1
|
Lu Y, Zhang Z, Wang Y, Peng F, Yang Z, Li H. Uptake, tolerance, and detoxification mechanisms of antimonite and antimonate in Boehmeria nivea L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117504. [PMID: 36801690 DOI: 10.1016/j.jenvman.2023.117504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Boehmeria nivea L. (ramie) is a promising phytoremediation plant for antimony (Sb)-contaminated soils. However, the uptake, tolerance, and detoxification mechanisms of ramie to Sb, which are the basis for finding efficient phytoremediation strategies, remain unclear. In the present study, ramie was exposed to 0, 1, 10, 50, 100, and 200 mg/L of antimonite (Sb(III)) or antimonate (Sb(V)) for 14 days in hydroponic culture. The Sb concentration, speciation, subcellular distribution, and antioxidant and ionomic responses in ramie were investigated. The results illustrated that ramie was more effective in the uptake of Sb(III) than Sb(V). Most of the Sb accumulated in ramie roots, with the highest level reaching 7883.58 mg/kg. Sb(V) was the predominant species in leaves, with 80.77-96.38% and 100% in the Sb(III) and Sb(V) treatments, respectively. Immobilization of Sb on the cell wall and leaf cytosol was the primary mechanism of accumulation. Superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contributed significantly to root defense against Sb(III), while CAT and glutathione peroxidase (GPX) were the major antioxidants in leaves. CAT and POD played crucial roles in the defense against Sb(V). B, Ca, K, Mg, and Mn in Sb(V)-treated leaves and K and Cu in Sb(III)-treated leaves may be related to the biological processes of Sb toxicity mitigation. This study is the first to investigate the ionomic responses of plants toward Sb and could provide valuable information for the phytoremediation of Sb-polluted soils.
Collapse
Affiliation(s)
- Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
2
|
MacLean A, Legendre F, Appanna VD. The tricarboxylic acid (TCA) cycle: a malleable metabolic network to counter cellular stress. Crit Rev Biochem Mol Biol 2023; 58:81-97. [PMID: 37125817 DOI: 10.1080/10409238.2023.2201945] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.
Collapse
Affiliation(s)
- Alex MacLean
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Felix Legendre
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| | - Vasu D Appanna
- School of Natural Sciences, Laurentian University, Sudbury, Canada
| |
Collapse
|
3
|
Lin Q, Huai Z, Riaz L, Peng X, Wang S, Liu B, Yu F, Ma J. Aluminum phytotoxicity induced structural and ultrastructural changes in submerged plant Vallisneria natans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114484. [PMID: 36608570 DOI: 10.1016/j.ecoenv.2022.114484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Aluminum (Al) is a concentration-dependent toxic metal found in the crust of earth that has no recognized biological use. Nonetheless, the mechanism of Al toxicity to submerged plants remains obscure, especially from a cell/subcellular structure and functional group perspective. Therefore, multiple dosages of Al3+ (0, 0.3, 0.6, 1.2, and 1.5 mg/L) were applied hydroponically to the submerged plant Vallisneria natans in order to determine the accumulation potential of Al at the subcellular level and their ultrastructural toxicity. More severe structural and ultrastructural damage was determined when V. natans exposed to ≥ 0.6 mg/L Al3+. In 1.2 and 1.5 mg/L Al3+ treatment groups, the total chlorophyll content of leaves significantly reduced 3.342, 3.838 mg/g FW, some leaves even exhibited chlorosis and fragility. Under 0.3 mg/L Al3+ exposure, the middle-age and young leaves were potent phytoexcluders, whereas at 1.5 mg/L Al3+, a large amount of Al could be transferred from the roots to other parts, among which the aged leaves were the most receptive tissues (7.306 mg/g). Scanning/Transmission electron microscopy analysis displayed the Al-mediated disruption of vascular bundle structure in leaf cells, intercellular space and several vegetative tissues, and demonstrated that Al in vacuole and chloroplast subcellular segregation into electron dense deposition. Al and P accumulation in the roots, stolons and leaves varied significantly among treatments and different tissues (P < 0.05). Fourier transform infrared spectroscopy of plant biomass also indicated possible metabolites (amine, unsaturated hydrocarbon, etc.) of V. natans that may bind Al3+. Conclusively, results revealed that Al3+ disrupts the cellular structure of leaves and roots or binds to functional groups of biological tissues, thereby affecting plant nutrient uptake and photosynthesis. Findings might have scientific and practical significance for the restoration of submerged vegetation in Al-contaminated lakes.
Collapse
Affiliation(s)
- Qingwei Lin
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China
| | - Zhiwen Huai
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750 Punjab, Pakistan
| | - Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shishi Wang
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Yu
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China.
| | - Jianmin Ma
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China.
| |
Collapse
|
4
|
de Sousa A, AbdElgawad H, Fidalgo F, Teixeira J, Matos M, Tamagnini P, Fernandes R, Figueiredo F, Azenha M, Teles LO, Korany SM, Alsherif EA, Selim S, Beemster GTS, Asard H. Subcellular compartmentalization of aluminum reduced its hazardous impact on rye photosynthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120313. [PMID: 36228849 DOI: 10.1016/j.envpol.2022.120313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Aluminum (Al) toxicity limits crops growth and production in acidic soils. Compared to roots, less is known about the toxic effects of Al in leaves. Al subcellular compartmentalization is also largely unknown. Using rye (Secale cereale L.) Beira (more tolerant) and RioDeva (more sensitive to Al) genotypes, we evaluated the patterns of Al accumulation in leaf cell organelles and the photosynthetic and metabolic changes to cope with Al toxicity. The tolerant genotype accumulated less Al in all organelles, except the vacuoles. This suggests that Al compartmentalization plays a role in Al tolerance of Beira genotype. PSII efficiency, stomatal conductance, pigment biosynthesis, and photosynthesis metabolism were less affected in the tolerant genotype. In the Calvin cycle, carboxylation was compromised by Al exposure in the tolerant genotype. Other Calvin cycle-related enzymes, phoshoglycerate kinase (PGK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), triose-phosphate isomerase (TPI), and fructose 1,6-bisphosphatase (FBPase) activities decreased in the sensitive line after 48 h of Al exposure. Consequentially, carbohydrate and organic acid metabolism were affected in a genotype-specific manner, where sugar levels increased only in the tolerant genotype. In conclusion, Al transport to the leaf and compartmentalization in the vacuoles tolerant genotype's leaf cells provide complementary mechanisms of Al tolerance, protecting the photosynthetic apparatus and thereby sustaining growth.
Collapse
Affiliation(s)
- Alexandra de Sousa
- Plant Stress Lab - GreenUPorto Sustainable Agrifood Production Research Center, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020, Antwerp, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Fernanda Fidalgo
- Plant Stress Lab - GreenUPorto Sustainable Agrifood Production Research Center, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Jorge Teixeira
- Plant Stress Lab - GreenUPorto Sustainable Agrifood Production Research Center, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI), Department of Genetics and Biotechnology, UTAD- University of Trás-os-Montes e Alto-Douro, Quinta dos Prados, 5000-801, Vila Real, Portugal
| | - Paula Tamagnini
- HEMS-Histology and Electron Microscopy Service, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy Service, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Figueiredo
- HEMS-Histology and Electron Microscopy Service, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Manuel Azenha
- IQ-UP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Luís Oliva Teles
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas n° 289, Porto, 4050-123, Portugal
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Emad A Alsherif
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt; Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72341, Saudi Arabia
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020, Antwerp, Belgium
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020, Antwerp, Belgium
| |
Collapse
|
5
|
Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, Pereira JF. Aluminum Toxicity in Plants: Present and Future. JOURNAL OF PLANT GROWTH REGULATION 2022. [DOI: 10.1007/s00344-022-10866-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/26/2022] [Indexed: 06/23/2023]
|
6
|
Abbasi S, Lamb DT, Choppala G, Burton ED, Megharaj M. Antimony speciation, phytochelatin stimulation and toxicity in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119305. [PMID: 35430314 DOI: 10.1016/j.envpol.2022.119305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) is a toxic metalloid that has been listed as a priority pollutant. The environmental impacts of Sb have recently attracted attention, but its phytotoxicity and biological transformation remain poorly understood. In this study, Sb speciation and transformation in plant roots was quantified by Sb K-edge X-ray absorption spectroscopy. In addition, the phytotoxicity of antimonate (SbV) on six plant species was assessed by measuring plant photosynthesis, growth, and phytochelatin production induced by SbV. Linear combination fitting of the Sb K-edge X-ray absorption near-edge structure (XANES) spectra indicated reduction of SbV was limited to ∼5-33% of Sb. The data confirmed that Sb-polygalacturonic acid was the predominant chemical form in all plant species (up to 95%), indicating Sb was primarily bound to the cell walls of plant roots. Shell fitting of Sb K-edge X-ray absorption fine-structure (EXAFS) spectra confirmed Sb-O and Sb-C were the dominant scattering paths. The fitting indicated that SbV was bound to hydroxyl functional groups of cell walls, via development of a local coordination environment analogous to Sb-polygalacturonic acid. This is the first study to demonstrate the key role of plant cell walls in Sb metabolism.
Collapse
Affiliation(s)
- Sepide Abbasi
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales, Australia; Environmental Resources Management (ERM), Sydney, Australia
| | - Dane T Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales, Australia
| | - Edward D Burton
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
7
|
Nagayama T, Tatsumi A, Nakamura A, Yamaji N, Satoh S, Furukawa J, Iwai H. Effects of polygalacturonase overexpression on pectin distribution in the elongation zones of roots under aluminium stress. AOB PLANTS 2022; 14:plac003. [PMID: 35356145 PMCID: PMC8963292 DOI: 10.1093/aobpla/plac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/22/2022] [Indexed: 05/04/2023]
Abstract
The roots of many plant species contain large amounts of pectin and it contributes to the formation of the rhizosphere. In the present study, the relationship between the root-tip pectin content and aluminium (Al) tolerance in wild-type (WT) and demethylesterified pectin degradation enzyme gene overexpressor (OsPG2-FOX) rice lines was compared. OsPG2-FOX rice showed reduced pectin content in roots, even under control conditions; Al treatment reduced root elongation and the pectin content in the root elongation zone. Wild-type rice showed more pectin accumulation in the root elongation zone after Al treatment. Relative to WT rice, OsPG2-FOX rice showed more Al accumulation in the root elongation zone. These results indicate that the amount of pectin influences Al tolerance and that the distribution of pectin in the root elongation zone inhibits Al accumulation in rice roots. Pectin accumulation in cell walls in the root elongation zone may play a role in protecting rice plants from the Al-induced inhibition of root elongation by regulating pectin distribution.
Collapse
Affiliation(s)
- Teruki Nagayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Akane Tatsumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoki Yamaji
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki 710-0046, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding authors’ e-mail addresses: iwai.hiroaki.gb.@u.tsukuba.ac.jp;
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding authors’ e-mail addresses: iwai.hiroaki.gb.@u.tsukuba.ac.jp;
| |
Collapse
|
8
|
Zhang H, Li XY, Lin ML, Hu PP, Lai NW, Huang ZR, Chen LS. The aluminum distribution and translocation in two citrus species differing in aluminum tolerance. BMC PLANT BIOLOGY 2022; 22:93. [PMID: 35232395 PMCID: PMC8889769 DOI: 10.1186/s12870-022-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/15/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Many citrus orchards of south China suffer from soil acidification, which induces aluminum (Al) toxicity. The Al-immobilization in vivo is crucial for Al detoxification. However, the distribution and translocation of excess Al in citrus species are not well understood. RESULTS The seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] and 'Shatianyou' [Citrus grandis (L.) Osbeck], that differ in Al tolerance, were hydroponically treated with a nutrient solution (Control) or supplemented by 1.0 mM Al3+ (Al toxicity) for 21 days after three months of pre-culture. The Al distribution at the tissue level of citrus species followed the order: lateral roots > primary roots > leaves > stems. The concentration of Al extracted from the cell wall (CW) of lateral roots was found to be about 8 to 10 times higher than in the lateral roots under Al toxicity, suggesting that the CW was the primary Al-binding site at the subcellular level. Furthermore, the Al distribution in CW components of the lateral roots showed that pectin had the highest affinity for binding Al. The relative expression level of genes directly relevant to Al transport indicated a dominant role of Cs6g03670.1 and Cg1g021320.1 in the Al distribution of two citrus species. Compared to C. grandis, C. sinensis had a significantly higher Al concentration on the CW of lateral roots, whereas remarkably lower Al levels in the leaves and stems. Furthermore, Al translocation revealed by the absorption kinetics of the CW demonstrated that C. sinensis had a higher Al retention and stronger Al affinity on the root CW than C. grandis. According to the FTIR (Fourier transform infrared spectroscopy) analysis, the Al distribution and translocation might be affected by a modification in the structure and components of the citrus lateral root CW. CONCLUSIONS A higher Al-retention, mainly attributable to pectin of the root CW, and a lower Al translocation efficiency from roots to shoots contributed to a higher Al tolerance of C. sinensis than C. grandis. The aluminum distribution and translocation of two citrus species differing in aluminum tolerance were associated with the transcriptional regulation of genes related to Al transport and the structural modification of root CW.
Collapse
Affiliation(s)
- Han Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
- College of Forestry, Guangxi University, 530004 Nanning, China
| | - Xin-yu Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Mei-lan Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ping-ping Hu
- College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ning-wei Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zeng-rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Li-song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
9
|
Li Y, Ye H, Song L, Vuong TD, Song Q, Zhao L, Shannon JG, Li Y, Nguyen HT. Identification and characterization of novel QTL conferring internal detoxification of aluminium in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4993-5009. [PMID: 33893801 DOI: 10.1093/jxb/erab168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aluminium (Al) toxicity inhibits soybean root growth, leading to insufficient water and nutrient uptake. Two soybean lines ('Magellan' and PI 567731) were identified differing in Al tolerance, as determined by primary root length ratio, total root length ratio, and root tip number ratio under Al stress. Serious root necrosis was observed in PI 567731, but not in Magellan under Al stress. An F8 recombinant inbred line population derived from a cross between Magellan and PI 567731 was used to map the quantitative trait loci (QTL) for Al tolerance. Three QTL on chromosomes 3, 13, and 20, with tolerant alleles from Magellan, were identified. qAl_Gm13 and qAl_Gm20 explained large phenotypic variations (13-27%) and helped maintain root elongation and initiation under Al stress. In addition, qAl_Gm13 and qAl_Gm20 were confirmed in near-isogenic backgrounds and were identified to epistatically regulate Al tolerance via internal detoxification instead of Al3+ exclusion. Phylogenetic and pedigree analysis identified the tolerant alleles of both loci derived from the US ancestral line, A.K.[FC30761], originally from China. Our results provide novel genetic resources for breeding Al-tolerant soybean and suggest that internal detoxification contributes to soybean tolerance to excessive soil Al.
Collapse
Affiliation(s)
- Yang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| | - Heng Ye
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| | - Li Song
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Tri D Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Lijuan Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri-Fisher Delta Research Center, Portageville, MO, USA
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Gomez-Zepeda D, Frausto M, Nájera-González HR, Herrera-Estrella L, Ordaz-Ortiz JJ. Mass spectrometry-based quantification and spatial localization of small organic acid exudates in plant roots under phosphorus deficiency and aluminum toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1791-1806. [PMID: 33797826 DOI: 10.1111/tpj.15261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Low-molecular-weight organic acid (OA) extrusion by plant roots is critical for plant nutrition, tolerance to cations toxicity, and plant-microbe interactions. Therefore, methodologies for the rapid and precise quantification of OAs are necessary to be incorporated in the analysis of roots and their exudates. The spatial location of root exudates is also important to understand the molecular mechanisms directing OA production and release into the rhizosphere. Here, we report the development of two complementary methodologies for OA determination, which were employed to evaluate the effect of inorganic ortho-phosphate (Pi) deficiency and aluminum toxicity on OA excretion by Arabidopsis roots. OA exudation by roots is considered a core response to different types of abiotic stress and for the interaction of roots with soil microbes, and for decades has been a target trait to produce plant varieties with increased capacities of Pi uptake and Al tolerance. Using targeted ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-HRMS/MS), we achieved the quantification of six OAs in root exudates at sub-micromolar detection limits with an analysis time of less than 5 min per sample. We also employed targeted (MS/MS) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to detect the spatial location of citric and malic acid with high specificity in roots and exudates. Using these methods, we studied OA exudation in response to Al toxicity and Pi deficiency in Arabidopsis seedlings overexpressing genes involved in OA excretion. Finally, we show the transferability of the MALDI-MSI method by analyzing OA excretion in Marchantia polymorpha gemmalings subjected to Pi deficiency.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
| | - Moises Frausto
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Héctor-Rogelio Nájera-González
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - José-Juan Ordaz-Ortiz
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, 36824, Mexico
| |
Collapse
|
11
|
Li W, Finnegan PM, Dai Q, Guo D, Yang M. Metabolic acclimation supports higher aluminium-induced secretion of citrate and malate in an aluminium-tolerant hybrid clone of Eucalyptus. BMC PLANT BIOLOGY 2021; 21:14. [PMID: 33407145 PMCID: PMC7789223 DOI: 10.1186/s12870-020-02788-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/08/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Eucalyptus is the main plantation wood species, mostly grown in aluminized acid soils. To understand the response of Eucalyptus clones to aluminum (Al) toxicity, the Al-tolerant Eucalyptus grandis × E. urophylla clone GL-9 (designated "G9") and the Al-sensitive E. urophylla clone GL-4 (designated "W4") were employed to investigate the production and secretion of citrate and malate by roots. RESULTS Eucalyptus seedlings in hydroponics were exposed to the presence or absence of 4.4 mM Al at pH 4.0 for 24 h. The protein synthesis inhibitor cycloheximide (CHM) and anion channel blocker phenylglyoxal (PG) were applied to explore possible pathways involved in organic acid secretion. The secretion of malate and citrate was earlier and greater in G9 than in W4, corresponding to less Al accumulation in G9. The concentration of Al in G9 roots peaked after 1 h and decreased afterwards, corresponding with a rapid induction of malate secretion. A time-lag of about 6 h in citrate efflux in G9 was followed by robust secretion to support continuous Al-detoxification. Malate secretion alone may alleviate Al toxicity because the peaks of Al accumulation and malate secretion were simultaneous in W4, which did not secrete appreciable citrate. Enhanced activities of citrate synthase (CS) and phosphoenolpyruvate carboxylase (PEPC), and reduced activities of isocitrate dehydrogenase (IDH), aconitase (ACO) and malic enzyme (ME) were closely associated with the greater secretion of citrate in G9. PG effectively inhibited citrate and malate secretion in both Eucalyptus clones. CHM also inhibited malate and citrate secretion in G9, and citrate secretion in W4, but notably did not affect malate secretion in W4. CONCLUSIONS G9 immediately secrete malate from roots, which had an initial effect on Al-detoxification, followed by time-delayed citrate secretion. Pre-existing anion channel protein first contributed to malate secretion, while synthesis of carrier protein appeared to be needed for citrate excretion. The changes of organic acid concentrations in response to Al can be achieved by enhanced CS and PEPC activities, but was supported by changes in the activities of other enzymes involved in organic acid metabolism. The above information may help to further explore genes related to Al-tolerance in Eucalyptus.
Collapse
Affiliation(s)
- Wannian Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 100 East University Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Patrick M. Finnegan
- School of Biological Sciences, University of Western Australia, Perth, 6009 Australia
| | - Qin Dai
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 100 East University Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Dongqiang Guo
- Guangxi Forestry Rearch Institute, Nanning, 530002 Guangxi People’s Republic of China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 100 East University Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
12
|
Zhang X, Li L, Yang C, Cheng Y, Han Z, Cai Z, Nian H, Ma Q. GsMAS1 Encoding a MADS-box Transcription Factor Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2004. [PMID: 32183485 PMCID: PMC7139582 DOI: 10.3390/ijms21062004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 01/29/2023] Open
Abstract
The MADS-box transcription factors (TFs) are essential in regulating plant growth and development, and conferring abiotic and metal stress resistance. This study aims to investigate GsMAS1 function in conferring tolerance to aluminum stress in Arabidopsis. The GsMAS1 from the wild soybean BW69 line encodes a MADS-box transcription factor in Glycine soja by bioinformatics analysis. The putative GsMAS1 protein was localized in the nucleus. The GsMAS1 gene was rich in soybean roots presenting a constitutive expression pattern and induced by aluminum stress with a concentration-time specific pattern. The analysis of phenotypic observation demonstrated that overexpression of GsMAS1 enhanced the tolerance of Arabidopsis plants to aluminum (Al) stress with larger values of relative root length and higher proline accumulation compared to those of wild type at the AlCl3 treatments. The genes and/or pathways regulated by GsMAS1 were further investigated under Al stress by qRT-PCR. The results indicated that six genes resistant to Al stress were upregulated, whereas AtALMT1 and STOP2 were significantly activated by Al stress and GsMAS1 overexpression. After treatment of 50 μM AlCl3, the RNA abundance of AtALMT1 and STOP2 went up to 17-fold and 37-fold than those in wild type, respectively. Whereas the RNA transcripts of AtALMT1 and STOP2 were much higher than those in wild type with over 82% and 67% of relative expression in GsMAS1 transgenic plants, respectively. In short, the results suggest that GsMAS1 may increase resistance to Al toxicity through certain pathways related to Al stress in Arabidopsis.
Collapse
Affiliation(s)
- Xiao Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Han
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Li Z, Wang P, Menzies NW, McKenna BA, Karunakaran C, Dynes JJ, Arthur Z, Liu N, Zuin L, Wang D, Kopittke PM. Examining a synchrotron-based approach for in situ analyses of Al speciation in plant roots. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:100-109. [PMID: 31868742 DOI: 10.1107/s1600577519014395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Aluminium (Al) K- and L-edge X-ray absorption near-edge structure (XANES) has been used to examine Al speciation in minerals but it remains unclear whether it is suitable for in situ analyses of Al speciation within plants. The XANES analyses for nine standard compounds and root tissues from soybean (Glycine max), buckwheat (Fagopyrum tataricum), and Arabidopsis (Arabidopsis thaliana) were conducted in situ. It was found that K-edge XANES is suitable for differentiating between tetrahedral coordination (peak of 1566 eV) and octahedral coordination (peak of 1568 to 1571 eV) Al, but not suitable for separating Al binding to some of the common physiologically relevant compounds in plant tissues. The Al L-edge XANES, which is more sensitive to changes in the chemical environment, was then examined. However, the poorer detection limit for analyses prevented differentiation of the Al forms in the plant tissues because of their comparatively low Al concentration. Where forms of Al differ markedly, K-edge analyses are likely to be of value for the examination of Al speciation in plant tissues. However, the apparent inability of Al K-edge XANES to differentiate between some of the physiologically relevant forms of Al may potentially limit its application within plant tissues, as does the poorer sensitivity at the L-edge.
Collapse
Affiliation(s)
- Zhigen Li
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Brigid A McKenna
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chithra Karunakaran
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - James J Dynes
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Zachary Arthur
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Na Liu
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Lucia Zuin
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Dongniu Wang
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
14
|
Krzesłowska M, Timmers ACJ, Mleczek M, Niedzielski P, Rabęda I, Woźny A, Goliński P. Alterations of root architecture and cell wall modifications in Tilia cordata Miller (Linden) growing on mining sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:247-259. [PMID: 30798026 DOI: 10.1016/j.envpol.2019.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Trees are considered good candidates for phytoremediation of soils contaminated with trace elements (TE), e.g. mine tailings. Using two year-old Tilia cordata plants, we demonstrated the nature and the scale of root architecture, especially root apices, as an indicator of mining sludge toxicity and plant capability to cope with these stress conditions. The novelty of our research is the analysis of the root response to substrate with extremely high concentrations of numerous toxic TE, and the 3D illustration of the disorders in root apex architecture using a clarity technique for confocal microscopy. The analysis demonstrates (1) a marked reduction in the size of the root apex zones (2) the occurrence of vascular tissues abnormally close to the root apex (3) collapse of the internal tissues in many root apices. Simultaneously, at the cellular level we observed some signs of a defensive response - such as a common increase of cell wall (CW) thickness and the formation of local CW thickenings - that enlarge the CW capacity for TE sequestration. However, we also detected harmful effects. Among others, a massive deposition of TE in the middle lamella which caused major damage - probably one of the reasons why the inner tissues of the root apex often collapsed - and the formation of incomplete CWs resulting in the occurrence of extremely large cells. Moreover, many cells of the root apex exhibited degenerated protoplasts. All these alterations indicate the harsh conditions for lime growth and survival and simultaneously, the manifestation of a defensive response. The obtained results allowed us to conclude that analysis of the nature and scale of structural alterations in roots can be useful indicators of plant ability to cope with stress conditions, e.g. in prospect of using the examined plants for reclamation of soils contaminated with TE.
Collapse
Affiliation(s)
- Magdalena Krzesłowska
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Antonius C J Timmers
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mirosław Mleczek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Przemysław Niedzielski
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| | - Irena Rabęda
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Adam Woźny
- Laboratory of General Botany, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Piotr Goliński
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|
15
|
Nagayama T, Nakamura A, Yamaji N, Satoh S, Furukawa J, Iwai H. Changes in the Distribution of Pectin in Root Border Cells Under Aluminum Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1216. [PMID: 31632431 PMCID: PMC6783878 DOI: 10.3389/fpls.2019.01216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/04/2019] [Indexed: 05/16/2023]
Abstract
Root border cells (RBCs) surround the root apices in most plant species and are involved in the production of root exudates. We tested the relationship between pectin content in root tips and aluminum (Al) tolerance by comparing these parameters in wild-type (WT) and sensitive-to-Al-rhizotoxicity (star1) mutant rice plants. Staining for demethylesterified pectin decreased after Al treatment in the WT. A high level of pectin was observed in RBCs of the root tips. The level of total pectin was increased by about 50% compared with the control. In the Al-sensitive star1 mutant, Al treatment decreased root elongation and pectin content, especially in RBCs. In addition, almost no Al accumulation was observed in the control, whereas more Al was accumulated in the RBCs of STAR1 roots. These results show that the amount of pectin influences Al tolerance; that Al accumulation in rice roots is reduced by the distribution of pectin in root-tip RBCs; and that these reactions occur in the field around the RBCs, including the surrounding mucilage. Al accumulation in rice roots is reduced by the distribution of pectin in root tips, and pectin in the root cell walls contributes to the acquisition of Al tolerance in rice by regulating its distribution. The release of Al-binding mucilage by RBCs could play a role in protecting root tips from Al-induced cellular damage.
Collapse
Affiliation(s)
- Teruki Nagayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Naoki Yamaji
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Jun Furukawa, ; Hiroaki Iwai, iwai.hiroaki.gb.@u.tsukuba.ac.jp
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Jun Furukawa, ; Hiroaki Iwai, iwai.hiroaki.gb.@u.tsukuba.ac.jp
| |
Collapse
|
16
|
Reis ARD, Lisboa LAM, Reis HPG, Barcelos JPDQ, Santos EF, Santini JMK, Venâncio Meyer-Sand BR, Putti FF, Galindo FS, Kaneko FH, Barbosa JZ, Paixão AP, Junior EF, de Figueiredo PAM, Lavres J. Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:377-390. [PMID: 30059870 DOI: 10.1016/j.plaphy.2018.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 05/20/2023]
Abstract
Aluminium (Al) is a toxic element for plants living in soils with acidic pH values, and it causes reductions in the roots and shoots development. High Al concentrations can cause physiological and structural changes, leading to symptoms of toxicity in plant tissue. The aim of this study was to describe the Al toxicity in soybean plants through physiological, nutritional, and ultrastructure analyses. Plants were grown in nutrient solution containing increasing Al concentrations (0; 0.05; 0.1; 1.0, 2.0 and 4.0 mmol L-1). The Al toxicity in the soybean plants was characterized by nutritional, anatomical, physiological, and biochemical analyses. The carbon dioxide assimilation rates and stomatal conductance were not affected by the Al. However, the capacity for internal carbon use decreased, and the transpiration rate increased, resulting in increased root biomass at the lowest Al concentration in the nutrient solution. The soybean plants exposed to the highest Al concentration exhibited lower root and shoot biomass. The nitrate reductase and urease activities decreased with the increasing Al concentration, indicating that nitrogen metabolism was halted. The superoxide dismutase and peroxidase activities increased with the increasing Al availability in the nutrient solution, and they were higher in the roots, showing their role in Al detoxification. Despite presenting external lesions characterized by a damaged root cap, the root xylem and phloem diameters were not affected by the Al. However, the leaf xylem diameter showed ultrastructural alterations under higher Al concentrations in nutrient solution. These results have contributed to our understanding of several physiological, biochemical and histological mechanisms of Al toxicity in soybean plants.
Collapse
Affiliation(s)
- André Rodrigues Dos Reis
- São Paulo State University (UNESP), Postal Code 17602-496, Tupã, SP, Brazil; São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil.
| | | | | | | | | | | | | | | | | | - Flavio Hiroshi Kaneko
- Federal University of Triângulo Mineiro (UFTM), Postal Code 38280-000, Iturama, MG, Brazil
| | | | - Amanda Pereira Paixão
- São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | - Enes Furlani Junior
- São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | | | - José Lavres
- University of São Paulo (USP), Postal Code 13416-000, Piracicaba, SP, Brazil
| |
Collapse
|
17
|
Association of Proteomics Changes with Al-Sensitive Root Zones in Switchgrass. Proteomes 2018; 6:proteomes6020015. [PMID: 29565292 PMCID: PMC6027131 DOI: 10.3390/proteomes6020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 μM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cm long root tips were harvested and divided into two segments, each of 1-cm in length, for protein extraction. Al-induced changes in proteomes were identified using tandem mass tags mass spectrometry (TMT-MS)-based quantitative proteomics analysis. A total of 216 proteins (approximately 3.6% of total proteins) showed significant differences between non-Al treated control and treated groups with significant fold change (twice the standard deviation; FDR adjusted p-value < 0.05). The apical root tip tissues expressed more dramatic proteome changes (164 significantly changed proteins; 3.9% of total proteins quantified) compared to the elongation/maturation zones (52 significantly changed proteins, 1.1% of total proteins quantified). Significantly changed proteins from the apical 1-cm root apex tissues were clustered into 25 biological pathways; proteins involved in the cell cycle (rotamase FKBP 1 isoforms, and CDC48 protein) were all at a reduced abundance level compared to the non-treated control group. In the root elongation/maturation zone tissues, the identified proteins were placed into 18 pathways, among which proteins involved in secondary metabolism (lignin biosynthesis) were identified. Several STRING protein interaction networks were developed for these Al-induced significantly changed proteins. This study has identified a large number of Al-responsive proteins, including transcription factors, which will be used for exploring new Al tolerance genes and mechanisms. Data are available via ProteomeXchange with identifiers PXD008882 and PXD009125.
Collapse
|