1
|
Tansley C, Houghton J, Rose AME, Witek B, Payet RD, Wu T, Miller JB. CIPK-B is essential for salt stress signalling in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 237:2210-2223. [PMID: 36660914 PMCID: PMC10953335 DOI: 10.1111/nph.18633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Calcium signalling is central to many plant processes, with families of calcium decoder proteins having expanded across the green lineage and redundancy existing between decoders. The liverwort Marchantia polymorpha has fast become a new model plant, but the calcium decoders that exist in this species remain unclear. We performed phylogenetic analyses to identify the calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) network of M. polymorpha. We analysed CBL-CIPK expression during salt stress, and determined protein-protein interactions using yeast two-hybrid and bimolecular fluorescence complementation. We also created genetic knockouts using CRISPR/Cas9. We confirm that M. polymorpha has two CIPKs and three CBLs. Both CIPKs and one CBL show pronounced salt-responsive transcriptional changes. All M. polymorpha CBL-CIPKs interact with each other in planta. Knocking out CIPK-B causes increased sensitivity to salt, suggesting that this CIPK is involved in salt signalling. We have identified CBL-CIPKs that form part of a salt tolerance pathway in M. polymorpha. Phylogeny and interaction studies imply that these CBL-CIPKs form an evolutionarily conserved salt overly sensitive pathway. Hence, salt responses may be some of the early functions of CBL-CIPK networks and increased abiotic stress tolerance required for land plant emergence.
Collapse
Affiliation(s)
- Connor Tansley
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - James Houghton
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Althea M. E. Rose
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Bartosz Witek
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Rocky D. Payet
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Taoyang Wu
- School of Computing SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - J. Benjamin Miller
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
2
|
Allan C, Tayagui A, Hornung R, Nock V, Meisrimler CN. A dual-flow RootChip enables quantification of bi-directional calcium signaling in primary roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1040117. [PMID: 36704158 PMCID: PMC9871814 DOI: 10.3389/fpls.2022.1040117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
One sentence summary: Bi-directional-dual-flow-RootChip to track calcium signatures in Arabidopsis primary roots responding to osmotic stress. Plant growth and survival is fundamentally linked with the ability to detect and respond to abiotic and biotic factors. Cytosolic free calcium (Ca2+) is a key messenger in signal transduction pathways associated with a variety of stresses, including mechanical, osmotic stress and the plants' innate immune system. These stresses trigger an increase in cytosolic Ca2+ and thus initiate a signal transduction cascade, contributing to plant stress adaptation. Here we combine fluorescent G-CaMP3 Arabidopsis thaliana sensor lines to visualise Ca2+ signals in the primary root of 9-day old plants with an optimised dual-flow RootChip (dfRC). The enhanced polydimethylsiloxane (PDMS) bi-directional-dual-flow-RootChip (bi-dfRC) reported here adds two adjacent inlet channels at the base of the observation chamber, allowing independent or asymmetric chemical stimulation at either the root differentiation zone or tip. Observations confirm distinct early spatio-temporal patterns of salinity (sodium chloride, NaCl) and drought (polyethylene glycol, PEG)-induced Ca2+ signals throughout different cell types dependent on the first contact site. Furthermore, we show that the primary signal always dissociates away from initially stimulated cells. The observed early signaling events induced by NaCl and PEG are surprisingly complex and differ from long-term changes in cytosolic Ca2+ reported in roots. Bi-dfRC microfluidic devices will provide a novel approach to challenge plant roots with different conditions simultaneously, while observing bi-directionality of signals. Future applications include combining the bi-dfRC with H2O2 and redox sensor lines to test root systemic signaling responses to biotic and abiotic factors.
Collapse
Affiliation(s)
- Claudia Allan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ayelen Tayagui
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | | | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | | |
Collapse
|
3
|
Mashabela MD, Masamba P, Kappo AP. Applications of Metabolomics for the Elucidation of Abiotic Stress Tolerance in Plants: A Special Focus on Osmotic Stress and Heavy Metal Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:269. [PMID: 36678982 PMCID: PMC9860948 DOI: 10.3390/plants12020269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Plants undergo metabolic perturbations under various abiotic stress conditions; due to their sessile nature, the metabolic network of plants requires continuous reconfigurations in response to environmental stimuli to maintain homeostasis and combat stress. The comprehensive analysis of these metabolic features will thus give an overview of plant metabolic responses and strategies applied to mitigate the deleterious effects of stress conditions at a biochemical level. In recent years, the adoption of metabolomics studies has gained significant attention due to the growing technological advances in analytical biochemistry (plant metabolomics). The complexity of the plant biochemical landscape requires sophisticated, advanced analytical methods. As such, technological advancements in the field of metabolomics have been realized, aided much by the development and refinement of separatory techniques, including liquid and gas chromatography (LC and GC), often hyphenated to state-of-the-art detection instruments such as mass spectrometry (MS) or nuclear resonance magnetic (NMR) spectroscopy. Significant advances and developments in these techniques are briefly highlighted in this review. The enormous progress made thus far also comes with the dawn of the Internet of Things (IoT) and technology housed in machine learning (ML)-based computational tools for data acquisition, mining, and analysis in the 4IR era allowing for broader metabolic coverage and biological interpretation of the cellular status of plants under varying environmental conditions. Thus, scientists can paint a holistic and comprehensive roadmap and predictive models for metabolite-guided crop improvement. The current review outlines the application of metabolomics and related technological advances in elucidating plant responses to abiotic stress, mainly focusing on heavy metal toxicity and subsequent osmotic stress tolerance.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
Jiang Y, Ding P. Calcium signaling in plant immunity: a spatiotemporally controlled symphony. TRENDS IN PLANT SCIENCE 2023; 28:74-89. [PMID: 36504136 DOI: 10.1016/j.tplants.2022.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Calcium ions (Ca2+) are prominent intracellular messengers in all eukaryotic cells. Recent studies have emphasized the crucial roles of Ca2+ in plant immunity. Here, we review the latest progress on the spatiotemporal control of Ca2+ function in plant immunity. We discuss discoveries of how Ca2+ influx is triggered upon the activation of immune receptors, how Ca2+-permeable channels are activated, how Ca2+ signals are decoded inside plant cells, and how these signals are switched off. Despite recent advances, many open questions remain and we highlight the existing toolkit and the new technologies to address the outstanding questions of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
5
|
Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses. STRESS BIOLOGY 2022; 2:36. [PMID: 37676549 PMCID: PMC10442022 DOI: 10.1007/s44154-022-00054-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 09/08/2023]
Abstract
Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Xuelian Li
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | | | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| |
Collapse
|
6
|
Kleist TJ, Wudick MM. Shaping up: Recent advances in the study of plant calcium channels. Curr Opin Cell Biol 2022; 76:102080. [DOI: 10.1016/j.ceb.2022.102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022]
|
7
|
Biel A, Moser M, Groves NR, Meier I. Distinct Roles for KASH Proteins SINE1 and SINE2 in Guard Cell Actin Reorganization, Calcium Oscillations, and Vacuolar Remodeling. FRONTIERS IN PLANT SCIENCE 2022; 13:784342. [PMID: 35599883 PMCID: PMC9120628 DOI: 10.3389/fpls.2022.784342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is a protein complex spanning the inner and outer membranes of the nuclear envelope. Outer nuclear membrane KASH proteins interact in the nuclear envelope lumen with inner nuclear membrane SUN proteins. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light-dark transitions and ABA. Previous studies have shown F-actin organization, cytoplasmic calcium (Ca2+) oscillations, and vacuolar morphology changes are involved in ABA-induced stomatal closure. Here, we show that SINE1 and SINE2 are both required for actin pattern changes during ABA-induced stomatal closure, but influence different, temporally distinguishable steps. External Ca2+ partially overrides the mutant defects. ABA-induced cytoplasmic Ca2+ oscillations are diminished in sine2-1 but not sine1-1, and this defect can be rescued by both exogenous Ca2+ and F-actin depolymerization. We show first evidence for nuclear Ca2+ oscillations during ABA-induced stomatal closure, which are disrupted in sine2-1. Vacuolar fragmentation is impaired in both mutants and is partially rescued by F-actin depolymerization. Together, these data indicate distinct roles for SINE1 and SINE2 upstream of this network of players involved in ABA-based stomatal closure, suggesting a role for the nuclear surface in guard cell ABA signaling.
Collapse
Affiliation(s)
- Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Norman R. Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Han Y, Wang Y, Zhai Y, Wen Z, Liu J, Xi C, Zhao H, Wang Y, Han S. OsOSCA1.1 Mediates Hyperosmolality and Salt Stress Sensing in Oryza sativa. BIOLOGY 2022; 11:biology11050678. [PMID: 35625406 PMCID: PMC9138581 DOI: 10.3390/biology11050678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
OSCA (reduced hyperosmolality-induced [Ca2+]i increase) is a family of mechanosensitive calcium-permeable channels that play a role in osmosensing and stomatal immunity in plants. Oryza sativa has 11 OsOSCA genes; some of these were shown to complement hyperosmolality-induced [Ca2+]cyt increases (OICIcyt), salt stress-induced [Ca2+]cyt increases (SICIcyt), and the associated growth phenotype in the Arabidopsis thaliana mutant osca1. However, their biological functions in rice remain unclear. In this paper, we found that OsOSCA1.1 mediates OICIcyt and SICIcyt in rice roots, which are critical for stomatal closure, plant survival, and gene expression in shoots, in response to hyperosmolality and the salt stress treatment of roots. Compared with wild-type (Zhonghua11, ZH11) plants, OICIcyt and SICIcyt were abolished in the roots of 10-day-old ososca1.1 seedlings, in response to treatment with 250 mM of sorbitol and 100 mM of NaCl, respectively. Moreover, hyperosmolality- and salt stress-induced stomatal closure were also disrupted in a 30-day-old ososca1.1 mutant, resulting in lower stomatal resistance and survival rates than that in ZH11. However, overexpression of OsOSCA1.1 in ososca1.1 complemented stomatal movement and survival, in response to hyperosmolality and salt stress. The transcriptomic analysis further revealed the following three types of OsOSCA1.1-regulated genes in the shoots: 2416 sorbitol-responsive, 2349 NaCl-responsive and 1844 common osmotic stress-responsive genes after treated with 250 mM of sorbitol and 125 mM NaCl of in 30-day-old rice roots for 24 h. The Gene Ontology enrichment analysis showed that these OsOSCA1.1-regulated genes were relatively enriched in transcription regulation, hormone response, and phosphorylation terms of the biological processes category, which is consistent with the Cis-regulatory elements ABRE, ARE, MYB and MYC binding motifs that were overrepresented in 2000-bp promoter regions of these OsOSCA1.1-regulated genes. These results indicate that OsOSCA-mediated calcium signaling specifically regulates gene expression, in response to drought and salt stress in rice.
Collapse
Affiliation(s)
- Yang Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yuanjun Zhai
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Zhaohong Wen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.H.); (Y.W.); (Y.Z.); (Z.W.); (J.L.); (C.X.); (H.Z.); (Y.W.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
- Correspondence:
| |
Collapse
|
9
|
Wang D, Huang F, Yan P, Nie Y, Chen L, Luo J, Zhao H, Wang Y, Han S. Cytosolic and Nucleosolic Calcium-Regulated Molecular Networks in Response to Long-Term Treatment with Abscisic Acid and Methyl Jasmonate in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13030524. [PMID: 35328077 PMCID: PMC8950999 DOI: 10.3390/genes13030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Calcium acts as a universal secondary messenger that transfers developmental cues and stress signals for gene expression and adaptive growth. A prior study showed that abiotic stresses induce mutually independent cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc) increases in Arabidopsis thaliana root cells. However, gene expression networks deciphering [Ca2+]cyt and [Ca2+]nuc signalling pathways remain elusive. Here, using transgenic A. thaliana to selectively impair abscisic acid (ABA)- or methyl jasmonate (MeJA)-induced [Ca2+]cyt and [Ca2+]nuc increases, we identified [Ca2+]cyt- and [Ca2+]nuc-regulated ABA- or MeJA-responsive genes with a genome oligo-array. Gene co-expression network analysis revealed four Ca2+ signal-decoding genes, CAM1, CIPK8, GAD1, and CPN20, as hub genes co-expressed with Ca2+-regulated hormone-responsive genes and hormone signalling genes. Luciferase complementation imaging assays showed interactions among CAM1, CIPK8, and GAD1; they also showed interactions with several proteins encoded by Ca2+-regulated hormone-responsive genes. Furthermore, CAM1 and CIPK8 were required for MeJA-induced stomatal closure; they were associated with ABA-inhibited seed germination. Quantitative reverse transcription polymerase chain reaction analysis showed the unique expression pattern of [Ca2+]-regulated hormone-responsive genes in cam1, cipk8, and gad1. This comprehensive understanding of distinct Ca2+ and hormonal signalling will allow the application of approaches to uncover novel molecular foundations for responses to developmental and stress signals in plants.
Collapse
Affiliation(s)
- Doudou Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Feifei Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Pengcheng Yan
- Department of Computational Biology, Beijing Computing Center, Beijing 100094, China;
| | - Yanli Nie
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Lvli Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Jin Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
- Correspondence:
| |
Collapse
|
10
|
Castro-Rodríguez V, Kleist TJ, Gappel NM, Atanjaoui F, Okumoto S, Machado M, Denyer T, Timmermans MCP, Frommer WB, Wudick MM. Sponging of glutamate at the outer plasma membrane surface reveals roles for glutamate in development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:664-674. [PMID: 34783104 DOI: 10.1111/tpj.15585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Plants use electrical and chemical signals for systemic communication. Herbivory, for instance, appears to trigger local apoplasmic glutamate accumulation, systemic electrical signals, and calcium waves that travel to report insect damage to neighboring leaves and initiate defense. To monitor extra- and intracellular glutamate concentrations in plants, we generated Arabidopsis lines expressing genetically encoded fluorescent glutamate sensors. In contrast to cytosolically localized sensors, extracellularly displayed variants inhibited plant growth and proper development. Phenotypic analyses of high-affinity display sensor lines revealed that root meristem development, particularly the quiescent center, number of lateral roots, vegetative growth, and floral architecture were impacted. Notably, the severity of the phenotypes was positively correlated with the affinity of the display sensors, intimating that their ability to sequester glutamate at the surface of the plasma membrane was responsible for the defects. Root growth defects were suppressed by supplementing culture media with low levels of glutamate. Together, the data indicate that sequestration of glutamate at the cell surface either disrupts the supply of glutamate to meristematic cells and/or impairs localized glutamatergic signaling important for developmental processes.
Collapse
Affiliation(s)
| | - Thomas J Kleist
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nicoline M Gappel
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Fatiha Atanjaoui
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sakiko Okumoto
- Department of Soil and Crop Science, Texas A&M, College Station, TX, USA
| | - Mackenzie Machado
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Michael M Wudick
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
12
|
Patra N, Hariharan S, Gain H, Maiti MK, Das A, Banerjee J. TypiCal but DeliCate Ca ++re: Dissecting the Essence of Calcium Signaling Network as a Robust Response Coordinator of Versatile Abiotic and Biotic Stimuli in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:752246. [PMID: 34899779 PMCID: PMC8655846 DOI: 10.3389/fpls.2021.752246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
Plant growth, development, and ultimately crop productivity are largely impacted by the interaction of plants with different abiotic and biotic factors throughout their life cycle. Perception of different abiotic stresses, such as salt, cold, drought, heat, and heavy metals, and interaction with beneficial and harmful biotic agents by plants lead to transient, sustained, or oscillatory changes of [calcium ion, Ca2+]cyt within the cell. Significant progress has been made in the decoding of Ca2+ signatures into downstream responses to modulate differential developmental and physiological responses in the whole plant. Ca2+ sensor proteins, mainly calmodulins (CaMs), calmodulin-like proteins (CMLs), and others, such as Ca2+-dependent protein kinases (CDPKs), calcineurin B-like proteins (CBLs), and calmodulin-binding transcription activators (CAMTAs) have played critical roles in coupling the specific stress stimulus with an appropriate response. This review summarizes the current understanding of the Ca2+ influx and efflux system in plant cells and various Ca2+ binding protein-mediated signal transduction pathways that are delicately orchestrated to mitigate abiotic and biotic stresses. The probable interactions of different components of Ca2+ sensor relays and Ca2+ sensor responders in response to various external stimuli have been described diagrammatically focusing on established pathways and latest developments. Present comprehensive insight into key components of the Ca2+ signaling toolkit in plants can provide an innovative framework for biotechnological manipulations toward crop improvability in near future.
Collapse
Affiliation(s)
- Neelesh Patra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shruthi Hariharan
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K. Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
13
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
14
|
Ropokis A, Ntatsi G, Rouphael Y, Kotsiras A, Kittas C, Katsoulas N, Savvas D. Responses of sweet pepper (Capsicum annum L.) cultivated in a closed hydroponic system to variable calcium concentrations in the nutrient solution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4342-4349. [PMID: 33420737 DOI: 10.1002/jsfa.11074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The use of water containing calcium bicarbonate (Ca(HCO3 )2 ) at excessively high concentrations in closed hydroponic crops can cause calcium ion (Ca2+ ) accumulation in the recycled nutrient solution (NS) and concomitantly negatively affect yield and product quality. The aim of the study was to determine maximum Ca2+ concentrations that do not harm the crop and to simulate the pattern of Ca2+ accumulation when the Ca2+ concentration in the irrigation water, and concomitantly in the replenishment nutrient solution (RNS), is excessive. In the current study, irrigation water containing 1.5, 3.0, 4.5 and 6.0 mmol L-1 Ca2+ was used to prepare the RNS supplied to pepper cultivated in a closed hydroponic system. RESULTS At 1.5 mmol L-1 Ca2+ , no Ca2+ accumulation was observed in the recirculating NS. However, at 3.0, 4.5 and 6.0 mmol L-1 in the irrigation water, the Ca2+ concentration in the recirculating NS, increased by the latter cropping stages to 17, 28 and 37 mmol L-1 , corresponding to 6.4, 9.0 and 10.8 dS m-1 . The accumulation of Ca2+ in the recirculating NS affected both tissue nutrient concentrations and uptake concentrations of Ca2+ , sulphate ion (SO4 2- ) and magnesium ion (Mg2+ ), but this was not the case for nitrogen (N) or potassium ion (K+ ). Growth, yield and plant water uptake were restricted at moderate (3.0 and 4.5 mmol L-1 ) and high (6.0 mmol L-1 ) external Ca2+ levels. CONCLUSION In soilless pepper crops with zero discharge of fertigation effluents, the Ca2+ concentration in the irrigation water and the RNS should be lower than 3.0 mmol L-1 to avoid yield restrictions due to salinity. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andreas Ropokis
- Department of Crop Science, Laboratory of Vegetable Crops, Agricultural University of Athens, Athens, Greece
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Crops, Agricultural University of Athens, Athens, Greece
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Anastasios Kotsiras
- Department of Agriculture, Laboratory of Vegetable Production, University of Peloponnese, Kalamata, Greece
| | - Constantinos Kittas
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Nikolaos Katsoulas
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Dimitrios Savvas
- Department of Crop Science, Laboratory of Vegetable Crops, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
15
|
Lee HJ, Seo PJ. Ca 2+talyzing Initial Responses to Environmental Stresses. TRENDS IN PLANT SCIENCE 2021; 26:849-870. [PMID: 33706981 DOI: 10.1016/j.tplants.2021.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Plants have evolved stress-sensing machineries that initiate rapid adaptive environmental stress responses. Cytosolic calcium ion (Ca2+) is the most prominent second messenger that couples extracellular signals with specific intracellular responses. Essential early events that generate a cytosolic Ca2+ spike in response to environmental stress are starting to emerge. We review sensory machineries, including ion channels and transporters, which perceive various stress stimuli and allow cytosolic Ca2+ influx. We highlight integrative roles of Ca2+ channels in plant responses to various environmental stresses, as well as possible interplay of Ca2+ with other early signaling components, which facilitates signal propagation for systemic spread and spatiotemporal variations in respect to external cues. The early Ca2+ signaling schemes inspire the identification of additional stress sensors.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
16
|
The Genetic Regulation of Secondary Metabolic Pathways in Response to Salinity and Drought as Abiotic Stresses. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Global development has generated a plethora of unfavorable and adverse environmental factors for the living organisms in the ecosystem. Plants are sessile organisms, and they are crucial to sustain life on earth. Since plants are sessile, they face a great number of environmental challenges related to abiotic stresses, such as temperature fluctuation, drought, salinity, flood and metal contamination. Salinity and drought are considered major abiotic stresses that negatively affect the plants’ growth and production of useful content. However, plants have evolved various molecular mechanisms to increase their tolerance to these environmental stresses. There is a whole complex system of communication (cross-talk) through massive signaling cascades that are activated and modulated in response to salinity and drought. Secondary metabolites are believed to play significant roles in the plant’s response and resistance to salinity and drought stress. Until recently, attempts to unravel the biosynthetic pathways were limited mainly due to the inadequate plant genomics resources. However, recent advancements in generating high-throughput “omics” datasets, computational tools and functional genomics approach integration have aided in the elucidation of biosynthetic pathways of many plant bioactive metabolites. This review gathers comprehensive knowledge of plants’ complex system that is involved in the response and resistance to salinity and water deficit stresses as abiotic stress. Additionally, it offers clues in determining the genes involved in this complex and measures its activity. It covers basic information regarding the signaling molecules involved in salinity and drought resistance and how plant hormones regulate the cross-talking mechanism with emphasis on transcriptional activity. Moreover, it discusses many studies that illustrate the relationship between salinity and drought and secondary metabolite production. Furthermore, several transcriptome analysis research papers of medicinal plants are illustrated. The aim of this review is to be a key for any researcher that is aspiring to study the relationship between salinity and drought stresses and secondary metabolite production at the transcriptome and transcription level.
Collapse
|
17
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
18
|
Helliwell KE, Kleiner FH, Hardstaff H, Chrachri A, Gaikwad T, Salmon D, Smirnoff N, Wheeler GL, Brownlee C. Spatiotemporal patterns of intracellular Ca 2+ signalling govern hypo-osmotic stress resilience in marine diatoms. THE NEW PHYTOLOGIST 2021; 230:155-170. [PMID: 33486789 DOI: 10.1111/nph.17162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 12/11/2020] [Indexed: 05/15/2023]
Abstract
Diatoms are globally important phytoplankton that dominate coastal and polar-ice assemblages. These environments exhibit substantial changes in salinity over dynamic spatiotemporal regimes. Rapid sensory systems are vital to mitigate the harmful consequences of osmotic stress. Population-based analyses have suggested that Ca2+ signalling is involved in diatom osmotic sensing. However, mechanistic insight of the role of osmotic Ca2+ signalling is limited. Here, we show that Phaeodactylum Ca2+ elevations are essential for surviving hypo-osmotic shock. Moreover, employing novel single-cell imaging techniques we have characterised real-time Ca2+ signalling responses in single diatom cells to environmental osmotic perturbations. We observe that intracellular spatiotemporal patterns of osmotic-induced Ca2+ elevations encode vital information regarding the nature of the osmotic stimulus. Localised Ca2+ signals evoked by mild or gradual hypo-osmotic shocks are propagated globally from the apical cell tips, enabling fine-tuned cell volume regulation across the whole cell. Finally, we demonstrate that diatoms adopt Ca2+ -independent and dependent mechanisms for osmoregulation. We find that efflux of organic osmolytes occurs in a Ca2+ -independent manner, but this response is insufficient to mitigate cell damage during hypo-osmotic shock. By comparison, Ca2+ -dependent signalling is necessary to prevent cell bursting via precise coordination of K+ transport, and therefore is likely to underpin survival in dynamic osmotic environments.
Collapse
Affiliation(s)
- Katherine E Helliwell
- The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Friedrich H Kleiner
- The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - Hayley Hardstaff
- The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Abdul Chrachri
- The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Trupti Gaikwad
- The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Deborah Salmon
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Glen L Wheeler
- The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Colin Brownlee
- The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| |
Collapse
|
19
|
Pirayesh N, Giridhar M, Ben Khedher A, Vothknecht UC, Chigri F. Organellar calcium signaling in plants: An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118948. [PMID: 33421535 DOI: 10.1016/j.bbamcr.2021.118948] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Calcium ion (Ca2+) is a versatile signaling transducer in all eukaryotic organisms. In plants, intracellular changes in free Ca2+ levels act as regulators in many growth and developmental processes. Ca2+ also mediates the cellular responses to environmental stimuli and thus plays an important role in providing stress tolerance to plants. Ca2+ signals are decoded by a tool kit of various families of Ca2+-binding proteins and their downstream targets, which mediate the transformation of the Ca2+ signal into appropriate cellular response. Early interest and research on Ca2+ signaling focused on its function in the cytosol, however it has become evident that this important regulatory pathway also exists in organelles such as nucleus, chloroplast, mitochondria, peroxisomes and the endomembrane system. In this review, we give an overview on the knowledge about organellar Ca2+ signaling with a focus on recent advances and developments.
Collapse
Affiliation(s)
- Niloufar Pirayesh
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Maya Giridhar
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ahlem Ben Khedher
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ute C Vothknecht
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Fatima Chigri
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
20
|
Moser M, Kirkpatrick A, Groves NR, Meier I. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus 2020; 11:149-163. [PMID: 32631106 PMCID: PMC7529407 DOI: 10.1080/19491034.2020.1783783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Andrew Kirkpatrick
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA.,Center for RNA Biology, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
21
|
Heterogeneous expression of plasma-membrane-localised OsOSCA1.4 complements osmotic sensing based on hyperosmolality and salt stress in Arabidopsis osca1 mutant. Cell Calcium 2020; 91:102261. [DOI: 10.1016/j.ceca.2020.102261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022]
|
22
|
Distinct Molecular Pattern-Induced Calcium Signatures Lead to Different Downstream Transcriptional Regulations via AtSR1/CAMTA3. Int J Mol Sci 2020; 21:ijms21218163. [PMID: 33142885 PMCID: PMC7662696 DOI: 10.3390/ijms21218163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Plants encrypt the perception of different pathogenic stimuli into specific intracellular calcium (Ca2+) signatures and subsequently decrypt the signatures into appropriate downstream responses through various Ca2+ sensors. Two microbe-associated molecular patterns (MAMPs), bacterial flg22 and fungal chitin, and one damage-associated molecular pattern (DAMP), AtPep1, were used to study the differential Ca2+ signatures in Arabidopsis leaves. The results revealed that flg22, chitin, and AtPep1 induced distinct changes in Ca2+ dynamics in both the cytosol and nucleus. In addition, Flg22 and chitin upregulated the expression of salicylic acid-related genes, ICS1 and EDS1, whereas AtPep1 upregulated the expression of jasmonic acid-related genes, JAZ1 and PDF1.2, in addition to ICS1 and EDS1. These data demonstrated that distinct Ca2+ signatures caused by different molecular patterns in leaf cells lead to specific downstream events. Furthermore, these changes in the expression of defense-related genes were disrupted in a knockout mutant of the AtSR1/CAMTA3 gene, encoding a calmodulin-binding transcription factor, in which a calmodulin-binding domain on AtSR1 was required for deciphering the Ca2+ signatures into downstream transcription events. These observations extend our knowledge regarding unique and intrinsic roles for Ca2+ signaling in launching and fine-tuning plant immune response, which are mediated by the AtSR1/CAMTA3 transcription factor.
Collapse
|
23
|
Luo J, Chen L, Huang F, Gao P, Zhao H, Wang Y, Han S. Intraorganellar calcium imaging in Arabidopsis seedling roots using the GCaMP variants GCaMP6m and R-CEPIA1er. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153127. [PMID: 32007728 DOI: 10.1016/j.jplph.2020.153127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 05/26/2023]
Abstract
Ca2+ acts as a universal second messenger in eukaryotes. In animals, a wide variety of environmental and developmental stimuli trigger Ca2+ dynamics in organelles, such as the cytoplasm, nucleus, and endoplasmic reticulum (ER). However, ER Ca2+ ([Ca2+]er) homeostasis and its contributions in cytosolic and/or nucleosolic Ca2+ dynamics in plants remain elusive. GCaMPs are comprised of a circularly permutated form of enhanced green fluorescent protein fused to calmodulin and myosin light-chain kinase M13 and used for monitoring Ca2+ dynamics in mammalian cells. Here, we targeted a high-affinity variant of GCaMP with nuclear export signal in the cytoplasm (NES-GCaMP6m), with a nuclear-localised signal in the nucleus (NLS-GCaMP6m), and a low-affinity variant of GCaMP, also known as calcium-measuring organelle-entrapped protein indicators (CEPIA), with a signal peptide sequence of the ER-localised protein Calreticulin 1a in the ER lumen (CRT1a-R-CEPIA1er) for intraorganellar Ca2+ imaging in Arabidopsis. We found that cytosolic Ca2+ ([Ca2+]cyt) increases induced by 250 mM sorbitol as an osmotic stress stimulus, 50 μM abscisic acid (ABA), or 1 mM carbachol (CCh) were mainly due to extracellular Ca2+ influx, whereas nucleosolic Ca2+ ([Ca2+]nuc) increases triggered by osmotic stress, ABA, or CCh were contributed by [Ca2+]er release. In addition, [Ca2+]er dynamics presented specific patterns in response to different stimuli such as osmotic stress, ABA, or CCh, indicating that Ca2+ signalling occurs in the ER in plants. These results provide valuable insights into subcellular Ca2+ dynamics in response to different stresses in Arabidopsis root cells and prove that GCaMP imaging is a useful tool for furthering our understanding of plant organelle functions.
Collapse
Affiliation(s)
- Jin Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lvli Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Feifei Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ping Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
24
|
Secondo A, Petrozziello T, Tedeschi V, Boscia F, Pannaccione A, Molinaro P, Annunziato L. Nuclear localization of NCX: Role in Ca 2+ handling and pathophysiological implications. Cell Calcium 2019; 86:102143. [PMID: 31865040 DOI: 10.1016/j.ceca.2019.102143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023]
Abstract
Numerous lines of evidence indicate that nuclear calcium concentration ([Ca2+]n) may be controlled independently from cytosolic events by a local machinery. In particular, the perinuclear space between the inner nuclear membrane (INM) and the outer nuclear membrane (ONM) of the nuclear envelope (NE) likely serves as an intracellular store for Ca2+ ions. Since ONM is contiguous with the endoplasmic reticulum (ER), the perinuclear space is adjacent to the lumen of ER thus allowing a direct exchange of ions and factors between the two organelles. Moreover, INM and ONM are fused at the nuclear pore complex (NPC), which provides the only direct passageway between the nucleoplasm and cytoplasm. However, due to the presence of ion channels, exchangers and transporters, it has been generally accepted that nuclear ion fluxes may occur across ONM and INM. Within the INM, the Na+/Ca2+ exchanger (NCX) isoform 1 seems to play an important role in handling Ca2+ through the different nuclear compartments. Particularly, nuclear NCX preferentially allows local Ca2+ flowing from nucleoplasm into NE lumen thanks to the Na+ gradient created by the juxtaposed Na+/K+-ATPase. Such transfer reduces abnormal elevation of [Ca2+]n within the nucleoplasm thus modulating specific transductional pathways and providing a protective mechanism against cell death. Despite very few studies on this issue, here we discuss those making major contribution to the field, also addressing the pathophysiological implication of nuclear NCX malfunction.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy.
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | |
Collapse
|
25
|
Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y, Wang Y, Chen L, Kudla J, Wang Y, Han S, Song CP, Guo Y. The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress. Dev Cell 2019; 48:697-709.e5. [PMID: 30861376 DOI: 10.1016/j.devcel.2019.02.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 11/19/2018] [Accepted: 02/11/2019] [Indexed: 01/10/2023]
Abstract
Calcium signals act as universal second messengers that trigger many cellular processes in animals and plants, but how specific calcium signals are generated is not well understood. In this study, we determined that AtANN4, a putative calcium-permeable transporter, and its interacting proteins, SCaBP8 and SOS2, generate a calcium signal under salt stress, which initially activates the SOS pathway, a conserved mechanism that modulates ion homeostasis in plants under salt stress. After activation, SCaBP8 promotes the interaction of protein kinase SOS2 with AtANN4, which enhances its phosphorylation by SOS2. This phosphorylation of AtANN4 further increases its interaction with SCaBP8. Both the interaction with and phosphorylation of AtANN4 repress its activity and alter calcium transients and signatures in HEK cells and plants. Our results reveal how downstream targets are required to create a specific calcium signal via a negative feedback regulatory loop, thereby enhancing our understanding of the regulation of calcium signaling.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiamin Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huixin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lili Yue
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jin Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yulin Zhang
- Laboratory of Cell Secretion and Metabolism, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liangyi Chen
- Laboratory of Cell Secretion and Metabolism, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Joerg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, Münster 48149, Germany
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, Henan Province 475001, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
A Ca 2+/CaM-regulated transcriptional switch modulates stomatal development in response to water deficit. Sci Rep 2019; 9:12282. [PMID: 31439865 PMCID: PMC6706580 DOI: 10.1038/s41598-019-47529-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
Calcium (Ca2+) signals are decoded by the Ca2+-sensor protein calmodulin (CaM) and are transduced to Ca2+/CaM-binding transcription factors to directly regulate gene expression necessary for acclimation responses in plants. The molecular mechanisms of Ca2+/CaM signal transduction processes and their functional significance remains enigmatic. Here we report a novel Ca2+/CaM signal transduction mechanism that allosterically regulates DNA-binding activity of GT2-LIKE 1 (GTL1), a transrepressor of STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1), to repress stomatal development in response to water stress. We demonstrated that Ca2+/CaM interaction with the 2nd helix of the GTL1 N-terminal trihelix DNA-binding domain (GTL1N) destabilizes a hydrophobic core of GTL1N and allosterically inhibits 3rd helix docking to the SDD1 promoter, leading to osmotic stress-induced Ca2+/CaM-dependent activation (de-repression) of SDD1 expression. This resulted in GTL1-dependent repression of stomatal development in response to water-deficit stress. Together, our results demonstrate that a Ca2+/CaM-regulated transcriptional switch on a trihelix transrepressor directly transduces osmotic stress to repress stomatal development to improve plant water-use efficiency as an acclimation response.
Collapse
|
27
|
Nguyen HTH, Bouteau F, Mazars C, Kuse M, Kawano T. The involvement of calmodulin and protein kinases in the upstream of cytosolic and nucleic calcium signaling induced by hypoosmotic shock in tobacco cells. PLANT SIGNALING & BEHAVIOR 2018; 13:e1494467. [PMID: 30067454 PMCID: PMC6149468 DOI: 10.1080/15592324.2018.1494467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 05/21/2023]
Abstract
Changes in Ca2+ concentrations in cytosol ([Ca2+]C) or nucleus ([Ca2+]N) may play some vital roles in plants under hypoosmotic shock (Hypo-OS). Here, we observed that Hypo-OS induces biphasic increases in [Ca2+]C and [Ca2+]N in two tobacco cell lines (BY-2) expressing apoaequorin either in the cytosol or in the nucleus. Both [Ca2+]C and [Ca2+]N were sensitively modulated by the inhibitors of calmodulin and protein kinases, supporting the view that calmodulin suppresses the 1st peaks and and protein kinases enhance 2nd peaks in [Ca2+]C and [Ca2+]N. Data also suggested that the 1st and 2nd events depend on the internal and extracellular Ca2+ sources, respectively.
Collapse
Affiliation(s)
- H. T. H. Nguyen
- Laboratory of Chemical Biology and Bioengineering, Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - F. Bouteau
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Diderot, Paris, France
- University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu, Japan
| | - C. Mazars
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse UPS, CNRS UMR, Castanet-Tolosan, France
| | - M. Kuse
- Laboratory of Natural Products Chemistry, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - T. Kawano
- Laboratory of Chemical Biology and Bioengineering, Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
- University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu, Japan
- Univ. Paris-Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| |
Collapse
|
28
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
29
|
Charpentier M. Calcium Signals in the Plant Nucleus: Origin and Function. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4986421. [PMID: 29718301 DOI: 10.1093/jxb/ery160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The universality of calcium as an intracellular messenger depends on the dynamics of its spatial and temporal release from calcium stores. Accumulating evidence over the past two decades supports an essential role for nuclear calcium signalling in the transduction of specific stimuli into cellular responses. This review focusses on mechanisms underpinning changes in nuclear calcium concentrations and discusses what is known so far, about the origin of the nuclear calcium signals identified, primarily in the context of microbial symbioses and abiotic stresses.
Collapse
Affiliation(s)
- Myriam Charpentier
- John Innes Centre, Department of Cell and developmental Biology, Colney Lane, Norwich, UK
| |
Collapse
|
30
|
Kelner A, Leitão N, Chabaud M, Charpentier M, de Carvalho-Niebel F. Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:245. [PMID: 29535753 PMCID: PMC5835324 DOI: 10.3389/fpls.2018.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/12/2018] [Indexed: 05/17/2023]
Abstract
Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully exploited to measure the spatiotemporal dynamics of symbiotic Ca2+ signaling in legumes. Although providing cellular resolution, these sensors were restricted to measuring Ca2+ changes in single subcellular compartments. In this study, we have explored the potential of single fluorescent protein-based Ca2+ sensors, the GECOs, for multicolor and simultaneous imaging of the spatiotemporal dynamics of cytoplasmic and nuclear Ca2+ signaling in root cells. Single and dual fluorescence nuclear and cytoplasmic-localized GECOs expressed in transgenic Medicago truncatula roots and Arabidopsis thaliana were used to successfully monitor Ca2+ responses to microbial biotic and abiotic elicitors. In M. truncatula, we demonstrate that GECOs detect symbiosis-related Ca2+ spiking variations with higher sensitivity than the yellow FRET-based sensors previously used. Additionally, in both M. truncatula and A. thaliana, the dual sensor is now able to resolve in a single root cell the coordinated spatiotemporal dynamics of nuclear and cytoplasmic Ca2+ signaling in vivo. The GECO-based sensors presented here therefore represent powerful tools to monitor Ca2+ signaling dynamics in vivo in response to different stimuli in multi-subcellular compartments of plant cells.
Collapse
Affiliation(s)
- Audrey Kelner
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Nuno Leitão
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mireille Chabaud
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- *Correspondence: Myriam Charpentier
| | - Fernanda de Carvalho-Niebel
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
- Fernanda de Carvalho-Niebel
| |
Collapse
|