1
|
Labella-Ortega M, Martín C, Valledor L, Castiglione S, Castillejo MÁ, Jorrín-Novo JV, Rey MD. Unravelling DNA methylation dynamics during developmental stages in Quercus ilex subsp. ballota [Desf.] Samp. BMC PLANT BIOLOGY 2024; 24:823. [PMID: 39223458 PMCID: PMC11370289 DOI: 10.1186/s12870-024-05553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND DNA methylation is a critical factor influencing plant growth, adaptability, and phenotypic plasticity. While extensively studied in model and crop species, it remains relatively unexplored in holm oak and other non-domesticated forest trees. This study conducts a comprehensive in-silico mining of DNA methyltransferase and demethylase genes within the holm oak genome to enhance our understanding of this essential process in these understudied species. The expression levels of these genes in adult and seedling leaves, as well as embryos, were analysed using quantitative real-time PCR (qRT-PCR). Global DNA methylation patterns were assessed through methylation-sensitive amplified polymorphism (MSAP) techniques. Furthermore, specific methylated genomic sequences were identified via MSAP sequencing (MSAP-Seq). RESULT A total of 13 DNA methyltransferase and three demethylase genes were revealed in the holm oak genome. Expression levels of these genes varied significantly between organs and developmental stages. MSAP analyses revealed a predominance of epigenetic over genetic variation among organs and developmental stages, with significantly higher global DNA methylation levels observed in adult leaves. Embryos exhibited frequent demethylation events, while de novo methylation was prevalent in seedling leaves. Approximately 35% of the genomic sequences identified by MSAP-Seq were methylated, predominantly affecting nuclear genes and intergenic regions, as opposed to repetitive sequences and chloroplast genes. Methylation was found to be more pronounced in the exonic regions of nuclear genes compared to their promoter and intronic regions. The methylated genes were predominantly associated with crucial biological processes such as photosynthesis, ATP synthesis-coupled electron transport, and defence response. CONCLUSION This study opens a new research direction in analysing variability in holm oak by evaluating the epigenetic events and mechanisms based on DNA methylation. It sheds light on the enzymatic machinery governing DNA (de)methylation, and the changes in the expression levels of methylases and demethylases in different organs along the developmental stages. The expression level was correlated with the DNA methylation pattern observed, showing the prevalence of de novo methylation and demethylation events in seedlings and embryos, respectively. Several methylated genes involved in the regulation of transposable element silencing, lipid biosynthesis, growth and development, and response to biotic and abiotic stresses are highlighted. MSAP-seq integrated with whole genome bisulphite sequencing and advanced sequencing technologies, such as PacBio or Nanopore, will bring light on epigenetic mechanisms regulating the expression of specific genes and its correlation with the phenotypic variability and the differences in the response to environmental cues, especially those related to climate change.
Collapse
Affiliation(s)
- Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| | - Carmen Martín
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Luis Valledor
- Plant Physiology Lab, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Cat. Rodrigo Uría s/n, Oviedo, 33006, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - María-Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| |
Collapse
|
2
|
Guarino F, Cicatelli A, Nissim WG, Colzi I, Gonnelli C, Basso MF, Vergata C, Contaldi F, Martinelli F, Castiglione S. Epigenetic changes induced by chronic and acute chromium stress treatments in Arabidopsis thaliana identified by the MSAP-Seq. CHEMOSPHERE 2024; 362:142642. [PMID: 38908441 DOI: 10.1016/j.chemosphere.2024.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Chromium (Cr) is an highly toxic metal to plants and causes severe damage to their growth, development, and reproduction. Plant exposure to chronic and acute Cr stress treatments results in significant changes at short time in the gene expression profile and at long time in the genomic DNA methylation profile at a transgenerational level and, consequently, in gene expression. These epigenetic modifications and their implications imposed by the Cr stress are not yet completely known in plants. Herein, were identified the epigenetic changes induced by chronic and acute Cr stress treatments in Arabidopsis thaliana plants using Methylation Sensitive Amplification Polymorphism coupled with next-generation sequencing (MSAP-Seq). First-generation Arabidopsis plants (termed F0 plants) kept under hoagland solution were subjected to Cr stress treatments. For chronic Cr stress, plants were treated through hoagland solution with 2.5 μM Cr during the entire cultivation period until seed harvest. Meanwhile, for acute Cr stress, plants were treated with 5 μM Cr during the first three weeks and returned to unstressful control condition until seed harvest. Seeds from F0 plants were sown and F1 plants were re-submitted to the same Cr stress treatments. The seed germination rate was evaluated from F-2 seeds harvested of F1 plants kept under different Cr stress treatments (0, 10, 20, and 40 μM) compared to the unstressful control condition. These data showed significant changes in the germination rate of F-2 seeds originating from stressed F1 plants compared to F-2 seeds harvested from unstressful control plants. Given this data, F1 plants kept under these chronic and acute Cr stress treatments and unstressful control condition were evaluated for the transgenerational epigenetic modifications using MSAP-Seq. The MSAP-Seq data showed that several genes were modified in their methylation status as a consequence of chronic and acute Cr stress treatment to maintain plant defenses activated. In particular, RNA processing, protein translation, photorespiration, energy production, transmembrane transport, DNA transcription, plant development, and plant resilience were the major biological processes modulated by epigenetic mechanisms identified in F1 plants kept under chronic and acute Cr stress. Therefore, collective data suggested that Arabidopsis plants kept under Cr stress regulate their epigenetic status over generations based on DNA methylation to modulate defense and resilience mechanisms.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Angela Cicatelli
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Ilaria Colzi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Marcos Fernando Basso
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Felice Contaldi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
| | - Stefano Castiglione
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| |
Collapse
|
3
|
Boissinot J, Adamek K, Jones AMP, Normandeau E, Boyle B, Torkamaneh D. Comparative restriction enzyme analysis of methylation (CREAM) reveals methylome variability within a clonal in vitro cannabis population. FRONTIERS IN PLANT SCIENCE 2024; 15:1381154. [PMID: 38872884 PMCID: PMC11169872 DOI: 10.3389/fpls.2024.1381154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The primary focus of medicinal cannabis research is to ensure the stability of cannabis lines for consistent administration of chemically uniform products to patients. In recent years, tissue culture has emerged as a valuable technique for genetic preservation and rapid multiplication of cannabis clones. However, there is concern that the physical and chemical conditions of the growing media can induce somaclonal variation, potentially impacting the viability and uniformity of clones. To address this concern, we developed Comparative Restriction Enzyme Analysis of Methylation (CREAM), a novel method to assess DNA methylation patterns and used it to study a population of 78 cannabis clones maintained in tissue culture. Through bioinformatics analysis of the methylome, we successfully detected 2,272 polymorphic methylated regions among the clones. Remarkably, our results demonstrated that DNA methylation patterns were preserved across subcultures within the clonal population, allowing us to distinguish between two subsets of clonal lines used in this study. These findings significantly contribute to our understanding of the epigenetic variability within clonal lines in medicinal cannabis produced through tissue culture techniques. This knowledge is crucial for understanding the effects of tissue culture on DNA methylation and ensuring the consistency and reliability of medicinal cannabis products with therapeutic properties. Additionally, the CREAM method is a fast and affordable technology to get a first glimpse at methylation in a biological system. It offers a valuable tool for studying epigenetic variation in other plant species, thereby facilitating broader applications in plant biotechnology and crop improvement.
Collapse
Affiliation(s)
- Justin Boissinot
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec, QC, Canada
- Institut intelligence et données (IID), Université Laval, Québec, QC, Canada
| | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Davoud Torkamaneh
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec, QC, Canada
- Institut intelligence et données (IID), Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Fan Y, Sun C, Yan K, Li P, Hein I, Gilroy EM, Kear P, Bi Z, Yao P, Liu Z, Liu Y, Bai J. Recent Advances in Studies of Genomic DNA Methylation and Its Involvement in Regulating Drought Stress Response in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1400. [PMID: 38794470 PMCID: PMC11125032 DOI: 10.3390/plants13101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
As global arid conditions worsen and groundwater resources diminish, drought stress has emerged as a critical impediment to plant growth and development globally, notably causing declines in crop yields and even the extinction of certain cultivated species. Numerous studies on drought resistance have demonstrated that DNA methylation dynamically interacts with plant responses to drought stress by modulating gene expression and developmental processes. However, the precise mechanisms underlying these interactions remain elusive. This article consolidates the latest research on the role of DNA methylation in plant responses to drought stress across various species, focusing on methods of methylation detection, mechanisms of methylation pattern alteration (including DNA de novo methylation, DNA maintenance methylation, and DNA demethylation), and overall responses to drought conditions. While many studies have observed significant shifts in genome-wide or gene promoter methylation levels in drought-stressed plants, the identification of specific genes and pathways involved remains limited. This review aims to furnish a reference for detailed research into plant responses to drought stress through epigenetic approaches, striving to identify drought resistance genes regulated by DNA methylation, specific signaling pathways, and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Youfang Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Pengcheng Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Ingo Hein
- The James Hutton Institute, Dundee DD2 5DA, UK; (I.H.); (E.M.G.)
| | | | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific (CCCAP), Beijing 102199, China;
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| |
Collapse
|
5
|
Dainelli M, Castellani MB, Pignattelli S, Falsini S, Ristori S, Papini A, Colzi I, Coppi A, Gonnelli C. Growth, physiological parameters and DNA methylation in Spirodela polyrhiza (L.) Schleid exposed to PET micro-nanoplastic contaminated waters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108403. [PMID: 38290343 DOI: 10.1016/j.plaphy.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The effects of polyethylene terephthalate micro-nanoplastics (PET-MNPs) were tested on the model freshwater species Spirodela polyrhiza (L.) Schleid., with focus on possible particle-induced epigenetic effects (i.e. alteration of DNA methylation status). MNPs (size ∼ 200-300 nm) were produced as water dispersions from PET bottles through repeated cycles of homogenization and used to prepare N-medium at two environmentally relevant concentrations (∼0.05 g L-1 and ∼0.1 g L-1 of MNPs). After 10 days of exposure, a reduction in fresh and dry weight was observed in treated plants, even if the average specific growth rate for both frond number and area was not altered. Impaired growth was coupled with a MNP-induced decrease of chlorophyll fluorescence parameters (i.e. ΨETo and Piabs, indicators of photochemical efficiency) and starch concentration, as well as with alterations in plant ionomic profile and oxidative status. The methylation-sensitive amplification polymorphism (MSAP) technique was used to assess possible changes in DNA methylation levels induced by plastic particles. The analysis showed unusual hypermethylation in 5'-CCGG sites that could be implicated in DNA protection from dangerous agents (i.e. reactive oxygen species) or in the formation of new epialleles. This work represents the first evidence of MNP-induced epigenetic modifications in the plant world.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Maria Beatrice Castellani
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Pignattelli
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Sandra Ristori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| |
Collapse
|
6
|
Tselika M, Belmezos N, Kallemi P, Andronis C, Chiumenti M, Navarro B, Lavigne M, Di Serio F, Kalantidis K, Katsarou K. PSTVd infection in Nicotiana benthamiana plants has a minor yet detectable effect on CG methylation. FRONTIERS IN PLANT SCIENCE 2023; 14:1258023. [PMID: 38023875 PMCID: PMC10645062 DOI: 10.3389/fpls.2023.1258023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Viroids are small circular RNAs infecting a wide range of plants. They do not code for any protein or peptide and therefore rely on their structure for their biological cycle. Observed phenotypes of viroid infected plants are thought to occur through changes at the transcriptional/translational level of the host. A mechanism involved in such changes is RNA-directed DNA methylation (RdDM). Till today, there are contradictory works about viroids interference of RdDM. In this study, we investigated the epigenetic effect of viroid infection in Nicotiana benthamiana plants. Using potato spindle tuber viroid (PSTVd) as the triggering pathogen and via bioinformatic analyses, we identified endogenous gene promoters and transposable elements targeted by 24 nt host siRNAs that differentially accumulated in PSTVd-infected and healthy plants. The methylation status of these targets was evaluated following digestion with methylation-sensitive restriction enzymes coupled with PCR amplification, and bisulfite sequencing. In addition, we used Methylation Sensitive Amplification Polymorphism (MSAP) followed by sequencing (MSAP-seq) to study genomic DNA methylation of 5-methylcytosine (5mC) in CG sites upon viroid infection. In this study we identified a limited number of target loci differentially methylated upon PSTVd infection. These results enhance our understanding of the epigenetic host changes as a result of pospiviroid infection.
Collapse
Affiliation(s)
- Martha Tselika
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | | - Paraskevi Kallemi
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Matthieu Lavigne
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| |
Collapse
|
7
|
Girija A, Hacham Y, Dvir S, Panda S, Lieberman-Lazarovich M, Amir R. Cystathionine γ-synthase expression in seeds alters metabolic and DNA methylation profiles in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:595-610. [PMID: 37300538 DOI: 10.1093/plphys/kiad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) seeds expressing the feedback-insensitive form of cystathionine γ-synthase (AtD-CGS), the key gene of methionine (Met) synthesis, under the control of a seed-specific phaseolin promoter (SSE plants) show a significant increase in Met content. This elevation is accompanied by increased levels of other amino acids (AAs), sugars, total protein, and starch, which are important from a nutritional aspect. Here, we investigated the mechanism behind this phenomenon. Gas chromatography-mass spectrometry (GC-MS) analysis of SSE leaves, siliques, and seeds collected at 3 different developmental stages showed high levels of Met, AAs, and sugars compared to the control plants. A feeding experiment with isotope-labeled AAs showed an increased flux of AAs from nonseed tissues toward the developing seeds of SSE. Transcriptome analysis of leaves and seeds displayed changes in the status of methylation-related genes in SSE plants that were further validated by methylation-sensitive enzymes and colorimetric assay. These results suggest that SSE leaves have higher DNA methylation rates than control plants. This occurrence apparently led to accelerated senescence, together with enhanced monomer synthesis, which further resulted in increased transport of monomers from the leaves toward the seeds. The developing seeds of SSE plants, however, show reduced Met levels and methylation rates. The results provide insights into the role of Met in DNA methylation and gene expression and how Met affects the metabolic profile of the plant.
Collapse
Affiliation(s)
- Aiswarya Girija
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
| | - Yael Hacham
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel Hai College, Upper Galilee 1220800, Israel
| | - Shachar Dvir
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel Hai College, Upper Galilee 1220800, Israel
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Rachel Amir
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel Hai College, Upper Galilee 1220800, Israel
| |
Collapse
|
8
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Pereira WJ, de Castro Rodrigues Pappas M, Pappas GJ. Computational Protocol for DNA Methylation Profiling in Plants Using Restriction Enzyme-Based Genome Reduction. Methods Mol Biol 2023; 2638:23-36. [PMID: 36781633 DOI: 10.1007/978-1-0716-3024-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Epigenetics can be described as heritable phenotype changes that do not involve alterations in the underlying DNA sequence. Having widespread implications in fundamental biological phenomena, there is an increased interest in characterizing epigenetic modifications and studying their functional implications. DNA methylation, particularly 5-methylcytosine (5mC), stands out as the most studied epigenetic mark and several methodologies have been created to investigate it. With the development of next-generation sequencing technologies, several approaches to DNA methylation profiling were conceived, with differences in resolution and genomic scope. Besides the gold standard whole-genome bisulfite sequencing, which is costly for population-scale studies, genomic reduced representation methods emerged as viable alternatives to investigate methylation loci. Whole-genome bisulfite sequencing provides single-base methylation resolution but is costly for population-scale studies. Genomic reduction methods emerged as viable alternatives to investigate a fraction of methylated loci. One of such approaches uses double digestion with the restriction enzymes PstI and one of the isoschizomers, MspI and HpaII, with differential sensitivity to 5mC at the restriction site. Statistical comparison of sequencing reads counts obtained from the two libraries for each sample (PstI-MspI and PstI-HpaII) is used to infer the methylation status of thousands of cytosines. Here, we describe a general overview of the technique and a computational protocol to process the generated data to provide a medium-scale inventory of methylated sites in plant genomes. The software is available at https://github.com/wendelljpereira/DArTseqMet .
Collapse
Affiliation(s)
- Wendell Jacinto Pereira
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA.,Department of Cell Biology, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | | | | |
Collapse
|
10
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
11
|
Karalija E, Carbó M, Coppi A, Colzi I, Dainelli M, Gašparović M, Grebenc T, Gonnelli C, Papadakis V, Pilić S, Šibanc N, Valledor L, Poma A, Martinelli F. Interplay of plastic pollution with algae and plants: hidden danger or a blessing? JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129450. [PMID: 35999715 DOI: 10.1016/j.jhazmat.2022.129450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
In the era of plastic pollution, plants have been discarded as a system that is not affected by micro and nanoplastics, but contrary to beliefs that plants cannot absorb plastic particles, recent research proved otherwise. The presented review gives insight into known aspects of plants' interplay with plastics and how plants' ability to absorb plastic particles can be utilized to remove plastics from water and soil systems. Microplastics usually cannot be absorbed by plant root systems due to their size, but some reports indicate they might enter plant tissues through stomata. On the other hand, nanoparticles can enter plant root systems, and reports of their transport via xylem to upper plant parts have been recorded. Bioaccumulation of nanoplastics in upper plant parts is still not confirmed. The prospects of using biosystems for the remediation of soils contaminated with plastics are still unknown. However, algae could be used to degrade plastic particles in water systems through enzyme facilitated degradation processes. Considering the amount of plastic pollution, especially in the oceans, further research is necessary on the utilization of algae in plastic degradation. Special attention should be given to the research concerning utilization of algae with restricted algal growth, ensuring that a different problem is not induced, "sea blooming", during the degradation of plastics.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia.
| | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013 Heraklion, Crete, Greece.
| | - Selma Pilić
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Nataša Šibanc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain.
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, Laboratory of Genetics and Mutagenesis, via Vetoio 1, 67100 L'Aquila, Italy.
| | - Federico Martinelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| |
Collapse
|
12
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
13
|
Kordyum E, Dubyna D. The role of epigenetic regulation in adaptive phenotypic plasticity of plants. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.05.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent decades, knowledge about the role of epigenetic regulation of gene expression in plant responses to external stimuli and in adaptation of plants to adverse environmental fluctuations have extended significantly. DNA methylation is considered as the main molecular mechanism that provides genomic information and contributes to the understanding of the molecular basis of phenotypic variations based on epigenetic modifications. Unfortunately, the vast majority of research in this area has been performed on the model species Arabidopsis thaliana. The development of the methylation-sensitive amplified polymorphism (MSAP) method has made it possible to implement the large-scale detection of DNA methylation alterations in wild non-model and agricultural plants with large and highly repetitive genomes in natural and manipulated habitats. The article presents current information on DNA methylation in species of natural communities and crops and its importance in plant development and adaptive phenotypic plasticity, along with brief reviews of current ideas about adaptive phenotypic plasticity and epigenetic regulation of gene expression. The great potential of further studies of the epigenetic role in phenotypic plasticity of a wide range of non-model species in natural populations and agrocenoses for understanding the molecular mechanisms of plant existence in the changing environment in onto- and phylogeny, directly related to the key tasks of forecasting the effects of global warming and crop selection, is emphasized. Specific taxa of the Ukrainian flora, which, in authors’ opinion, are promising and interesting for this type of research, are recommended.
Collapse
|
14
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
15
|
Tissue culture-induced DNA methylation in crop plants: a review. Mol Biol Rep 2021; 48:823-841. [PMID: 33394224 DOI: 10.1007/s11033-020-06062-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Plant tissue culture techniques have been extensively employed in commercial micropropagation to provide year-round production. Tissue culture regenerants are not always genotypically and phenotypically similar. Due to the changes in the tissue culture microenvironment, plant cells are exposed to additional stress which induces genetic and epigenetic instabilities in the regenerants. These changes lead to tissue culture-induced variations (TCIV) which are also known as somaclonal variations to categorically specify the inducing environment. TCIV includes molecular and phenotypic changes persuaded in the in vitro culture due to continuous sub-culturing and tissue culture-derived stress. Epigenetic variations such as altered DNA methylation pattern are induced due to the above-mentioned factors. Reportedly, alteration in DNA methylation pattern is much more frequent in the plant genome during the tissue culture process. DNA methylation plays an important role in gene expression and regulation of plant development. Variants originated in tissue culture process due to heritable methylation changes, can contribute to intra-species phenotypic variation. Several molecular techniques are available to detect DNA methylation at different stages of in vitro culture. Here, we review the aspects of TCIV with respect to DNA methylation and its effect on crop improvement programs. It is anticipated that a precise and comprehensive knowledge of molecular basis of in vitro-derived DNA methylation will help to design strategies to overcome the bottlenecks of micropropagation system and maintain the clonal fidelity of the regenerants.
Collapse
|
16
|
García-García I, Méndez-Cea B, Martín-Gálvez D, Seco JI, Gallego FJ, Linares JC. Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline. FRONTIERS IN PLANT SCIENCE 2021; 12:797958. [PMID: 35058957 PMCID: PMC8764141 DOI: 10.3389/fpls.2021.797958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 05/14/2023]
Abstract
Forest tree species are highly vulnerable to the effects of climate change. As sessile organisms with long generation times, their adaptation to a local changing environment may rely on epigenetic modifications when allele frequencies are not able to shift fast enough. However, the current lack of knowledge on this field is remarkable, due to many challenges that researchers face when studying this issue. Huge genome sizes, absence of reference genomes and annotation, and having to analyze huge amounts of data are among these difficulties, which limit the current ability to understand how climate change drives tree species epigenetic modifications. In spite of this challenging framework, some insights on the relationships among climate change-induced stress and epigenomics are coming. Advances in DNA sequencing technologies and an increasing number of studies dealing with this topic must boost our knowledge on tree adaptive capacity to changing environmental conditions. Here, we discuss challenges and perspectives in the epigenetics of climate change-induced forests decline, aiming to provide a general overview of the state of the art.
Collapse
Affiliation(s)
- Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel García-García,
| | - Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Belén Méndez-Cea,
| | - David Martín-Gálvez
- Departamento de Biodiversidad, Ecología y Evolución, UD Zoología, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José Ignacio Seco
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
17
|
Guarino F, Heinze B, Castiglione S, Cicatelli A. Epigenetic Analysis through MSAP-NGS Coupled Technology: The Case Study of White Poplar Monoclonal Populations/Stands. Int J Mol Sci 2020; 21:ijms21197393. [PMID: 33036388 PMCID: PMC7582538 DOI: 10.3390/ijms21197393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last several decades, several lines of evidence have shown that epigenetic modifications modulate phenotype and mediate an organism’s response to environmental stimuli. Plant DNA is normally highly methylated, although notable differences exist between species. Many biomolecular techniques based on PCR have been developed to analyse DNA methylation status, however a qualitative leap was made with the advent of next-generation sequencing (NGS). In the case of large, repetitive, or not-yet-sequenced genomes characterised by a high level of DNA methylation, the NGS analysis of bisulphite pre-treated DNA is expensive and time consuming, and moreover, in some cases data analysis is a major challenge. Methylation-sensitive amplification polymorphism (MSAP) analysis is a highly effective method to study DNA methylation. The method is based on the comparison of double DNA digestion profiles (EcoRI-HpaII and EcoRI-MspI) to reveal methylation pattern variations. These are often attributable to pedoclimatic and stress conditions which affect all organisms during their lifetime. In our study, five white poplar (Populus alba L.) specimens were collected from different monoclonal stands in the Maltese archipelago, and their DNA was processed by means of an innovative approach where MSAP analysis was followed by NGS. This allowed us to identify genes that were differentially methylated among the different specimens and link them to specific biochemical pathways. Many differentially methylated genes were found to encode transfer RNAs (tRNAs) related to photosynthesis or light reaction pathways. Our results clearly demonstrate that this combinatorial method is suitable for epigenetic studies of unsequenced genomes like P. alba (at the time of study), and to identify epigenetic variations related to stress, probably caused by different and changing pedoclimatic conditions, to which the poplar stands have been exposed.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy; (F.G.); (A.C.)
| | - Berthold Heinze
- Department of Forest Genetics, Austrian Federal Research Centre for Forests, 1131 Vienna, Austria;
| | - Stefano Castiglione
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy; (F.G.); (A.C.)
- Correspondence:
| | - Angela Cicatelli
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy; (F.G.); (A.C.)
| |
Collapse
|
18
|
Tanaka S, Hayakawa Y, Kawashima A, Goto M, Matusoka R, Sekizawa A, Gotoh K. Identification of differentially methylated HpaII sites by NGS analysis of HpaII-digested libraries. Anal Biochem 2020; 609:113977. [PMID: 33010204 DOI: 10.1016/j.ab.2020.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/28/2022]
Abstract
Differentially methylated regions (DMRs) have been widely explored as epigenetic biomarkers. Here, we developed a novel approach combining methylation-sensitive restriction enzyme (MSRE) and next-generation sequencing (NGS) to identify DMRs between chorionic villi (CV) and maternal blood cells (MBC). During NGS library preparation, adapter-ligated genomic DNA of CV and MBC were digested with the MSRE, HpaII, and PCR-amplified. As unmethylated HpaII sites were cleaved, the resulted library should contain only methylated HpaII sites. By sequencing both HpaII-digested CV and MBC libraries, 9 differentially methylated-HpaII sites on chromosome 21 which exhibited more than 50% methylation increase in CV were identified. These DMRs are epigenetic biomarkers to tell the difference between CV and MBC. Our approach will also be applicable to screen various tissue-specific epigenetic biomarkers.
Collapse
Affiliation(s)
- Shinji Tanaka
- GeneTech, Inc., 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, Japan.
| | - Yosuke Hayakawa
- GeneTech, Inc., 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, Japan
| | - Akihiro Kawashima
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Minako Goto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Ryu Matusoka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Koshichi Gotoh
- GeneTech, Inc., 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, Japan.
| |
Collapse
|
19
|
The assessment of epigenetic diversity, differentiation, and structure in the 'Fuji' mutation line implicates roles of epigenetic modification in the occurrence of different mutant groups as well as spontaneous mutants. PLoS One 2020; 15:e0235073. [PMID: 32584862 PMCID: PMC7316255 DOI: 10.1371/journal.pone.0235073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/07/2020] [Indexed: 01/01/2023] Open
Abstract
The ‘Fuji’ line includes many varieties with a similar genetic background and consistent inducement factors with epigenetic occurrence, thus it may be considered an ideal candidate for epigenetic research. In this study, 91 bud mutations of ‘Fuji’ apple were used as the test materials. Using the genetic variation within ‘Fuji’ as the control, the characteristics of epigenetic variation at different levels in both varieties and mutant groups were examined. The results showed that: (1) the global genomic DNA methylation level of the 91 bud mutants of ‘Fuji’ ranged from 29.120%-45.084%, with an average of 35.910%. Internal cytosine methylation was the main DNA methylation pattern. Regarding the variation of methylation patterns of ‘Fuji’ mutants, the vast majority of loci maintained the original methylation pattern existed in ‘Fuji’. CHG methylation variation was the main type of variation; (2) the variation in methylation patterns between the mutant groups was greater than that of methylation levels. Among these patterns, the variation in CHG methylation patterns (including CHG hypermethylation and CHG demethylation) was expected to be dominant. The observed variation in methylation levels was more important in the Color mutant group; however, the variation in methylation patterns was more obvious in both the early maturation and Spur mutant groups. Moreover, the range of variation in the Early-maturation group was much wider than that in the Spur mutant group; (3) epigenetic diversity and genetic diversity were both low between the mutant groups. In the ‘Fuji’ mutant groups, there was few correlation between genetic and epigenetic variation, and epigenetic differentiation resulted in more loci with moderate or greater differentiation; (4) the purifying selection seemed to play a major role in the differentiation of different groups of ‘Fuji’ mutants (65.618%), but epigenetic diversity selection still occurred at nearly 35% of loci. Sixteen epigenetic outlier loci were detected.
Collapse
|
20
|
Pereira WJ, Pappas MDCR, Grattapaglia D, Pappas GJ. A cost-effective approach to DNA methylation detection by Methyl Sensitive DArT sequencing. PLoS One 2020; 15:e0233800. [PMID: 32497070 PMCID: PMC7272069 DOI: 10.1371/journal.pone.0233800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Several studies suggest the relation of DNA methylation to diseases in humans and important phenotypes in plants drawing attention to this epigenetic mark as an important source of variability. In the last decades, several methodologies were developed to assess the methylation state of a genome. However, there is still a lack of affordable and precise methods for genome wide analysis in large sample size studies. Methyl sensitive double digestion MS-DArT sequencing method emerges as a promising alternative for methylation profiling. We developed a computational pipeline for the identification of DNA methylation using MS-DArT-seq data and carried out a pilot study using the Eucalyptus grandis tree sequenced for the species reference genome. Using a statistic framework as in differential expression analysis, 72,515 genomic sites were investigated and 5,846 methylated sites identified, several tissue specific, distributed along the species 11 chromosomes. We highlight a bias towards identification of DNA methylation in genic regions and the identification of 2,783 genes and 842 transposons containing methylated sites. Comparison with WGBS, DNA sequencing after treatment with bisulfite, data demonstrated a precision rate higher than 95% for our approach. The availability of a reference genome is useful for determining the genomic context of methylated sites but not imperative, making this approach suitable for any species. Our approach provides a cost effective, broad and reliable examination of DNA methylation profile on MspI/HpaII restriction sites, is fully reproducible and the source code is available on GitHub (https://github.com/wendelljpereira/ms-dart-seq).
Collapse
Affiliation(s)
| | | | - Dario Grattapaglia
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Georgios Joannis Pappas
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
21
|
Pereira WJ, Pappas MDCR, Grattapaglia D, Pappas GJ. A cost-effective approach to DNA methylation detection by Methyl Sensitive DArT sequencing. PLoS One 2020; 15:e0233800. [PMID: 32497070 DOI: 10.1371/journal.pone.00233800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/12/2020] [Indexed: 05/27/2023] Open
Abstract
Several studies suggest the relation of DNA methylation to diseases in humans and important phenotypes in plants drawing attention to this epigenetic mark as an important source of variability. In the last decades, several methodologies were developed to assess the methylation state of a genome. However, there is still a lack of affordable and precise methods for genome wide analysis in large sample size studies. Methyl sensitive double digestion MS-DArT sequencing method emerges as a promising alternative for methylation profiling. We developed a computational pipeline for the identification of DNA methylation using MS-DArT-seq data and carried out a pilot study using the Eucalyptus grandis tree sequenced for the species reference genome. Using a statistic framework as in differential expression analysis, 72,515 genomic sites were investigated and 5,846 methylated sites identified, several tissue specific, distributed along the species 11 chromosomes. We highlight a bias towards identification of DNA methylation in genic regions and the identification of 2,783 genes and 842 transposons containing methylated sites. Comparison with WGBS, DNA sequencing after treatment with bisulfite, data demonstrated a precision rate higher than 95% for our approach. The availability of a reference genome is useful for determining the genomic context of methylated sites but not imperative, making this approach suitable for any species. Our approach provides a cost effective, broad and reliable examination of DNA methylation profile on MspI/HpaII restriction sites, is fully reproducible and the source code is available on GitHub (https://github.com/wendelljpereira/ms-dart-seq).
Collapse
Affiliation(s)
| | | | - Dario Grattapaglia
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | | |
Collapse
|
22
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
23
|
Thiebaut F, Hemerly AS, Ferreira PCG. A Role for Epigenetic Regulation in the Adaptation and Stress Responses of Non-model Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:246. [PMID: 30881369 PMCID: PMC6405435 DOI: 10.3389/fpls.2019.00246] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/13/2019] [Indexed: 05/21/2023]
Abstract
In recent years enormous progress has been made in understanding the role of epigenetic regulation response to environmental stimuli, especially in response to stresses. Molecular mechanisms involved in chromatin dynamics and silencing have been explained, leading to an appreciation of how new phenotypes can be generated quickly in response to environmental modifications. In some cases, it has also been shown that epigenetic modifications can be stably transmitted to the next generations. Despite this, the vast majority of studies have been carried out with model plants, particularly with Arabidopsis, and very little is known on how native plants in their natural habitat react to changes in their environment. Climate change has been affecting, sometimes drastically, the conditions of numerous ecosystems around the world, forcing populations of native species to adapt quickly. Although part of the adaptation can be explained by the preexisting genetic variation in the populations, recent studies have shown that new stable phenotypes can be generated through epigenetic modifications in few generations, contributing to the stability and survival of the plants in their natural habitat. Here, we review the recent data that suggest that epigenetic variation can help natural populations to cope to with change in their environments.
Collapse
|
24
|
Komivi D, Marie AM, Rong Z, Qi Z, Mei Y, Ndiaga C, Diaga D, Linhai W, Xiurong Z. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:207-217. [PMID: 30466587 DOI: 10.1016/j.plantsci.2018.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 05/07/2023]
Abstract
DNA methylation is a heritable epigenetic mechanism that participates in gene regulation under abiotic stresses in plants. Sesame (Sesamum indicum) is typically considered a drought-tolerant crop but highly susceptible to waterlogging, probably because of its origin in Africa or India. Understanding DNA methylation patterns under drought and waterlogging conditions can provide insights into the regulatory mechanisms underlying sesame contrasting responses to these abiotic stresses. We combined Methylation-Sensitive Amplified Polymorphism and transcriptome analyses to profile cytosine methylation patterns, transcript accumulation, and their interplay in drought-tolerant and waterlogging-tolerant sesame genotypes. Drought stress strongly induced de novo methylation (DNM) whereas most of the loci were demethylated (DM) during the recovery phase. In contrast, waterlogging stress decreased the level of methylation but during the recovery phase, both DM and DNM were concomitantly deployed. In both stresses, the levels of the differentially accumulated transcripts (DATs) highly correlated with the methylation patterns. We observed that DM was associated with an increase of DAT levels while DNM was correlated with a decrease of DAT levels. Altogether, sesame has divergent epigenetic programs that respond to drought and waterlogging stresses and an interplay among DNA methylation and transcript accumulation may partly modulate the contrasting responses to these stresses.
Collapse
Affiliation(s)
- Dossa Komivi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062, China; Centre d'Etude Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Route de Khombole, Thiès, BP, 3320, Senegal; Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Code postal 10700, Dakar, Senegal.
| | - Ali Mmadi Marie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062, China; Centre d'Etude Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Route de Khombole, Thiès, BP, 3320, Senegal; Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Code postal 10700, Dakar, Senegal
| | - Zhou Rong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062, China
| | - Zhou Qi
- College of Life Science, Hubei University, Wuhan, China
| | - Yang Mei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062, China
| | - Cisse Ndiaga
- Centre d'Etude Régional Pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Route de Khombole, Thiès, BP, 3320, Senegal
| | - Diouf Diaga
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Code postal 10700, Dakar, Senegal
| | - Wang Linhai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062, China
| | - Zhang Xiurong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, 430062, China.
| |
Collapse
|
25
|
DNA Methylation Analysis in Barley and Other Species with Large Genomes. Methods Mol Biol 2018. [PMID: 30460570 DOI: 10.1007/978-1-4939-8944-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Detailed DNA methylation analyses in plant species with large and highly repetitive genomes can be challenging as well as costly. Here, we describe a complete protocol for a high-throughput DNA methylation changes analysis using Methylation-Sensitive Amplification Polymorphism Sequencing (MSAP-Seq; Chwialkowska et al., Front Plant Sci. 8: 2056 (2017)). This method allows detailed information about DNA methylation changes in large and complex genomes to be obtained at a relatively low cost. MSAP-Seq is based on conventional MSAP marker analysis and employs all its basic steps such as restriction cleavage with methylation-sensitive restriction enzyme, ligation of universal adapters, and PCR amplification. However, the traditional gel-based amplicon separation is replaced by direct, global sequencing with next-generation sequencing (NGS) methods. Consequently, MSAP-Seq allows for parallel analysis of hundreds of thousands of different CCGG sites and evaluation of their DNA methylation state. This technique especially targets to genic regions, so it is well suited for large genomes with low gene density, such as barley and other plants with large genomes.
Collapse
|
26
|
Analysis of sulphur and chlorine induced DNA cytosine methylation alterations in fresh corn (Zea mays L. saccharata and rugosa) leaf tissues by methylation sensitive amplification polymorphism (MSAP) approach. Genes Genomics 2018; 40:913-925. [PMID: 30155706 DOI: 10.1007/s13258-018-0685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 01/24/2023]
Abstract
DNA (cytosine) methylation mechanism is another way through which plants respond to various cues including soil fertility amendments and abiotic stresses, and the mechanism has been used to infer some physiological, biochemical or adaptation processes. Despite numerous studies on global DNA methylation profiling in various crop species, however, researches on fresh corn (Zea mays L. saccharata or rugosa) remain largely unreported. The study aimed at investigating sulphur and chlorine induced DNA methylation changes in the fresh corn leaves of field-grown plants at the milk stage. Methylation sensitive amplification polymorphism (MSAP) technique was used to profile sulphur (S) and chlorine (Cl) induced DNA methylation patterns, levels and polymorphism alterations at the CCGG sites in fresh corn leaves of TDN21, JKN2000 and JKN928 hybrid cultivars. Twelve primer pairs used effectively detected 325 MSAP bands, exhibiting differentially methylated sites in the genomic DNA of all the three cultivars, with control showing higher (48.9-56.3%) type I bands as compared to sulphur (34.8-44.9%) and chlorine (40.9-47.4%) treatment samples. Consequently, total methylation levels were greater in S and Cl treatment samples than control; accounting for 43.7-59.7, 51.1-65.2 and 46.8-55.1% of total sites in TDN21, JKN2000 and JKN928, respectively. Full methylation of the internal cytosine was greater than hemi-methylation. Further, demethylation polymorphic loci significantly exceeded methylation polymorphic loci, being greater in S than Cl and control samples in all cultivars. Sulphur and chlorine have a profound influence on DNA methylation patterns and levels at the milk stage, principally by increasing the demethylation loci in the internal cytosine of the fresh corn genome. We speculate that these methylation alterations play an integral role in photosynthates assimilation and physiochemical pathways regulating quality parameters in kernels, as well as abiotic stress responses in fresh corn.
Collapse
|