1
|
Mahmoud NE, Abdelhameed RM. Use of titanium dioxide doped multi-wall carbon nanotubes as promoter for the growth, biochemical indices of Sesamum indicum L. under heat stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107844. [PMID: 37422946 DOI: 10.1016/j.plaphy.2023.107844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
The behavior of multi-walled carbon nanotubes (MWCNTs) and titanium dioxide nanoparticles (TiO2 NPs) as plant growth enhancers was still unclear; however, in this study, the effects of MWCNTs, TiO2NPs, 5%TiO2@MWCNTs, 10%TiO2@MWCNTs and 15%TiO2@MWCNTs on physical and biochemical contents in Sesamum indicum L. under heat stress conditions were studied. The content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations were reduced by the spraying MWCNTs and TiO2 NPs on plants. The hydrogen peroxide (H2O2) content was reduced by 49.02% in plants treated with 15%TiO2@MWCNTs while 42.14% reduction was found in plants treated with 10%TiO2@MWCNTs. The proportion of oil and the peroxidase enzyme activity in plants treated with 15%TiO2@MWCNTs were increased by 48.99%, for the oil content, and 2.39 times for POD activity respected to the stressed plants. The proportion of unsaturated fatty acids increased in plants treated with 15%TiO2@MWCNTs, 10%TiO2@MWCNTs and TiO2 NPs by 2.7, 2.52, and 2.09 times, respectively, greater than the control of the Shandweel-3 variety. Finally, plants treated with 15%TiO2@MWCNTs showed increases in seed yield and weight 1000-seeds by 4.42 and 1.67 times, respectively. These findings suggest that TiO2@MWCNTs more effective than separated MWCNTs and TiO2 NPs in improve plant growth. In addition, the cultivar Shandweel-3 showed an improvement in growth indicators more than the Giza-32 cultivar.
Collapse
Affiliation(s)
- Noura E Mahmoud
- Biochemistry Unit, Genetic Resources Department., Desert Research Center, Cairo, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Nwogha JS, Wosene AG, Raveendran M, Obidiegwu JE, Oselebe HO, Kambale R, Chilaka CA, Rajagopalan VR. Comparative Metabolomics Profiling Reveals Key Metabolites and Associated Pathways Regulating Tuber Dormancy in White Yam ( Dioscorea rotundata Poir.). Metabolites 2023; 13:metabo13050610. [PMID: 37233651 DOI: 10.3390/metabo13050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Yams are economic and medicinal crops with a long growth cycle, spanning between 9-11 months due to their prolonged tuber dormancy. Tuber dormancy has constituted a major constraint in yam production and genetic improvement. In this study, we performed non-targeted comparative metabolomic profiling of tubers of two white yam genotypes, (Obiaoturugo and TDr1100873), to identify metabolites and associated pathways that regulate yam tuber dormancy using gas chromatography-mass spectrometry (GC-MS). Yam tubers were sampled between 42 days after physiological maturity (DAPM) till tuber sprouting. The sampling points include 42-DAPM, 56-DAPM, 87DAPM, 101-DAPM, 115-DAPM, and 143-DAPM. A total of 949 metabolites were annotated, 559 in TDr1100873 and 390 in Obiaoturugo. A total of 39 differentially accumulated metabolites (DAMs) were identified across the studied tuber dormancy stages in the two genotypes. A total of 27 DAMs were conserved between the two genotypes, whereas 5 DAMs were unique in the tubers of TDr1100873 and 7 DAMs were in the tubers of Obiaoturugo. The differentially accumulated metabolites (DAMs) spread across 14 major functional chemical groups. Amines and biogenic polyamines, amino acids and derivatives, alcohols, flavonoids, alkaloids, phenols, esters, coumarins, and phytohormone positively regulated yam tuber dormancy induction and maintenance, whereas fatty acids, lipids, nucleotides, carboxylic acids, sugars, terpenoids, benzoquinones, and benzene derivatives positively regulated dormancy breaking and sprouting in tubers of both yam genotypes. Metabolite set enrichment analysis (MSEA) revealed that 12 metabolisms were significantly enriched during yam tuber dormancy stages. Metabolic pathway topology analysis further revealed that six metabolic pathways (linoleic acid metabolic pathway, phenylalanine metabolic pathway, galactose metabolic pathway, starch and sucrose metabolic pathway, alanine-aspartate-glutamine metabolic pathways, and purine metabolic pathway) exerted significant impact on yam tuber dormancy regulation. This result provides vital insights into molecular mechanisms regulating yam tuber dormancy.
Collapse
Affiliation(s)
- Jeremiah S Nwogha
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Ethiopia
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Yam Research Programme, National Root Crops Research Institute, Umudike 440001, Nigeria
| | - Abtew G Wosene
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Ethiopia
| | - Muthurajan Raveendran
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Jude E Obidiegwu
- Yam Research Programme, National Root Crops Research Institute, Umudike 440001, Nigeria
| | - Happiness O Oselebe
- Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki 480282, Nigeria
| | - Rohit Kambale
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Cynthia A Chilaka
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Veera Ranjani Rajagopalan
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
3
|
Fu X, Han B, Liu S, Zhou J, Zhang H, Wang H, Zhang H, Ouyang Z. WSVAS: A YOLOv4 -based phenotyping platform for automatically detecting the salt tolerance of wheat based on seed germination vigour. FRONTIERS IN PLANT SCIENCE 2022; 13:1074360. [PMID: 36605955 PMCID: PMC9807913 DOI: 10.3389/fpls.2022.1074360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major environmental stress factors that affect and limit wheat production worldwide. Therefore, properly evaluating wheat genotypes during the germination stage could be one of the effective ways to improve yield. Currently, phenotypic identification platforms are widely used in the seed breeding process, which can improve the speed of detection compared with traditional methods. We developed the Wheat Seed Vigour Assessment System (WSVAS), which enables rapid and accurate detection of wheat seed germination using the lightweight convolutional neural network YOLOv4. The WSVAS system can automatically acquire, process and analyse image data of wheat varieties to evaluate the response of wheat seeds to salt stress under controlled environments. The WSVAS image acquisition system was set up to continuously acquire images of seeds of four wheat varieties under three types of salt stress. In this paper, we verified the accuracy of WSVAS by comparing manual scoring. The cumulative germination curves of wheat seeds of four genotypes under three salt stresses were also investigated. In this study, we compared three models, VGG16 + Faster R-CNN, ResNet50 + Faster R-CNN and YOLOv4. We found that YOLOv4 was the best model for wheat seed germination target detection, and the results showed that the model achieved an average detection accuracy (mAP) of 97.59%, a recall rate (Recall) of 97.35% and the detection speed was up to 6.82 FPS. This proved that the model could effectively detect the number of germinating seeds in wheat. In addition, the germination rate and germination index of the two indicators were highly correlated with germination vigour, indicating significant differences in salt tolerance amongst wheat varieties. WSVAS can quantify plant stress caused by salt stress and provides a powerful tool for salt-tolerant wheat breeding.
Collapse
Affiliation(s)
- Xiuqing Fu
- College of Engineering, Nanjing Agricultural University, Nanjing, China
- Key laboratory of Intelligence Agricultural Equipment of Jiangsu Province, Education Department of Jiangsu Province and is managed by the College of Engineering of Nanjing Agricultural University, Nanjing, China
| | - Bing Han
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Shouyang Liu
- Academy For Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jiayi Zhou
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Hongwen Zhang
- School of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Hongbiao Wang
- College of Mechanical and Electrical Engineering, Tarim University, Alar, China
| | - Hui Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Zhiqian Ouyang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Liu G, Mullan D, Zhang A, Liu H, Liu D, Yan G. Identification of KASP markers and putative genes for pre-harvest sprouting resistance in common wheat (Triticum aestivum L.). THE CROP JOURNAL 2022. [DOI: 10.1016/j.cj.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Deng S, Xiao Q, Xu C, Hong J, Deng Z, Jiang D, Luo S. Metabolome profiling of stratified seeds provides insight into the regulation of dormancy in Davidia involucrata. PLANT DIVERSITY 2022; 44:417-427. [PMID: 35967259 PMCID: PMC9363648 DOI: 10.1016/j.pld.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 05/31/2023]
Abstract
Dove tree (Davidia involucrata), a tertiary vestige species, is well-adapted to cool conditions. Dormancy in D. involucrata seed lasts for an extremely long period of time, typically between 3 and 4 years, and this characteristic makes the species an excellent model for studying the mechanisms of seed dormancy. The molecular mechanisms governing germination control in D. involucrata are still unknown. Seed stratification have been reported to enhance germination in recalcitrant seeds. We performed a widely targeted metabolome profiling to identify metabolites and associated pathways in D. involucrata seeds from six different moist sand stratification durations (0-30 months) using the ultra-high-performance liquid chromatography-Q Exactive Orbitrap-Mass spectrometry. There was an increasing germination rate with prolonged stratification durations (12-30 months). Furthermore, we detected 10,008 metabolites in the stratified seeds. We also detected 48 differentially accumulated metabolites (DAMs) between all stratification periods in the seeds, with 10 highly conserved metabolites. Most of the differentially accumulated metabolites between unstratified and stratified seeds were enriched in purine metabolism, pyrimidine metabolism, flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, and arginine biosynthesis pathways. Key phytohormones, abscisic acid, indole-3 acetic acid, and sinapic acid were differentially accumulated in the seeds and are predicted to regulate dormancy in D. involucrata. We have provided extensive metabolic information useful for future works on dove tree germination study.
Collapse
Affiliation(s)
- Shiming Deng
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, Hubei Province, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Xiao
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Cigui Xu
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Jian Hong
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Zhijun Deng
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Dan Jiang
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Shijia Luo
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, Hubei Province, China
| |
Collapse
|
6
|
The Effect of Bio-Synthesized Silver Nanoparticles on Germination, Early Seedling Development, and Metabolome of Wheat (Triticum aestivum L.). Molecules 2022; 27:molecules27072303. [PMID: 35408702 PMCID: PMC9000288 DOI: 10.3390/molecules27072303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Changes in the metabolome of germinating seeds and seedlings caused by metal nanoparticles are poorly understood. In the present study, the effects of bio-synthesized silver nanoparticles ((Bio)Ag NPs) on grains germination, early seedlings development, and metabolic profiles of roots, coleoptile, and endosperm of wheat were analyzed. Grains germinated well in (Bio)Ag NPs suspensions at the concentration in the range 10–40 mg/L. However, the growth of coleoptile was inhibited by 25%, regardless of (Bio)Ag NPs concentration tested, whereas the growth of roots gradually slowed down along with the increasing concentration of (Bio)Ag NPs. The deleterious effect of Ag NPs on roots was manifested by their shortening, thickening, browning of roots tips, epidermal cell death, progression from apical meristem up to root hairs zone, and the inhibition of root hair development. (Bio)Ag NPs stimulated ROS production in roots and affected the metabolic profiles of all tissues. Roots accumulated sucrose, maltose, 1-kestose, phosphoric acid, and some amino acids (i.e., proline, aspartate/asparagine, hydroxyproline, and branched-chain amino acids). In coleoptile and endosperm, contrary to roots, the concentration of most metabolites decreased. Moreover, coleoptile accumulated galactose. Changes in the concentration of polar metabolites in seedlings revealed the affection of primary metabolism, disturbances in the mobilization of storage materials, and a translocation of sugars and amino acids from the endosperm to growing seedlings.
Collapse
|
7
|
Song Y, Gao X, Wu Y. Key Metabolite Differences Between Korean Pine ( Pinus koraiensis) Seeds With Primary Physiological Dormancy and No-Dormancy. FRONTIERS IN PLANT SCIENCE 2021; 12:767108. [PMID: 34880891 PMCID: PMC8647843 DOI: 10.3389/fpls.2021.767108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Pinus Koraiensis seeds have physiological dormancy. Cold stratification releases seed dormancy. The changes in metabolite profiles of dormant seeds and cold stratified seeds during shorter incubation time in a favorable condition for seed germination have been studied. However, a more-long-term detection of the changes in metabolites in dormant seeds can identify the real metabolic pathways responsible for dormancy. Metabolite composition was investigated in embryo and megagametophyte of primary physiological dormant seeds (DS) of P. Koraiensis collected at 0, 1, 2, 4, and 6 weeks of incubation and of non-primary physiological dormant seeds (NDS) sampled at 0 and 1 week of incubation, seed coat rupture stage, and radicle protrusion stage. Embryos contained higher levels of most metabolites than megagametophyte. Strong accumulation of most metabolites in DS occurred at 1 and 4 weeks of incubation. A larger reduction in the relative levels of most phosphorylated sugars and amino acids in NDS was found between 1-week-incubation and seed coat rupture stage. The relative levels of metabolites involved in carbohydrate metabolism, especially the pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle, were higher in the embryos of 4-week-incubated DS, but the relative contents of intermediate metabolites of most amino acid metabolism were lower compared to 1-week-incubated NDS. We suggested that the disturbed carbohydrate metabolism and amino acid metabolism in the embryos of DS after 4 weeks of incubation maybe related to primary dormancy. Our study provides information for a better understanding of the mechanism of seed dormancy.
Collapse
Affiliation(s)
- Yuan Song
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
- Karst Environmental Geological Hazard Prevention Laboratory of Guizhou Minzu University, Guiyang, China
| | - Xiaoye Gao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| | - Yunjie Wu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
8
|
Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, Chaturvedi P, Jiang D, Weckwerth W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:669-687. [PMID: 34227164 PMCID: PMC9291999 DOI: 10.1111/tpj.15410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Arindam Ghatak
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | | | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationMurdoch UniversityMurdochWA6150Australia
| | - Palak Chaturvedi
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjing210095China
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| |
Collapse
|
9
|
Allotetraploidization in Brachypodium May Have Led to the Dominance of One Parent's Metabolome in Germinating Seeds. Cells 2021; 10:cells10040828. [PMID: 33917018 PMCID: PMC8067749 DOI: 10.3390/cells10040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/26/2022] Open
Abstract
Seed germination is a complex process during which a mature seed resumes metabolic activity to prepare for seedling growth. In this study, we performed a comparative metabolomic analysis of the embryo and endosperm using the community standard lines of three annual Brachypodium species, i.e., B. distachyon (Bd) and B. stacei (Bs) and their natural allotetraploid B. hybridum (BdBs) that has wider ecological range than the other two species. We explored how far the metabolomic impact of allotetraploidization would be observable as over-lapping changes at 4, 12, and 24 h after imbibition (HAI) with water when germination was initiated. Metabolic changes during germination were more prominent in Brachypodium embryos than in the endosperm. The embryo and endosperm metabolomes of Bs and BdBs were similar, and those of Bd were distinctive. The Bs and BdBs embryos showed increased levels of sugars and the tricarboxylic acid cycle compared to Bd, which could have been indicative of better nutrient mobilization from the endosperm. Bs and BdBs also showed higher oxalate levels that could aid nutrient transfer through altered cellular events. In Brachypodium endosperm, the thick cell wall, in addition to starch, has been suggested to be a source of nutrients to the embryo. Metabolites indicative of sugar metabolism in the endosperm of all three species were not prominent, suggesting that mobilization mostly occurred prior to 4 HAI. Hydroxycinnamic and monolignol changes in Bs and BdBs were consistent with cell wall remodeling that arose following the release of nutrients to the respective embryos. Amino acid changes in both the embryo and endosperm were broadly consistent across the species. Taking our data together, the formation of BdBs may have maintained much of the Bs metabolome in both the embryo and endosperm during the early stages of germination. In the embryo, this conserved Bs metabolome appeared to include an elevated sugar metabolism that played a vital role in germination. If these observations are confirmed in the future with more Brachypodium accessions, it would substantiate the dominance of the Bs metabolome in BdBs allotetraploidization and the use of metabolomics to suggest important adaptive changes.
Collapse
|
10
|
Song Y, Zhu J. The roles of metabolic pathways in maintaining primary dormancy of Pinus koraiensis seeds. BMC PLANT BIOLOGY 2019; 19:550. [PMID: 31829143 PMCID: PMC6907207 DOI: 10.1186/s12870-019-2167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/26/2019] [Indexed: 06/02/2023]
Abstract
BACKGROUND Korean pine seeds have primary dormancy following dispersal, leading to poor seed germination and seedling establishment. Metabolic homeostasis determines whether the seeds are dormant or non-dormant. However, the specific metabolic pathways that maintain the primary dormancy of pine seeds are poorly understood. RESULTS Metabolic analysis was employed on the embryos of PDRS (seeds released from primary dormancy) and PDS (primary dormant seeds) on days 0, 5 and 11 after incubation under a germination-inductive temperature. A larger metabolic switch occurred in PDRS embryos from days 0 to 11. The contents of ninety metabolites were significantly changed from days 0 to 5, 83% of which (including most sugars, organic acids and amino acids) increased, reflecting that biosynthetic metabolism processes are initiated. The contents of ninety-two metabolites showed distinct variations from days 5 to 11, 71% of which (including most organic acids and almost all amino acids) reduced substantially. Fructose 6-phosphate, inositol-3-phosphate, 3-phosphoglyceric and D-glucose-6-phosphate contents showed the most decrease with decreasing 409-, 75-, 58- and 41-fold, indicating that the glycolysis and tricarboxylic acid (TCA) cycle strongly slowed down. The contents of the most metabolites in PDS embryos also displayed a relatively larger alteration only from days 0 to 5. Although 64% of metabolites increased from days 0 to 5, their levels were still lower compared with PDRS embryos. Furthermore, most metabolites were not further accumulated from days 5 to 11. Unlike PDRS embryos, almost all amino acids in PDS embryos did not exhibit a substantial decrease from days 5 to 11. Also, there was not a major decrease in the levels of metabolites involved mainly in glycolysis and TCA cycle, while some intermediates even increased. CONCLUSIONS The attenuated biosynthetic metabolism processes, the lower utilization rate of amino acids and the higher operation rate of glycolysis and TCA in embryos maintain primary dormancy.
Collapse
Affiliation(s)
- Yuan Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaojun Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China.
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
11
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|
12
|
Pagano A, de Sousa Araújo S, Macovei A, Dondi D, Lazzaroni S, Balestrazzi A. Metabolic and gene expression hallmarks of seed germination uncovered by sodium butyrate in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:259-269. [PMID: 29756644 DOI: 10.1111/pce.13342] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 05/20/2023]
Abstract
Because high-quality seeds are essential for successful crop production in challenging environments, understanding the molecular bases of seed vigour will lead to advances in seed technology. Histone deacetylase inhibitors, promoting histone hyperacetylation, are used as tools to explore aspects still uncovered of the abiotic stress response in plants. The aim of this work was to investigate novel signatures of seed germination in Medicago truncatula, using the histone deacetylase inhibitor sodium butyrate (NaB) as stress agent. NaB-treated and untreated seeds collected at 2 and 8 hr of imbibition and at the radicle protrusion stage underwent molecular phenotyping and nontargeted metabolome profiling. Quantitative enrichment analysis revealed the influence of NaB on seed nucleotide, amino acid, lipid, and carbohydrate metabolism. Up-regulation of antioxidant and polyamine biosynthesis genes occurred in response to NaB. DNA damage evidenced in NaB-treated seeds correlated with up-regulation of base-excision repair genes. Changes in N1 -methyladenosine and N1 -methylguanine were associated with up-regulation of MtALKBH1 (alkylation repair homolog) gene. N2 ,N2 -dimethylguanosine and 5-methylcytidine, tRNA modifications involved in the post-transcriptional regulation of DNA damage response, were also accumulated in NaB-treated seeds at the radicle protrusion stage. The observed changes in seed metabolism can provide novel potential metabolic hallmarks of germination.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República, Estação Agronómica Nacional, Oeiras, 2780-157, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Simone Lazzaroni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| |
Collapse
|
13
|
Redox poise and metabolite changes in bread wheat seeds are advanced by priming with hot steam. Biochem J 2018; 475:3725-3743. [PMID: 30401685 DOI: 10.1042/bcj20180632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Fast and uniform germination is key to agricultural production and can be achieved by seed 'priming' techniques. Here, we characterised the responses of bread wheat (Triticum aestivum L.) seeds to a hot steam treatment ('BioFlash'), which accelerated water uptake, resulting in faster germination and seedling growth, typical traits of primed seed. Before the completion of germination, metabolite profiling of seeds revealed advanced accumulation of several amino acids (especially cysteine and serine), sugars (ribose, glucose), and organic acids (glycerate, succinate) in hot steam-treated seeds, whereas sugar alcohols (e.g. arabitol, mannitol) and trehalose decreased in all seeds. Tocochromanols (the 'vitamin E family') rose independently of the hot steam treatment. We further assessed shifts in the half-cell reduction potentials of low-molecular-weight (LMW) thiol-disulfide redox couples [i.e. glutathione disulfide (GSSG)/glutathione (GSH) and cystine/cysteine], alongside the activities of the reactive oxygen species (ROS)-processing enzyme superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Upon the first 4 h of imbibition, a rapid conversion of LMW disulfides to thiols occurred. Completion of germination was associated with a re-oxidation of the LMW thiol-disulfide cellular redox environment, before more reducing conditions were re-established during seedling growth, accompanied by an increase in all ROS-processing enzyme activities. Furthermore, changes in the thiol-disulfide cellular redox state were associated to specific stages of wheat seed germination. In conclusion, the priming effect of the hot steam treatment advanced the onset of seed metabolism, including redox shifts associated with germination and seedling growth.
Collapse
|
14
|
Xia Q, Saux M, Ponnaiah M, Gilard F, Perreau F, Huguet S, Balzergue S, Langlade N, Bailly C, Meimoun P, Corbineau F, El-Maarouf-Bouteau H. One Way to Achieve Germination: Common Molecular Mechanism Induced by Ethylene and After-Ripening in Sunflower Seeds. Int J Mol Sci 2018; 19:ijms19082464. [PMID: 30127315 PMCID: PMC6121958 DOI: 10.3390/ijms19082464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Dormancy is an adaptive trait that blocks seed germination until the environmental conditions become favorable for subsequent vegetative plant growth. Seed dormancy is defined as the inability to germinate in favorable conditions. Dormancy is alleviated during after-ripening, a dry storage period, during which dormant (D) seeds unable to germinate become non-dormant (ND), able to germinate in a wide range of environmental conditions. The treatment of dormant seeds with ethylene (D/ET) promotes seed germination, and abscisic acid (ABA) treatment reduces non-dormant (ND/ABA) seed germination in sunflowers (Helianthus annuus). Metabolomic and transcriptomic studies have been performed during imbibition to compare germinating seeds (ND and D/ET) and low-germinating seeds (D and ND/ABA). A PCA analysis of the metabolites content showed that imbibition did not trigger a significant change during the first hours (3 and 15 h). The metabolic changes associated with germination capacity occurred at 24 h and were related to hexoses, as their content was higher in ND and D/ET and was reduced by ABA treatment. At the transcriptional level, a large number of genes were altered oppositely in germinating, compared to the low-germinating seeds. The metabolomic and transcriptomic results were integrated in the interpretation of the processes involved in germination. Our results show that ethylene treatment triggers molecular changes comparable to that of after-ripening treatment, concerning sugar metabolism and ABA signaling inhibition.
Collapse
Affiliation(s)
- Qiong Xia
- Sorbonne Université, IBPS, CNRS, UMR 7622, 75005 Paris, France.
| | - Marine Saux
- Sorbonne Université, IBPS, CNRS, UMR 7622, 75005 Paris, France.
| | | | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Saclay Plant Sciences, Bâtiment 630, 91405 Orsay, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Stéphanie Huguet
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Saclay Plant Sciences, Bâtiment 630, 91405 Orsay, France.
- Unité de Recherche en Génomique Végétale (URGV), 91057 Evry CEDEX, France.
| | - Sandrine Balzergue
- Unité de Recherche en Génomique Végétale (URGV), 91057 Evry CEDEX, France.
- IRHS, équipe EPICENTER, 49071 Beaucouzé CEDEX, France.
| | - Nicolas Langlade
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France.
| | | | - Patrice Meimoun
- Sorbonne Université, IBPS, CNRS, UMR 7622, 75005 Paris, France.
| | | | | |
Collapse
|
15
|
Xia Q, Ponnaiah M, Cueff G, Rajjou L, Prodhomme D, Gibon Y, Bailly C, Corbineau F, Meimoun P, El-Maarouf-Bouteau H. Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:118-125. [PMID: 29606208 DOI: 10.1016/j.plantsci.2018.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
Temperature is an important environmental factor affecting seed dormancy and germination. The mechanism by which temperature induces germination in dormant seeds is however still unclear. Proteomic study has been performed in dormant sunflower seeds during imbibition at permissive and non-permissive temperatures for germination, 20 and 10 °C, respectively. Proteome analysis showed an increase of proteins belonging to metabolism and energy from the first hours of imbibition followed by a decrease of proteins involved in protein metabolism and seed storage in germinating compared to non-germinating seeds. Proteomic study was completed by polysome and proteasome activity assessment and enzymatic profiling on several altered proteins involved in metabolism and energy. Results showed that 20 °C treatment induced the activation of both protein synthesis and degradation processes, the latter being related to proteasome activity during the germination sensu stricto, and to other degradation processes such as proteases during the post-germination. Interestingly, enzymatic profiles showed that TCA cycle and glycolysis were more active in non-germinating seeds in the phase I of the germination sensu stricto. This result suggests the regulation of central metabolism activity in germinating seeds. The control of energy production during imbibition seems to be involved in molecular networks controlling seed dormancy and germination.
Collapse
Affiliation(s)
- Qiong Xia
- Sorbonne Université, UMR 7622, 75005 Paris, France; CNRS, UMR 7622, 75005 Paris, France
| | - Maharajah Ponnaiah
- Sorbonne Université, UMR 7622, 75005 Paris, France; CNRS, UMR 7622, 75005 Paris, France
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin (UMR1318 INRA - AgroParisTech), Institut National de la Recherche Agronomique, Saclay Plant Science, Versailles, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin (UMR1318 INRA - AgroParisTech), Institut National de la Recherche Agronomique, Saclay Plant Science, Versailles, France
| | - Duyen Prodhomme
- UMR1332 Biologie du Fruit et Pathologie, Université de Bordeaux, Institut National de la Recherche Agronomique, Villenave d'Ornon, France; Plateforme Métabolome, Centre Génomique Fonctionnelle Bordeaux, Villenave d'Ornon, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Université de Bordeaux, Institut National de la Recherche Agronomique, Villenave d'Ornon, France; Plateforme Métabolome, Centre Génomique Fonctionnelle Bordeaux, Villenave d'Ornon, France
| | - Christophe Bailly
- Sorbonne Université, UMR 7622, 75005 Paris, France; CNRS, UMR 7622, 75005 Paris, France
| | - Françoise Corbineau
- Sorbonne Université, UMR 7622, 75005 Paris, France; CNRS, UMR 7622, 75005 Paris, France
| | - Patrice Meimoun
- Sorbonne Université, UMR 7622, 75005 Paris, France; CNRS, UMR 7622, 75005 Paris, France
| | | |
Collapse
|