated plant adaptation involves the interplay of multiple traits driven by habitat-specific selection pressures. Pleiotropic effects, wherein genetic variants of a single gene control multiple traits, can expedite such adaptations. Until present, only a limited number of genes have been reported to exhibit pleiotropy. Here, we create a recombinant inbred line (RIL) population derived from two Arabidopsis thaliana (A. thaliana) ecotypes originating from divergent habitats. Using this RIL population, we identify an allelic variation in a MADS-box transcription factor, SHORT VEGETATIVE PHASE (SVP), which exerts a pleiotropic effect on leaf size and drought-versus-humidity tolerance. Further investigation reveals that a natural null variant of the SVP protein disrupts its normal regulatory interactions with target genes, including GRF3, CYP707A1/3, and AtBG1, leading to increased leaf size, enhanced tolerance to humid conditions, and changes in flowering time of humid conditions in A. thaliana. Remarkably, polymorphic variations in this gene have been traced back to early A. thaliana populations, providing a genetic foundation and plasticity for subsequent colonization of diverse habitats by influencing multiple traits. These findings advance our understanding of how plants rapidly adapt to changing environments by virtue of the pleiotropic effects of individual genes on multiple trait alterations.
Collapse
Affiliation(s)
- Xiang Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ruyun Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Hou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liyang Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoqin Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yingjun Yao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Huanhuan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
5
|
Gu C, Han R, Liu C, Fang G, Yuan Q, Zheng Z, Yu Q, Jiang J, Liu S, Xie L, Wei H, Zhang Q, Liu G. Heritable epigenetic modification of BpPIN1 is associated with leaf shapes in Betula pendula. TREE PHYSIOLOGY 2023; 43:1811-1824. [PMID: 37406032 DOI: 10.1093/treephys/tpad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
The new variety Betula pendula 'Dalecarlica', selected from Betula pendula, shows high ornamental value owing to its lobed leaf shape. In this study, to identify the genetic components of leaf shape formation, we performed bulked segregant analysis and molecular marker-based fine mapping to identify the causal gene responsible for lobed leaves in B. pendula 'Dalecarlica'. The most significant variations associated with leaf shape were identified within the gene BpPIN1 encoding a member of the PIN-FORMED family, responsible for the auxin efflux carrier. We further confirmed the hypomethylation at the promoter region promoting the expression level of BpPIN1, which causes stronger and longer veins and lobed leaf shape in B. pendula 'Dalecarlica'. These results indicated that DNA methylation at the BpPIN1 promoter region is associated with leaf shapes in B. pendula. Our findings revealed an epigenetic mechanism of BpPIN1 in the regulation of leaf shape in Betula Linn. (birch), which could help in the molecular breeding of ornamental traits.
Collapse
Affiliation(s)
- Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Chaoyi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Gonggui Fang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Qihang Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33580, USA
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Throckmorton Center, 116 Ackert Hall, Manhattan, KS 66506-5502, USA
| | - Linan Xie
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| |
Collapse
|
6
|
Kong B, Ma J, Zhang P, Chen T, Liu Y, Che Z, Shahinnia F, Yang D. Deciphering key genomic regions controlling flag leaf size in wheat via integration of meta-QTL and in silico transcriptome assessment. BMC Genomics 2023; 24:33. [PMID: 36658498 PMCID: PMC9854125 DOI: 10.1186/s12864-023-09119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Grain yield is a complex and polygenic trait influenced by the photosynthetic source-sink relationship in wheat. The top three leaves, especially the flag leaf, are considered the major sources of photo-assimilates accumulated in the grain. Determination of significant genomic regions and candidate genes affecting flag leaf size can be used in breeding for grain yield improvement. RESULTS With the final purpose of understanding key genomic regions for flag leaf size, a meta-analysis of 521 initial quantitative trait loci (QTLs) from 31 independent QTL mapping studies over the past decades was performed, where 333 loci eventually were refined into 64 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs was 5.28 times less than that of the initial QTLs. Thirty-three MQTLs overlapped the marker trait associations (MTAs) previously reported in genome-wide association studies (GWAS) for flag leaf traits in wheat. A total of 2262 candidate genes for flag leaf size, which were involved in the peroxisome, basal transcription factor, and tyrosine metabolism pathways were identified in MQTL regions by the in silico transcriptome assessment. Of these, the expression analysis of the available genes revealed that 134 genes with > 2 transcripts per million (TPM) were highly and specifically expressed in the leaf. These candidate genes could be critical to affect flag leaf size in wheat. CONCLUSIONS The findings will make further insight into the genetic determinants of flag leaf size and provide some reliable MQTLs and putative candidate genes for the genetic improvement of flag leaf size in wheat.
Collapse
Affiliation(s)
- Binxue Kong
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingfu Ma
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuan Liu
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhuo Che
- Plant Seed Master Station of Gansu Province, Lanzhou, 730000, China
| | - Fahimeh Shahinnia
- Bavarian State Research Centre for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Preusche M, Vahl M, Riediger J, Ulbrich A, Schulz M. Modulating Expression Levels of TCP Transcription Factors by Mentha x piperita Volatiles-An Allelopathic Tool to Influence Leaf Growth? PLANTS (BASEL, SWITZERLAND) 2022; 11:3078. [PMID: 36432807 PMCID: PMC9697212 DOI: 10.3390/plants11223078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Peppermint (Mentha x piperita) is a species with inhibitory allelopathic properties due to its high amounts of terpenes. Recent studies have disclosed dosage dependent growth promotion or defense reactions in plants when facing appropriate amounts of Mentha bouquet terpenes. These positive effects could be of interest for agricultural applications. To obtain more insights into leaf growth modulations, the expression of Arabidopsis and Brassica rapa TCP transcription factors were studied after fumigation with M. x piperita bouquets (Arabidopsis), with M. x piperita essential oil or with limonene (Arabidopsis and Chinese cabbage). According to qPCR studies, expression of TCP3, TCP24, and TCP20 were downregulated by all treatments in Arabidopsis, leading to altered leaf growth. Expressions of B. rapa TCPs after fumigation with the essential oil or limonene were less affected. Extensive greenhouse and polytunnel trials with white cabbage and Mentha plants showed that the developmental stage of the leaves, the dosage, and the fumigation time are of crucial importance for changed fresh and dry weights. Although further research is needed, the study may contribute to a more intensive utilization of ecologically friendly and species diversity conservation and positive allelopathic interactions in future agricultural systems.
Collapse
Affiliation(s)
- Matthias Preusche
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Marvin Vahl
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Johanna Riediger
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Andreas Ulbrich
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Margot Schulz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
8
|
Jiang X, Yang X, Zhang F, Yang T, Yang C, He F, Gao T, Wang C, Yang Q, Wang Z, Kang J. Combining QTL mapping and RNA-Seq Unravels candidate genes for Alfalfa (Medicago sativa L.) leaf development. BMC PLANT BIOLOGY 2022; 22:485. [PMID: 36217123 PMCID: PMC9552516 DOI: 10.1186/s12870-022-03864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Leaf size affects crop canopy morphology and photosynthetic efficiency, which can influence forage yield and quality. It is of great significance to mine the key genes controlling leaf development for breeding new alfalfa varieties. In this study, we mapped leaf length (LL), leaf width (LW), and leaf area (LA) in an F1 mapping population derived from a cultivar named ZhongmuNo.1 with larger leaf area and a landrace named Cangzhou with smaller leaf area. RESULTS This study showed that the larger LW was more conducive to increasing LA. A total of 24 significant quantitative trait loci (QTL) associated with leaf size were identified on both the paternal and maternal linkage maps. Among them, nine QTL explained about 11.50-22.45% phenotypic variation. RNA-seq analysis identified 2,443 leaf-specific genes and 3,770 differentially expressed genes. Combining QTL mapping, RNA-seq alalysis, and qRT-PCR, we identified seven candidate genes associated with leaf development in five major QTL regions. CONCLUSION Our study will provide a theoretical basis for marker-assisted breeding and lay a foundation for further revealing molecular mechanism of leaf development in alfalfa.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijiang Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Changfu Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Jatropha curcas L. as a Plant Model for Studies on Vegetative Propagation of Native Forest Plants. PLANTS 2022; 11:plants11192457. [PMID: 36235323 PMCID: PMC9571919 DOI: 10.3390/plants11192457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Even though it is a forest native plant, there are already several studies evaluating the small genome of Jatropha curcas L., which belongs to the Euphorbiaceae family, and may be an excellent representative model for the other plants from the same family. Jatropha curcas L. plant has fast growth, precocity, and great adaptability, facilitating silvicultural studies, allowing important information to be obtained quickly, and reducing labor costs. This information justifies the use of the species as a model plant in studies involving the reproduction of native plants. This study aimed to evaluate the possibility of using Jatropha curcas L. as a model plant for studies involving native forest plants and establish possible recommendations for the vegetative propagation of the species using hardwood cuttings. The information collected can be helpful to other native forest plant species, similar to Jatropha curcas L. To this end, the effects of hardwood cutting length (10, 20, and 30 cm) and the part of the hardwood cuttings (basal, middle, and apex) were evaluated. Moreover, the influence of immersing the hardwood cuttings in solutions containing micronutrients (boron or zinc) or plant regulators (2,4-D, GA3) and a biostimulant composed of kinetin (0.09 g L−1), gibberellic acid (0.05 g L−1), and 4-indole-3-butyric acid (0.05 g L−1). The experiments were carried out in duplicates. In one duplicate, sand was used as the substrate, and rooting evaluations were made 77 days after planting. In another duplicate, a substrate composed of 50% soil, 40% poultry litter, and 10% sand was used, and the evaluations of the saplings were performed 120 days after planting. The GA3 solutions inhibited the roots’ and sprouts’ emissions, while immersion in 2,4-D solution increased the number of primary roots at 77 days after planting. The hardwood cuttings from the basal part of the branch had the best results for producing saplings.
Collapse
|
10
|
Chowdhury S, Mukherjee A, Basak S, Das R, Mandal A, Kundu P. Disruption of tomato TGS machinery by ToLCNDV causes reprogramming of vascular tissue-specific TORNADO1 gene expression. PLANTA 2022; 256:78. [PMID: 36094622 DOI: 10.1007/s00425-022-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Vascular development-related TRN1 transcription is suppressed by cytosine methylation in fully developed leaves of tomato. ToLCNDV infection disrupts methylation machinery and reactivates TRN1 expression - likely causing abnormal leaf growth pattern. Leaf curl disease of tomato caused by tomato leaf curl New Delhi virus (ToLCNDV) inflicts huge economical loss. Disease symptoms resemble leaf developmental defects including abnormal vein architecture. Leaf vein patterning-related TORNADO1 gene's (SlTRN1) transcript level is augmented in virus-infected leaves. To elucidate the molecular mechanism of the upregulation of SlTRN1 in vivo, we have deployed SlTRN1 promoter-reporter transgenic tomato plants and investigated the gene's dynamic expression pattern in leaf growth stages and infection. Expression of the gene was delimited in the vascular tissues and suppressed in fully developed leaves. WRKY16 transcription factor readily activated SlTRN1 promoter in varied sized leaves and upon virus infection, while silencing of WRKY16 gene resulted in dampened promoter activity. Methylation-sensitive PCR analyses confirmed the accumulation of CHH methylation at multiple locations in the SlTRN1 promoter in older leaves. However, ToLCNDV infection reverses the methylation status and restores expression level in the leaf vascular bundle. The virus dampens the level of key maintenance and de novo DNA methyltransferases SlDRM5, SlMET1, SlCMT2 with concomitant augmentation of two DNA demethylases, SlDML1 and SlDML2 levels in SlTRN1 promoter-reporter transgenics. Transient overexpression of SlDML2 mimics the virus-induced hypomethylation state of the SlTRN1 promoter in mature leaves, while silencing of SlDML2 lessens promoter activity. Furthermore, in line with the previous studies, we confirm the crucial role of viral suppressors of RNA silencing AC2 and AC4 proteins in promoting DNA demethylation and directing it to restore activated transcription of SlTRN1. Unusually elevated expression of SlTRN1 may negatively impact normal growth of leaves.
Collapse
Affiliation(s)
- Shreya Chowdhury
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Ananya Mukherjee
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Shrabani Basak
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Rohit Das
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Arunava Mandal
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
11
|
Wang H, Kong F, Zhou C. From genes to networks: The genetic control of leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1181-1196. [PMID: 33615731 DOI: 10.1111/jipb.13084] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 05/15/2023]
Abstract
Substantial diversity exists for both the size and shape of the leaf, the main photosynthetic organ of flowering plants. The two major forms of leaf are simple leaves, in which the leaf blade is undivided, and compound leaves, which comprise several leaflets. Leaves form at the shoot apical meristem from a group of undifferentiated cells, which first establish polarity, then grow and differentiate. Each of these processes is controlled by a combination of transcriptional regulators, microRNAs and phytohormones. The present review documents recent advances in our understanding of how these various factors modulate the development of both simple leaves (focusing mainly on the model plant Arabidopsis thaliana) and compound leaves (focusing mainly on the model legume species Medicago truncatula).
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
| |
Collapse
|
12
|
Robil JM, Gao K, Neighbors CM, Boeding M, Carland FM, Bunyak F, McSteen P. grasviq: an image analysis framework for automatically quantifying vein number and morphology in grass leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:629-648. [PMID: 33914380 DOI: 10.1111/tpj.15299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Beyond facilitating transport and providing mechanical support to the leaf, veins have important roles in the performance and productivity of plants and the ecosystem. In recent decades, computational image analysis has accelerated the extraction and quantification of vein traits, benefiting fields of research from agriculture to climatology. However, most of the existing leaf vein image analysis programs have been developed for the reticulate venation found in dicots. Despite the agroeconomic importance of cereal grass crops, like Oryza sativa (rice) and Zea mays (maize), a dedicated image analysis program for the parallel venation found in monocots has yet to be developed. To address the need for an image-based vein phenotyping tool for model and agronomic grass species, we developed the grass vein image quantification (grasviq) framework. Designed specifically for parallel venation, this framework automatically segments and quantifies vein patterns from images of cleared leaf pieces using classical computer vision techniques. Using image data sets from maize inbred lines and auxin biosynthesis and transport mutants in maize, we demonstrate the utility of grasviq for quantifying important vein traits, including vein density, vein width and interveinal distance. Furthermore, we show that the framework can resolve quantitative differences and identify vein patterning defects, which is advantageous for genetic experiments and mutant screens. We report that grasviq can perform high-throughput vein quantification, with precision on a par with that of manual quantification. Therefore, we envision that grasviq will be adopted for vein phenomics in maize and other grass species.
Collapse
Affiliation(s)
- Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ke Gao
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Claire M Neighbors
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Michael Boeding
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Francine M Carland
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Filiz Bunyak
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
13
|
Jiang YT, Yang LH, Ferjani A, Lin WH. Multiple functions of the vacuole in plant growth and fruit quality. MOLECULAR HORTICULTURE 2021; 1:4. [PMID: 37789408 PMCID: PMC10509827 DOI: 10.1186/s43897-021-00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 10/05/2023]
Abstract
Vacuoles are organelles in plant cells that play pivotal roles in growth and developmental regulation. The main functions of vacuoles include maintaining cell acidity and turgor pressure, regulating the storage and transport of substances, controlling the transport and localization of key proteins through the endocytic and lysosomal-vacuolar transport pathways, and responding to biotic and abiotic stresses. Further, proteins localized either in the tonoplast (vacuolar membrane) or inside the vacuole lumen are critical for fruit quality. In this review, we summarize and discuss some of the emerging functions and regulatory mechanisms associated with plant vacuoles, including vacuole biogenesis, vacuole functions in plant growth and development, fruit quality, and plant-microbe interaction, as well as some innovative research technology that has driven advances in the field. Together, the functions of plant vacuoles are important for plant growth and fruit quality. The investigation of vacuole functions in plants is of great scientific significance and has potential applications in agriculture.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu-Han Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501, Japan
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Li X, Zhang Y, Yang S, Wu C, Shao Q, Feng X. The genetic control of leaf and petal allometric variations in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:547. [PMID: 33287712 PMCID: PMC7720488 DOI: 10.1186/s12870-020-02758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Organ shape and size covariation (allometry) factors are essential concepts for the study of evolution and development. Although ample research has been conducted on organ shape and size, little research has considered the correlated variation of these two traits and quantitatively measured the variation in a common framework. The genetic basis of allometry variation in a single organ or among different organs is also relatively unknown. RESULTS A principal component analysis (PCA) of organ landmarks and outlines was conducted and used to quantitatively capture shape and size variation in leaves and petals of multiparent advanced generation intercross (MAGIC) populations of Arabidopsis thaliana. The PCA indicated that size variation was a major component of allometry variation and revealed negatively correlated changes in leaf and petal size. After quantitative trait loci (QTL) mapping, five QTLs for the fourth leaf, 11 QTLs for the seventh leaf, and 12 QTLs for petal size and shape were identified. These QTLs were not identical to those previously identified, with the exception of the ER locus. The allometry model was also used to measure the leaf and petal allometry covariation to investigate the evolution and genetic coordination between homologous organs. In total, 12 QTLs were identified in association with the fourth leaf and petal allometry covariation, and eight QTLs were identified to be associated with the seventh leaf and petal allometry covariation. In these QTL confidence regions, there were important genes associated with cell proliferation and expansion with alleles unique to the maximal effects accession. In addition, the QTLs associated with life-history traits, such as days to bolting, stem length, and rosette leaf number, which were highly coordinated with climate change and local adaption, were QTL mapped and showed an overlap with leaf and petal allometry, which explained the genetic basis for their correlation. CONCLUSIONS This study explored the genetic basis for leaf and petal allometry and their interaction, which may provide important information for investigating the correlated variation and evolution of organ shape and size in Arabidopsis.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yaohua Zhang
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Suxin Yang
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xianzhong Feng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
15
|
Santos LCND, Gaion LA, Prado RM, Barreto RF, Carvalho RF. Low auxin sensitivity of diageotropica tomato mutant alters nitrogen deficiency response. AN ACAD BRAS CIENC 2020; 92:e20190254. [PMID: 33206797 DOI: 10.1590/0001-3765202020190254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
Plant responses to nitrogen supply are dependent on auxin signaling, but much still remains to be elucidated regarding N deficiency in tomato. Thus, the objective of this work was to evaluate how low auxin sensitivity regulates the responses of tomato plants to N deficiency. For this purpose, we used the tomato diageotropica mutant, with low auxin sensitivity, and a near isogenic line cv. Micro-Tom grown in nutrient solutions under absence and presence of nitrogen. Plant height, stem diameter, root and shoot dry mass, area and root density, number of lateral roots, leaf area, chlorophylls and carotenoids content, nitrogen accumulation and nitrogen use efficiency were evaluated. We observed a clear interaction between the tomato genotype and nitrogen. When the plants were grown with nitrogen, 'Micro-Tom' showed higher growth than the diageotropica mutant. Under nitrogen deficiency condition, the mutant showed improved growth, nitrogen use efficiency and higher contents of pigments. In general, the low sensitivity to auxin in diageotropica caused reduced growth in both shoot and root. However, the diageotropica tomato showed a positive regulation of the nitrogen use efficiency under nitrogen deficiency. In general, our data revealed that the reduced sensitivity to auxin increased the adaptive capacity to the nitrogen deficiency.
Collapse
Affiliation(s)
- Luiz C N Dos Santos
- Universidade Estadual Paulista (UNESP), Departamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - Lucas A Gaion
- Universidade de Marília, Centro de Ciências Agrárias, Avenida Higino Muzzy Filho, 1001, Cidade Universitária, 17525-902 Marília, SP, Brazil
| | - Renato M Prado
- Universidade Estadual Paulista (UNESP), Departamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - Rafael F Barreto
- Universidade Estadual Paulista (UNESP), Departamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - RogÉrio F Carvalho
- Universidade Estadual Paulista (UNESP), Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
16
|
Ali S, Khan N, Xie L. Molecular and Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21145132. [PMID: 32698541 PMCID: PMC7404056 DOI: 10.3390/ijms21145132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
Shoot apical meristems (SAM) are tissues that function as a site of continuous organogenesis, which indicates that a small pool of pluripotent stem cells replenishes into lateral organs. The coordination of intercellular and intracellular networks is essential for maintaining SAM structure and size and also leads to patterning and formation of lateral organs. Leaves initiate from the flanks of SAM and then develop into a flattened structure with variable sizes and forms. This process is mainly regulated by the transcriptional regulators and mechanical properties that modulate leaf development. Leaf initiation along with proper orientation is necessary for photosynthesis and thus vital for plant survival. Leaf development is controlled by different components such as hormones, transcription factors, miRNAs, small peptides, and epigenetic marks. Moreover, the adaxial/abaxial cell fate, lamina growth, and shape of margins are determined by certain regulatory mechanisms. The over-expression and repression of various factors responsible for leaf initiation, development, and shape have been previously studied in several mutants. However, in this review, we collectively discuss how these factors modulate leaf development in the context of leaf initiation, polarity establishment, leaf flattening and shape.
Collapse
Affiliation(s)
- Shahid Ali
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: (S.A.); (L.X.)
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Linan Xie
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (S.A.); (L.X.)
| |
Collapse
|
17
|
Song M, Cheng F, Wang J, Wei Q, Fu W, Yu X, Li J, Chen J, Lou Q. A leaf shape mutant provides insight into PINOID Serine/Threonine Kinase function in cucumber (Cucumis sativus L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1000-1014. [PMID: 30421569 DOI: 10.1111/jipb.12739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 05/10/2023]
Abstract
Optimizing leaf shape is a major challenge in efforts to develop an ideal plant type. Cucumber leaf shapes are diverse; however, the molecular regulatory mechanisms underlying leaf shape formation are unknown. In this study, we obtained a round leaf mutant (rl) from an ethyl methanesulfonate-induced mutagenesis population. Genetic analysis revealed that a single recessive gene, rl, is responsible for this mutation. A modified MutMap analysis combined linkage mapping identified a single nucleotide polymorphism within a candidate gene, Csa1M537400, as the mutation underlying the trait. Csa1M537400 encodes a PINOID kinase protein involved in auxin transport. Expression of Csa1M537400 was significantly lower in the rl mutant than in wild type, and it displayed higher levels of IAA (indole-3-acetic acid) in several tissues. Treatment of wild-type plants with an auxin transport inhibitor induced the formation of round leaves, similar to those in the rl mutant. Altered expression patterns of several auxin-related genes in the rl mutant suggest that rl plays a key role in auxin biosynthesis, transport, and response in cucumber. These findings provide insight into the molecular mechanism underlying the regulation of auxin signaling pathways in cucumber, and will be valuable in the development of an ideal plant type.
Collapse
Affiliation(s)
- Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingzhen Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyuan Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Strigolactones Promote Leaf Elongation in Tall Fescue through Upregulation of Cell Cycle Genes and Downregulation of Auxin Transport Genes in Tall Fescue under Different Temperature Regimes. Int J Mol Sci 2019; 20:ijms20081836. [PMID: 31013928 PMCID: PMC6515303 DOI: 10.3390/ijms20081836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Strigolactones (SLs) have recently been shown to play roles in modulating plant architecture and improving plant tolerance to multiple stresses, but the underlying mechanisms for SLs regulating leaf elongation and the influence by air temperature are still unknown. This study aimed to investigate the effects of SLs on leaf elongation in tall fescue (Festuca arundinacea, cv. ‘Kentucky-31’) under different temperature regimes, and to determine the interactions of SLs and auxin in the regulation of leaf growth. Tall fescue plants were treated with GR24 (synthetic analog of SLs), naphthaleneacetic acid (NAA, synthetic analog), or N-1-naphthylphthalamic acid (NPA, auxin transport inhibitor) (individually and combined) under normal temperature (22/18 °C) and high-temperature conditions (35/30 °C) in controlled-environment growth chambers. Exogenous application of GR24 stimulated leaf elongation and mitigated the heat inhibition of leaf growth in tall fescue. GR24-induced leaf elongation was associated with an increase in cell numbers, upregulated expression of cell-cycle-related genes, and downregulated expression of auxin transport-related genes in elongating leaves. The results suggest that SLs enhance leaf elongation by stimulating cell division and interference with auxin transport in tall fescue.
Collapse
|
19
|
Matthes MS, Best NB, Robil JM, Malcomber S, Gallavotti A, McSteen P. Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling. MOLECULAR PLANT 2019; 12:298-320. [PMID: 30590136 DOI: 10.1016/j.molp.2018.12.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin has been shown to be of pivotal importance in growth and development of land plants. The underlying molecular players involved in auxin biosynthesis, transport, and signaling are quite well understood in Arabidopsis. However, functional characterizations of auxin-related genes in economically important crops, specifically maize and rice, are still limited. In this article, we comprehensively review recent functional studies on auxin-related genes in both maize and rice, compared with what is known in Arabidopsis, and highlight conservation and diversification of their functions. Our analysis is illustrated by phylogenetic analysis and publicly available gene expression data for each gene family, which will aid in the identification of auxin-related genes for future research. Current challenges and future directions for auxin research in maize and rice are discussed. Developments in gene editing techniques provide powerful tools for overcoming the issue of redundancy in these gene families and will undoubtedly advance auxin research in crops.
Collapse
Affiliation(s)
- Michaela Sylvia Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Norman Bradley Best
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA.
| |
Collapse
|
20
|
Forero MG, Perdomo SA, Quimbaya MA, Perez GF. Image Processing Method for Epidermal Cells Detection and Measurement in Arabidopsis Thaliana Leaves. PATTERN RECOGNITION AND IMAGE ANALYSIS 2019. [DOI: 10.1007/978-3-030-31321-0_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Du F, Guan C, Jiao Y. Molecular Mechanisms of Leaf Morphogenesis. MOLECULAR PLANT 2018; 11:1117-1134. [PMID: 29960106 DOI: 10.1016/j.molp.2018.06.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 05/17/2023]
Abstract
Plants maintain the ability to form lateral appendages throughout their life cycle and form leaves as the principal lateral appendages of the stem. Leaves initiate at the peripheral zone of the shoot apical meristem and then develop into flattened structures. In most plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. To produce structures that can optimally fulfill this function, plants precisely control the initiation, shape, and polarity of leaves. Moreover, leaf development is highly flexible but follows common themes with conserved regulatory mechanisms. Leaves may have evolved from lateral branches that are converted into determinate, flattened structures. Many other plant parts, such as floral organs, are considered specialized leaves, and thus leaf development underlies their morphogenesis. Here, we review recent advances in the understanding of how three-dimensional leaf forms are established. We focus on how genes, phytohormones, and mechanical properties modulate leaf development, and discuss these factors in the context of leaf initiation, polarity establishment and maintenance, leaf flattening, and intercalary growth.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Maugarny-Calès A, Laufs P. Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. Development 2018; 145:145/13/dev161646. [PMID: 29991476 DOI: 10.1242/dev.161646] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leaves arise from groups of undifferentiated cells as small primordia that go through overlapping phases of morphogenesis, growth and differentiation. These phases are genetically controlled and modulated by environmental cues to generate a stereotyped, yet plastic, mature organ. Over the past couple of decades, studies have revealed that hormonal signals, transcription factors and miRNAs play major roles during leaf development, and more recent findings have highlighted the contribution of mechanical signals to leaf growth. In this Review, we discuss how modulating the activity of some of these regulators can generate diverse leaf shapes during development, in response to a varying environment, or between species during evolution.
Collapse
Affiliation(s)
- Aude Maugarny-Calès
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.,Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
23
|
Zhang C, Chen F, Zhao Z, Hu L, Liu H, Cheng Z, Weng Y, Chen P, Li Y. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018. [PMID: 29541828 DOI: 10.1007/s00122-018-3084-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1. Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
Collapse
Affiliation(s)
- Chaowen Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziyao Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanqiang Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Role of PINOID-mediated COP1 phosphorylation in Arabidopsis photomorphogenesis is overemphasized. Proc Natl Acad Sci U S A 2017; 114:E8134-E8135. [PMID: 28912352 DOI: 10.1073/pnas.1711822114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Saini K, AbdElgawad H, Markakis MN, Schoenaers S, Asard H, Prinsen E, Beemster GTS, Vissenberg K. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1308. [PMID: 28824662 PMCID: PMC5539238 DOI: 10.3389/fpls.2017.01308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 05/02/2023]
Abstract
Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.
Collapse
Affiliation(s)
- Kumud Saini
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef UniversityBeni Suef, Egypt
| | - Marios N. Markakis
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Plant and Biochemistry and Biotechnology Lab, Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete: University of Applied SciencesHeraklion, Greece
| |
Collapse
|