1
|
Tian R, Nájera-González HR, Nigam D, Khan A, Chen J, Xin Z, Herrera-Estrella L, Jiao Y. Leucine-rich repeat receptor kinase BM41 regulates cuticular wax deposition in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6331-6345. [PMID: 39041593 DOI: 10.1093/jxb/erae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Cuticular wax (CW) is the first defensive barrier of plants that forms a waterproof barrier, protects the plant from desiccation, and defends against insects, pathogens, and UV radiation. Sorghum, an important grass crop with high heat and drought tolerance, exhibits a much higher wax load than other grasses and the model plant Arabidopsis. In this study, we explored the regulation of sorghum CW biosynthesis using a bloomless mutant. The CW on leaf sheaths of the bloomless 41 (bm41) mutant showed significantly reduced very long-chain fatty acids (VLCFAs), triterpenoids, alcohols, and other wax components, with an overall 86% decrease in total wax content compared with the wild type. Notably, the 28-carbon and 30-carbon VLCFAs were decreased in the mutants. Using bulk segregant analysis, we identified the causal gene of the bloomless phenotype as a leucine-rich repeat transmembrane protein kinase. Transcriptome analysis of the wild-type and bm41 mutant leaf sheaths revealed BM41 as a positive regulator of lipid biosynthesis and steroid metabolism. BM41 may regulate CW biosynthesis by regulating the expression of the gene encoding 3-ketoacyl-CoA synthase 6. Identification of BM41 as a new regulator of CW biosynthesis provides fundamental knowledge for improving grass crops' heat and drought tolerance by increasing CW.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX 79415, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX 79415, USA
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| | - Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Liu F, Wodajo B, Zhao K, Tang S, Xie Q, Xie P. Unravelling sorghum functional genomics and molecular breeding: past achievements and future prospects. J Genet Genomics 2024:S1673-8527(24)00194-2. [PMID: 39053846 DOI: 10.1016/j.jgg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Sorghum, renowned for its substantial biomass production and remarkable tolerance to various stresses, possesses extensive gene resources and phenotypic variations. A comprehensive understanding of the genetic basis underlying complex agronomic traits is essential for unlocking the potential of sorghum in addressing food and feed security and utilizing marginal lands. In this context, we provide an overview of the major trends in genomic resource studies focusing on key agronomic traits over the past decade, accompanied by a summary of functional genomic platforms. We also delve into the molecular functions and regulatory networks of impactful genes for important agricultural traits. Lastly, we discuss and synthesize the current challenges and prospects for advancing molecular design breeding by gene-editing and polymerization of the excellent alleles, with the aim of accelerating the development of desired sorghum varieties.
Collapse
Affiliation(s)
- Fangyuan Liu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Baye Wodajo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Natural and Computational Science, Woldia University, Woldia, Po.box-400, Ethiopia.
| | - Kangxu Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Xie
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
3
|
Tang X, Song G, Zou J, Ren J, Feng H. BrBCAT1 mutation resulted in deficiency of epicuticular wax crystal in Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:123. [PMID: 38722407 DOI: 10.1007/s00122-024-04632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Gengxing Song
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jiaqi Zou
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jie Ren
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
4
|
Jiao Y, Nigam D, Barry K, Daum C, Yoshinaga Y, Lipzen A, Khan A, Parasa SP, Wei S, Lu Z, Tello-Ruiz MK, Dhiman P, Burow G, Hayes C, Chen J, Brandizzi F, Mortimer J, Ware D, Xin Z. A large sequenced mutant library - valuable reverse genetic resource that covers 98% of sorghum genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1543-1557. [PMID: 38100514 DOI: 10.1111/tpj.16582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Collapse
Affiliation(s)
- Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Chris Daum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sai-Praneeth Parasa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jenny Mortimer
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- USDA-ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| |
Collapse
|
5
|
Li M, Cai Q, Liang Y, Zhao Y, Hao Y, Qin Y, Qiao X, Han Y, Li H. Mapping and Screening of Candidate Gene Regulating the Biomass Yield of Sorghum ( Sorghum bicolor L.). Int J Mol Sci 2024; 25:796. [PMID: 38255870 PMCID: PMC10815252 DOI: 10.3390/ijms25020796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Biomass yield is one of the important traits of sorghum, which is greatly affected by leaf morphology. In this study, a lobed-leaf mutant (sblob) was screened and identified, and its F2 inbred segregating line was constructed. Subsequently, MutMap and whole-genome sequencing were employed to identify the candidate gene (sblob1), the locus of which is Sobic.003G010300. Pfam and homologous analysis indicated that sblob1 encodes a Cytochrome P450 protein and plays a crucial role in the plant serotonin/melatonin biosynthesis pathway. Structural and functional changes in the sblob1 protein were elucidated. Hormone measurements revealed that sblob1 regulates both leaf morphology and sorghum biomass through regulation of the melatonin metabolic pathway. These findings provide valuable insights for further research and the enhancement of breeding programs, emphasizing the potential to optimize biomass yield in sorghum cultivation.
Collapse
Affiliation(s)
- Mao Li
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Qizhe Cai
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yinpei Liang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yaofei Zhao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yaoshan Hao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Yingying Qin
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Xinrui Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Yuanhuai Han
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Hongying Li
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
6
|
Chemelewski R, McKinley BA, Finlayson S, Mullet JE. Epicuticular wax accumulation and regulation of wax pathway gene expression during bioenergy Sorghum stem development. FRONTIERS IN PLANT SCIENCE 2023; 14:1227859. [PMID: 37936930 PMCID: PMC10626490 DOI: 10.3389/fpls.2023.1227859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023]
Abstract
Bioenergy sorghum is a drought-tolerant high-biomass C4 grass targeted for production on annual cropland marginal for food crops due primarily to abiotic constraints. To better understand the overall contribution of stem wax to bioenergy sorghum's resilience, the current study characterized sorghum stem cuticular wax loads, composition, morphometrics, wax pathway gene expression and regulation using vegetative phase Wray, R07020, and TX08001 genotypes. Wax loads on sorghum stems (~103-215 µg/cm2) were much higher than Arabidopsis stem and leaf wax loads. Wax on developing sorghum stem internodes was enriched in C28/30 primary alcohols (~65%) while stem wax on fully developed stems was enriched in C28/30 aldehydes (~80%). Scanning Electron Microscopy showed minimal wax on internodes prior to the onset of elongation and that wax tubules first appear associated with cork-silica cell complexes when internode cell elongation is complete. Sorghum homologs of genes involved in wax biosynthesis/transport were differentially expressed in the stem epidermis. Expression of many wax pathway genes (i.e., SbKCS6, SbCER3-1, SbWSD1, SbABCG12, SbABCG11) is low in immature apical internodes then increases at the onset of stem wax accumulation. SbCER4 is expressed relatively early in stem development consistent with accumulation of C28/30 primary alcohols on developing apical internodes. High expression of two SbCER3 homologs in fully elongated internodes is consistent with a role in production of C28/30 aldehydes. Gene regulatory network analysis aided the identification of sorghum homologs of transcription factors that regulate wax biosynthesis (i.e., SbSHN1, SbWRI1/3, SbMYB94/96/30/60, MYS1) and other transcription factors that could regulate and specify expression of the wax pathway in epidermal cells during cuticle development.
Collapse
Affiliation(s)
- Robert Chemelewski
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Brian A. McKinley
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - John E. Mullet
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Song G, Dong S, Liu C, Zou J, Ren J, Feng H. BrKCS6 mutation conferred a bright glossy phenotype to Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:216. [PMID: 37776330 DOI: 10.1007/s00122-023-04464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
KEY MESSAGE BrKCS6 encoding 3-ketoacyl-CoA synthases was cloned through MutMap and KASP analysis, and its function was verified via allelic mutants in Chinese cabbage. Bright and glossy green appearance is an attractive commodity character for leafy vegetables and is mainly caused by the absence of epicuticular wax crystals. In this study, two allelic epicuticular wax crystal deficiency mutants, wdm9 and wdm10, were obtained from an EMS mutagenesis population of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. BrKCS6 encoding 3-ketoacyl-CoA synthases was identified as the candidate gene by MutMap and KASP analysis. A SNP (G to A) on BrKCS6 in wdm9 led to the amino acid substitution from serine (S) to phenylalanine (F), and another SNP (G to A) in wdm10 resulted in the amino acid substitution from serine (S) to leucine (L). Both SNPs are located in the ACP_syn_III_C conserved domain, corresponding to two highly conserved sites among BrKCS6 and its homologs. These two amino acid substitutions changed the secondary structure and the three-dimensional structure of BrKCS6 protein. qRT-PCR results showed that the relative expression of BrKCS6 significantly decreased in the flower, stem, and leaves in mutant, and the relative expressions of the downstream key genes of BrKCS6 were down-regulated in mutant. We were the first to clone the precious glossy bright gene BrKCS6 which has a great potential for commodity quality breeding in Chinese cabbage.
Collapse
Affiliation(s)
- Gengxing Song
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Shiyao Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chuanhong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiaqi Zou
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jie Ren
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
8
|
Zhao Y, Huang S, Zhang Y, Tan C, Feng H. Role of Brassica orphan gene BrLFM on leafy head formation in Chinese cabbage (Brassica rapa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:170. [PMID: 37420138 DOI: 10.1007/s00122-023-04411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Brassica orphan gene BrFLM, identified by two allelic mutants, was involved in leafy head formation in Chinese cabbage. Leafy head formation is a unique agronomic trait of Chinese cabbage that determines its yield and quality. In our previous study, an EMS mutagenesis Chinese cabbage mutant library was constructed using the heading Chinese cabbage double haploid (DH) line FT as the wild-type. Here, we screened two extremely similar leafy head deficiency mutants lfm-1 and lfm-2 with geotropic growth leaves from the library to investigate the gene(s) related to leafy head formation. Reciprocal crossing results showed that these two mutants were allelic. We utilized lfm-1 to identify the mutant gene(s). Genetic analysis showed that the mutated trait was controlled by a single nuclear gene Brlfm. Mutmap analysis showed that Brlfm was located on chromosome A05, and BraA05g012440.3C or BraA05g021450.3C were the candidate gene. Kompetitive allele-specific PCR analysis eliminated BraA05g012440.3C from the candidates. Sanger sequencing identified an SNP from G to A at the 271st nucleotide on BraA05g021450.3C. The sequencing of lfm-2 detected another non-synonymous SNP (G to A) located at the 266st nucleotide on BraA05g021450.3C, which verified its function on leafy head formation. We blasted BraA05g021450.3C on database and found that it belongs to a Brassica orphan gene encoding an unknown 13.74 kDa protein, named BrLFM. Subcellular localization showed that BrLFM was located in the nucleus. These findings reveal that BrLFM is involved in leafy head formation in Chinese cabbage.
Collapse
Affiliation(s)
- Yonghui Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yun Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chong Tan
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
9
|
Song G, Liu C, Fang B, Ren J, Feng H. Identification of an epicuticular wax crystal deficiency gene Brwdm1 in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1161181. [PMID: 37324687 PMCID: PMC10267742 DOI: 10.3389/fpls.2023.1161181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Introduction The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants, wdm1 and wdm7, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'. Methods The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation. Results The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that BraA01g004350.3C, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for Brwdm1. A SNP 2,113,772 (C to T) variation in the 6th exon of Brwdm1 in wdm1 led to the 262nd amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10th exon of Brwdm1 in wdm7 resulted in the change of the 434th amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1. Discussion These results indicated that Brwdm1 was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- *Correspondence: Jie Ren, ; Hui Feng,
| | - Hui Feng
- *Correspondence: Jie Ren, ; Hui Feng,
| |
Collapse
|
10
|
La Borde N, Rajewski J, Dweikat I. Novel QTL for chilling tolerance at germination and early seedling stages in sorghum. Front Genet 2023; 14:1129460. [PMID: 37007950 PMCID: PMC10052408 DOI: 10.3389/fgene.2023.1129460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Sorghum (Sorghum bicolor L.) a drought tolerant staple crop for half a billion people in Africa and Asia, an important source of animal feed throughout the world and a biofuel feedstock of growing importanceorghum’s originated from tropical regions rendering the crop to be cold sensitive. Low temperature stresses such as chilling and frost greatly affect the agronomic performance of sorghum and limit its geographical distribution, posing a major problem in temperate environments when sorghum is planted early. Understanding the genetic basis of wide adaptability and of sorghum would facilitate molecular breeding programs and studies of other C4 crops. The objective of this study is to conduct quantitative trait loci analysis using genotying by sequencing for early seed germination and seedling cold tolerance in two sorghum recombinant inbred lines populations. To accomplish that, we used two populations of recombinant inbred lines (RIL) developed from crosses between cold-tolerant (CT19, ICSV700) and cold-sensitive (TX430, M81E) parents. The derived RIL populations were evaluated for single nucleotide polymorphism (SNP) using genotype-by-sequencing (GBS) in the field and under controlled environments for their response to chilling stress. Linkage maps were constructed with 464 and 875 SNPs for the CT19 X TX430 (C1) and ICSV700 X M81 E (C2) populations respectively. Using quantitative trait loci (QTL) mapping, we identified QTL conferring tolerance to chilling tolerance at the seedling stage. A total of 16 and 39 total QTL were identified in the C1 and C2 populations, respectively. Two major QTL were identified in the C1 population, and three major QTL were mapped in the C2 population. Comparisons between the two populations and with previously identified QTL show a high degree of similarity in QTL locations. Given the amount of co-localization of QTL across traits and the direction of allelic effect supports that these regions have a pleiotropic effect. These QTL regions were also identified to be highly enriched for genes encoding chilling stress and hormonal response genes. This identified QTL can be useful in developing tools for molecular breeding of sorghums with improved low-temperature germinability.
Collapse
|
11
|
Yan P, Li W, Zhou E, Xing Y, Li B, Liu J, Zhang Z, Ding D, Fu Z, Xie H, Tang J. Integrating BSA-Seq with RNA-Seq Reveals a Novel Fasciated Ear5 Mutant in Maize. Int J Mol Sci 2023; 24:ijms24021182. [PMID: 36674701 PMCID: PMC9867142 DOI: 10.3390/ijms24021182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Increasing grain yield is required to meet the rapidly expanding demands for food, feed, and fuel. Inflorescence meristems are central to plant growth and development. However, the question concerning whether inflorescence development can be regulated to improve grain yield remains unclear. Here, we describe a naturally occurring single recessive mutation called fea5 that can increase grain yield in maize. Using bulk segregant analysis sequencing (BSA-seq), the candidate region was initially mapped to a large region on chromosome 4 (4.68 Mb-11.26 Mb). Transcriptome sequencing (RNA-seq) revealed a total of 1246 differentially expressed genes (DEGs), of which 835 were up-regulated and 411 were down-regulated. Further analysis revealed the enrichment of DEGs in phytohormone signal transduction. Consistently, phytohormone profiling indicated that auxin (IAA), jasmonic acid (JA), ethylene (ETH), and cytokinin (CK) levels increased significantly, whereas the gibberellin (GA) level decreased significantly in fea5. By integrating BSA-seq with RNA-seq, we identified Zm00001d048841 as the most likely candidate gene. Our results provide valuable insight into this new germplasm resource and the molecular mechanism underlying fasciated ears that produce a higher kernel row number in maize.
Collapse
Affiliation(s)
- Pengshuai Yan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| | - Enxiang Zhou
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ye Xing
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| |
Collapse
|
12
|
Mendu L, Jalathge G, Dhillon KK, Singh NP, Balasubramanian VK, Fewou R, Gitz DC, Chen J, Xin Z, Mendu V. Mutation in the Endo-β-1,4-glucanase (KORRIGAN) Is Responsible for Thick Leaf Phenotype in Sorghum. PLANTS (BASEL, SWITZERLAND) 2022; 11:3531. [PMID: 36559643 PMCID: PMC9780866 DOI: 10.3390/plants11243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is an important crop for food, feed, and fuel production. Particularly, sorghum is targeted for cellulosic ethanol production. Extraction of cellulose from cell walls is a key process in cellulosic ethanol production, and understanding the components involved in cellulose synthesis is important for both fundamental and applied research. Despite the significance in the biofuel industry, the genes involved in sorghum cell wall biosynthesis, modification, and degradation have not been characterized. In this study, we have identified and characterized three allelic thick leaf mutants (thl1, thl2, and thl3). Bulked Segregant Analysis sequencing (BSAseq) showed that the causal mutation for the thl phenotype is in endo-1,4-β-glucanase gene (SbKOR1). Consistent with the causal gene function, the thl mutants showed decreased crystalline cellulose content in the stem tissues. The SbKOR1 function was characterized using Arabidopsis endo-1,4-β-glucanase gene mutant (rsw2-1). Complementation of Arabidopsis with SbKOR1 (native Arabidopsis promoter and overexpression by 35S promoter) restored the radial swelling phenotype of rsw2-1 mutant, proving that SbKOR1 functions as endo-1,4-β-glucanase. Overall, the present study has identified and characterized sorghum endo-1,4-β-glucanase gene function, laying the foundation for future research on cell wall biosynthesis and engineering of sorghum for biofuel production.
Collapse
Affiliation(s)
- Lavanya Mendu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Gayani Jalathge
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Nagendra Pratap Singh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | | | - Rebecca Fewou
- Faculty of Science, University of Angers, 49000 Angers, France
| | - Dennis C. Gitz
- U. S. Department of Agriculture, Agriculture Research Service, Lubbock, TX 79415, USA
| | - Junping Chen
- U. S. Department of Agriculture, Agriculture Research Service, Lubbock, TX 79415, USA
| | - Zhanguo Xin
- U. S. Department of Agriculture, Agriculture Research Service, Lubbock, TX 79415, USA
| | - Venugopal Mendu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
13
|
Gao Y, Qu G, Huang S, Liu Z, Fu W, Zhang M, Feng H. BrCPS1 Function in Leafy Head Formation Was Verified by Two Allelic Mutations in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:889798. [PMID: 35903226 PMCID: PMC9315314 DOI: 10.3389/fpls.2022.889798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The formation of the leafy heads of Chinese cabbage is an important agricultural factor because it directly affects yield. In this study, we identified two allelic non-heading mutants, nhm4-1 and nhm4-2, from an ethyl methanesulfonate mutagenic population of a heading Chinese cabbage double haploid line "FT." Using MutMap, Kompetitive Allele-Specific PCR genotyping, and map-based cloning, we found that BraA09g001440.3C was the causal gene for the mutants. BraA09g001440.3C encodes an ent-copalyl diphosphate synthase 1 involved in gibberellin biosynthesis. A single non-synonymous SNP in the seventh and fourth exons of BraA09g001440.3C was responsible for the nhm4-1 and nhm4-2 mutant phenotypes, respectively. Compared with the wild-type "FT," the gibberellin content in the mutant leaves was significantly reduced. Both mutants showed a tendency to form leafy heads after exogenous GA3 treatment. The two non-heading mutants and the work presented herein demonstrate that gibberellin is related to leafy head formation in Chinese cabbage.
Collapse
Affiliation(s)
- Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Gaoyang Qu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shengnan Huang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhiyong Liu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Wei Fu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Meidi Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Tetreault HM, Gries T, Liu S, Toy J, Xin Z, Vermerris W, Ralph J, Funnell-Harris DL, Sattler SE. The Sorghum ( Sorghum bicolor) Brown Midrib 30 Gene Encodes a Chalcone Isomerase Required for Cell Wall Lignification. FRONTIERS IN PLANT SCIENCE 2021; 12:732307. [PMID: 34925394 PMCID: PMC8674566 DOI: 10.3389/fpls.2021.732307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
In sorghum (Sorghum bicolor) and other C4 grasses, brown midrib (bmr) mutants have long been associated with plants impaired in their ability to synthesize lignin. The brown midrib 30 (Bmr30) gene, identified using a bulk segregant analysis and next-generation sequencing, was determined to encode a chalcone isomerase (CHI). Two independent mutations within this gene confirmed that loss of its function was responsible for the brown leaf midrib phenotype and reduced lignin concentration. Loss of the Bmr30 gene function, as shown by histochemical staining of leaf midrib and stalk sections, resulted in altered cell wall composition. In the bmr30 mutants, CHI activity was drastically reduced, and the accumulation of total flavonoids and total anthocyanins was impaired, which is consistent with its function in flavonoid biosynthesis. The level of the flavone lignin monomer tricin was reduced 20-fold in the stem relative to wild type, and to undetectable levels in the leaf tissue of the mutants. The bmr30 mutant, therefore, harbors a mutation in a phenylpropanoid biosynthetic gene that is key to the interconnection between flavonoids and monolignols, both of which are utilized for lignin synthesis in the grasses.
Collapse
Affiliation(s)
- Hannah M. Tetreault
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Tammy Gries
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Sarah Liu
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - John Toy
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Agricultural Research Service, United States Department of Agriculture, Lubbock, TX, United States
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - John Ralph
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - Deanna L. Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
15
|
Xin Z, Wang M, Cuevas HE, Chen J, Harrison M, Pugh NA, Morris G. Sorghum genetic, genomic, and breeding resources. PLANTA 2021; 254:114. [PMID: 34739592 PMCID: PMC8571242 DOI: 10.1007/s00425-021-03742-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA.
| | - Mingli Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - Hugo E Cuevas
- Tropical Agriculture Research Station, USDA-ARS, Mayagüez, 00680, Puerto Rico
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Melanie Harrison
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - N Ace Pugh
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Geoffrey Morris
- Crop Quantitative Genomics, Soil and Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 80523, USA
| |
Collapse
|
16
|
Zhao Y, Huang S, Zhang M, Zhang Y, Feng H. Mapping of a Pale Green Mutant Gene and Its Functional Verification by Allelic Mutations in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:699308. [PMID: 34456941 PMCID: PMC8387703 DOI: 10.3389/fpls.2021.699308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Leaves are the main organ for photosynthesis, and variations in leaf color affect photosynthesis and plant biomass formation. We created two similar whole-plant pale green mutants (pem1 and pem2) from the double haploid (DH) Chinese cabbage line "FT" through ethyl methanesulfonate (EMS) mutagenesis of seeds. Photosynthetic pigment contents and net photosynthetic rates were significantly lower in the mutants than in the wild-type "FT," and the chloroplast thylakoid endomembrane system was poor. Genetic analysis showed that the mutated phenotypes of pem1 and pem2 were caused by a single nuclear gene. Allelism tests showed that pem1 and pem2 were alleles. We mapped Brpem1 to a 64.25 kb region on chromosome A10, using BSR-Seq and map-based cloning of 979 F2 recessive individuals. Whole-genome re-sequencing revealed a single nucleotide polymorphism (SNP) transition from guanine to adenosine on BraA10g021490.3C in pem1, causing an amino acid shift from glycine to glutamic acid (G to E); in addition, BraA10g021490.3C in pem2 was found to have a single nucleotide substitution from guanine to adenosine, causing an amino acid change from E to lysine (K). BraA10g021490.3C is a homolog of the Arabidopsisdivinyl chlorophyllide a 8-vinyl-reductase (DVR) gene that encodes 3,8-divinyl protochlorophyllide a 8-vinyl reductase, which is a key enzyme in chlorophyll biosynthesis. Enzyme activity assay and chlorophyll composition analysis demonstrated that impaired DVR had partial loss of function. These results provide a basis to understand chlorophyll metabolism and explore the mechanism of a pale green phenotype in Chinese cabbage.
Collapse
|
17
|
Wang L, Lu Z, Regulski M, Jiao Y, Chen J, Ware D, Xin Z. BSAseq: an interactive and integrated web-based workflow for identification of causal mutations in bulked F2 populations. Bioinformatics 2021; 37:382-387. [PMID: 32777814 DOI: 10.1093/bioinformatics/btaa709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
SUMMARY With the advance of next-generation sequencing technologies and reductions in the costs of these techniques, bulked segregant analysis (BSA) has become not only a powerful tool for mapping quantitative trait loci but also a useful way to identify causal gene mutations underlying phenotypes of interest. However, due to the presence of background mutations and errors in sequencing, genotyping, and reference assembly, it is often difficult to distinguish true causal mutations from background mutations. In this study, we developed the BSAseq workflow, which includes an automated bioinformatics analysis pipeline with a probabilistic model for estimating the linked region (the region linked to the causal mutation) and an interactive Shiny web application for visualizing the results. We deeply sequenced a sorghum male-sterile parental line (ms8) to capture the majority of background mutations in our bulked F2 data. We applied the workflow to 11 bulked sorghum F2 populations and 1 rice F2 population and identified the true causal mutation in each population. The workflow is intuitive and straightforward, facilitating its adoption by users without bioinformatics analysis skills. We anticipate that the BSAseq workflow will be broadly applicable to the identification of causal mutations for many phenotypes of interest. AVAILABILITY AND IMPLEMENTATION BSAseq is freely available on https://www.sciapps.org/page/bsa. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yinping Jiao
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Junping Chen
- USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,USDA-ARS Plant, Soil and Nutrition Research Unit, Ithaca, NY 14853, USA
| | - Zhanguo Xin
- USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
| |
Collapse
|
18
|
Zhang R, Ren Y, Wu H, Yang Y, Yuan M, Liang H, Zhang C. Mapping of Genetic Locus for Leaf Trichome Formation in Chinese Cabbage Based on Bulked Segregant Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040771. [PMID: 33919922 PMCID: PMC8070908 DOI: 10.3390/plants10040771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Chinese cabbage is a leafy vegetable, and its leaves are the main edible organs. The formation of trichomes on the leaves can significantly affect its taste, so studying this phenomenon is of great significance for improving the quality of Chinese cabbage. In this study, two varieties of Chinese cabbage, W30 with trichome leaves and 082 with glabrous leaves, were crossed to generate F1 and F1 plants, which were self-fertilized to develop segregating populations with trichome or glabrous morphotypes. The two bulks of the different segregating populations were used to conduct bulked segregant analysis (BSA). A total of 293.4 M clean reads were generated from the samples, and plants from the trichome leaves (AL) bulk and glabrous leaves (GL) bulk were identified. Between the two DNA pools generated from the trichome and glabrous plants, 55,048 SNPs and 272 indels were generated. In this study, three regions (on chromosomes 6, 10 and scaffold000100) were identified, and the annotation revealed three candidate genes that may participate in the formation of leaf trichomes. These findings suggest that the three genes-Bra025087 encoding a cyclin family protein, Bra035000 encoding an ATP-binding protein/kinase/protein kinase/protein serine/threonine kinase and Bra033370 encoding a WD-40 repeat family protein-influence the formation of trichomes by participating in trichome morphogenesis (GO: 0010090). These results demonstrate that BSA can be used to map genes associated with traits and provide new insights into the molecular mechanism of leafy trichome formation in Chinese cabbage.
Collapse
|
19
|
Sanjari S, Shobbar ZS, Ghanati F, Afshari-Behbahanizadeh S, Farajpour M, Jokar M, Khazaei A, Shahbazi M. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:383-391. [PMID: 33450508 DOI: 10.1016/j.plaphy.2021.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Wax accumulation on the sorghum surface plays an important role in drought tolerance by preventing non-stomatal water loss. Thereby, the effect of post-flowering drought stress (PFDS) on the epicuticular wax (EW) amount, relative water content (RWC), chlorophyll, and grain yield in sorghum drought contrasting genotypes were investigated. The experiment was conducted as a split-plot based on randomized complete block design (RCBD) with two water treatments (normal watering and water holding after 50% flowering stage), and three genotypes (Kimia and KGS23 as drought-tolerant and Sepideh as drought-susceptible). Scanning electron microscopy and GC-MS analyses were used to determine the wax crystals density and its compositions, respectively. In addition, based on literature reviews and publicly available datasets, six wax biosynthesis drought stress-responsive genes were chosen for expression analysis. The results showed that the amounts of EW and wax crystals density were increased in Kimia and Sepideh genotypes and no changed in KGS23 genotype under drought stress. Chemical compositions of wax were classified into six major groups including alkanes, fatty acids, aldehydes, esters, alcohols, and cyclic compounds. Alkanes increment in drought-tolerant genotypes led to make an effective barrier against the drought stress to control water losses. In addition, the drought-tolerant genotypes had higher levels of RWC compared to the drought-susceptible ones, resulted in higher yield produced under drought condition. According to the results, SbWINL1, FATB, and CER1 genes play important roles in drought-induced wax biosynthesis. The results of the present study revealed a comprehensive view of the wax and its compositions and some involved genes in sorghum under drought stress.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Faezeh Ghanati
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran.
| | - Mojtaba Jokar
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azim Khazaei
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maryam Shahbazi
- Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
20
|
Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson SA, Close TJ, Shubo W, Varshney RK. Genomic resources in plant breeding for sustainable agriculture. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153351. [PMID: 33412425 PMCID: PMC7903322 DOI: 10.1016/j.jplph.2020.153351] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; University of Southern Queensland, Toowoomba, Australia
| | - Ramesh Palakurthi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Emma Mace
- Agri-Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Tara Satyavathi
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Damaris Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | | | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yan Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Vikas K Singh
- South Asia Hub, International Rice Research Institute (IRRI), Hyderabad, India
| | - Guowei Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CYMMIT), Mexico DF, Mexico; Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sanjay Kaila
- Department of Biotechnology, Ministry of Science and Technology, Government of India, India
| | - Henry Nguyen
- National Centre for Soybean Research, University of Missouri, Columbia, USA
| | - Sobhana Sivasankar
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | | | - Wan Shubo
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
21
|
Manchikatla PK, Kalavikatte D, Mallikarjuna BP, Palakurthi R, Khan AW, Jha UC, Bajaj P, Singam P, Chitikineni A, Varshney RK, Thudi M. MutMap Approach Enables Rapid Identification of Candidate Genes and Development of Markers Associated With Early Flowering and Enhanced Seed Size in Chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:688694. [PMID: 34326857 PMCID: PMC8313520 DOI: 10.3389/fpls.2021.688694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/02/2021] [Indexed: 05/16/2023]
Abstract
Globally terminal drought is one of the major constraints to chickpea (Cicer arietinum L.) production. Early flowering genotypes escape terminal drought, and the increase in seed size compensates for yield losses arising from terminal drought. A MutMap population for early flowering and large seed size was developed by crossing the mutant line ICC4958-M3-2828 with wild-type ICC 4958. Based on the phenotyping of MutMap population, extreme bulks for days to flowering and 100-seed weight were sequenced using Hi-Seq2500 at 10X coverage. On aligning 47.41 million filtered reads to the CDC Frontier reference genome, 31.41 million reads were mapped and 332,395 single nucleotide polymorphisms (SNPs) were called. A reference genome assembly for ICC 4958 was developed replacing these SNPs in particular positions of the CDC Frontier genome. SNPs specific for each mutant bulk ranged from 3,993 to 5,771. We report a single unique genomic region on Ca6 (between 9.76 and 12.96 Mb) harboring 31, 22, 17, and 32 SNPs with a peak of SNP index = 1 for low bulk for flowering time, high bulk for flowering time, high bulk for 100-seed weight, and low bulk for 100-seed weight, respectively. Among these, 22 SNPs are present in 20 candidate genes and had a moderate allelic impact on the genes. Two markers, Ca6EF10509893 for early flowering and Ca6HSDW10099486 for 100-seed weight, were developed and validated using the candidate SNPs. Thus, the associated genes, candidate SNPs, and markers developed in this study are useful for breeding chickpea varieties that mitigate yield losses under drought stress.
Collapse
Affiliation(s)
- Praveen Kumar Manchikatla
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Danamma Kalavikatte
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Bingi Pujari Mallikarjuna
- Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, Regional Research Centre, Dharwad, India
| | - Ramesh Palakurthi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Aamir W. Khan
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Uday Chand Jha
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Rajeev K. Varshney, ;
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
- Mahendar Thudi,
| |
Collapse
|
22
|
Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. PLANTS 2020; 9:plants9101355. [PMID: 33066352 PMCID: PMC7602136 DOI: 10.3390/plants9101355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The recent advancements in forward genetics have expanded the applications of mutation techniques in advanced genetics and genomics, ahead of direct use in breeding programs. The advent of next-generation sequencing (NGS) has enabled easy identification and mapping of causal mutations within a short period and at relatively low cost. Identifying the genetic mutations and genes that underlie phenotypic changes is essential for understanding a wide variety of biological functions. To accelerate the mutation mapping for crop improvement, several high-throughput and novel NGS based forward genetic approaches have been developed and applied in various crops. These techniques are highly efficient in crop plants, as it is relatively easy to grow and screen thousands of individuals. These approaches have improved the resolution in quantitative trait loci (QTL) position/point mutations and assisted in determining the functional causative variations in genes. To be successful in the interpretation of NGS data, bioinformatics computational methods are critical elements in delivering accurate assembly, alignment, and variant detection. Numerous bioinformatics tools/pipelines have been developed for such analysis. This article intends to review the recent advances in NGS based forward genetic approaches to identify and map the causal mutations in the crop genomes. The article also highlights the available bioinformatics tools/pipelines for reducing the complexity of NGS data and delivering the concluding outcomes.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sudhir Kumar Gupta
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India;
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
- Correspondence: (D.S.); (B.K.D.)
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Correspondence: (D.S.); (B.K.D.)
| |
Collapse
|
23
|
Zhang H, Wang M, Li Y, Yan W, Chang Z, Ni H, Chen Z, Wu J, Xu C, Deng XW, Tang X. GDSL esterase/lipases OsGELP34 and OsGELP110/OsGELP115 are essential for rice pollen development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1574-1593. [PMID: 32068333 DOI: 10.1111/jipb.12919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 05/27/2023]
Abstract
Pollen exine contains complex biopolymers of aliphatic lipids and phenolics. Abnormal development of pollen exine often leads to plant sterility. Molecular mechanisms regulating exine formation have been studied extensively but remain ambiguous. Here we report the analyses of three GDSL esterase/lipase protein genes, OsGELP34, OsGELP110, and OsGELP115, for rice exine formation. OsGELP34 was identified by cloning of a male sterile mutant gene. OsGELP34 encodes an endoplasmic reticulum protein and was mainly expressed in anthers during pollen exine formation. osgelp34 mutant displayed abnormal exine and altered expression of a number of key genes required for pollen development. OsGELP110 was previously identified as a gene differentially expressed in meiotic anthers. OsGELP110 was most homologous to OsGELP115, and the two genes showed similar gene expression patterns. Both OsGELP110 and OsGELP115 proteins were localized in peroxisomes. Individual knockout of OsGELP110 and OsGELP115 did not affect the plant fertility, but double knockout of both genes altered the exine structure and rendered the plant male sterile. OsGELP34 is distant from OsGELP110 and OsGELP115 in sequence, and osgelp34 and osgelp110/osgelp115 mutants were different in anther morphology despite both were male sterile. These results suggested that OsGELP34 and OsGELP110/OsGELP115 catalyze different compounds for pollen exine development.
Collapse
Affiliation(s)
- Huihui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
24
|
Fu W, Huang S, Gao Y, Zhang M, Qu G, Wang N, Liu Z, Feng H. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2937-2948. [PMID: 32656681 DOI: 10.1007/s00122-020-03647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2020] [Indexed: 05/28/2023]
Abstract
Mapping and resequencing of two allelic early bolting mutants ebm5-1 and ebm5-2 revealed that the BrSDG8 gene is related to bolting in Chinese cabbage (Brassica rapa ssp. pekinensis). Bolting influences the leafy head formation and seed yield of Chinese cabbage therefore being an important agronomic trait. Herein, two allelic early bolting mutants, ebm5-1 and ebm5-2, stably inherited in Chinese cabbage were obtained from wild-type 'FT' seeds by ethyl methane sulfonate mutagenesis. Both mutants flowered significantly earlier than 'FT,' and genetic analysis revealed that the early bolting of the two mutants was controlled by one recessive nuclear gene. With BSR-seq, the mutations originating lines ebm5-1 and ebm5-2 were located to the same region in chromosome A07. Using the 1741 F2 individuals with the ebm5-1 phenotype as the mapping population, this region was narrowed to 56.24 kb between markers InDel18 and InDel45. A single-nucleotide polymorphism (SNP) was aligned to the BraA07g040740.3C (BrSDG8) region by whole-genome resequencing of ebm5-1 mutant and 'FT.' BrSDG8 is a homolog of Arabidopsis thaliana SDG8 encoding a histone methyltransferase affecting H3K4 trimethylation in FLOWERING LOCUS C chromatin. Comparative sequencing established that the SNP occurred on BrSDG8 17th exon in ebm5-1. Genotype analysis showed full co-segregation of the early bolting phenotype with this SNP. Cloning of allelic mutant ebm5-2 indicated that it harbors a deletion mutation on the 12th exon of BrSDG8. Quantitative real-time PCR analysis indicated that BrSDG8 expression level was observably lower in mutant ebm5-1 than in 'FT.' Overall, the present results provide strong evidence that BrSDG8 mutation leads to early bolting in Chinese cabbage, thereby providing a basis to understand the molecular mechanisms underlying this phenotype.
Collapse
Affiliation(s)
- Wei Fu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Yue Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Meidi Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| |
Collapse
|
25
|
Elango D, Xue W, Chopra S. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1727-1737. [PMID: 32801499 PMCID: PMC7415066 DOI: 10.1007/s12298-020-00848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 05/25/2023]
Abstract
Sorghum accumulates epi-cuticular wax (EW) in leaves, sheaths, and culms. EW reduces the transpirational and nontranspirational (nonstomatal) water loss and protects the plant from severe drought stress in addition to imparting resistance against insect pests. Results presented here are from the analysis of EW content of 387 diverse sorghum accessions and its genome-wide association study (GWAS). EW content in sorghum leaves ranged from 0.1 to 29.7 mg cm-2 with a mean value of 5.1 mg cm-2. GWAS using 265,487 single nucleotide polymorphisms identified thirty-seven putative genes associated (P < 9.89E-06) with EW biosynthesis and transport in sorghum. Major EW biosynthetic genes identified included 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III, an Ankyrin repeat protein, a bHLH-MYC, and an R2R3-MYB transcription factor. Genes involved in EW regulation or transport included an ABC transporter, a Lipid exporter ABCA1, a Multidrug resistance protein, Inositol 1, 3, 4-trisphosphate 5/6-kinase, and a Cytochrome P450. This GWA study thus demonstrates the potential for genetic manipulation of EW content in sorghum for better adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Weiya Xue
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Surinder Chopra
- Department of Plant Science, Penn State University, University Park, PA USA
| |
Collapse
|
26
|
Wanga MA, Shimelis H, Horn LN, Sarsu F. The Effect of Single and Combined Use of Gamma Radiation and Ethylmethane Sulfonate on Early Growth Parameters in Sorghum. PLANTS 2020; 9:plants9070827. [PMID: 32630116 PMCID: PMC7411769 DOI: 10.3390/plants9070827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Success in inducing genetic variation through mutagenic agents is dependent on the source and dose of application. The objective of this study was to determine the optimum doses of a single and combined use of gamma radiation and ethylmethane sulfonate (EMS) for effective mutation breeding in sorghum. The study involved two concurrent experiments as follows: in experiment I, the seeds of four sorghum genotypes (‘Parbhani Moti’, ‘Parbhani Shakti’, ‘ICSV 15013′, and ‘Macia’) were treated using gamma radiation (0, 300, 400, 500 and 600 Gy), EMS (0, 0.5 and 1.0%), and gamma radiation followed by EMS (0 and 300 Gy and 0.1% EMS; 400 Gy and 0.05% EMS). In experiment II, the seeds of two genotypes (‘Macia’ and ‘Red sorghum’) were treated with seven doses of gamma radiation only (0, 100, 200, 300, 400, 500 and 600 Gy). Overall, the combined applied doses of gamma radiation and EMS are not recommended due to poor seedling emergence and seedling survival rate below LD50. The best dosage of gamma radiation for genotypes Red sorghum, Parbhani Moti, Macia, ICSV 15013 and Parbhani Shakti ranged between 392 and 419 Gy, 311 and 354 Gy, 256 and 355 Gy, 273 and 304 Gy, and 266 and 297 Gy, respectively. The EMS optimum dosage ranges for genotypes Parbhani Shakti, ICSV 15013, Parbhani Moti and Macia were between 0.41% and 0.60%, 0.48% and 0.58%, 0.46% and 0.51%, and 0.36% and 0.45%, respectively. The above dose rates are useful to induce genetic variation in the tested sorghum genotypes for greater mutation events in sorghum breeding programs.
Collapse
Affiliation(s)
- Maliata Athon Wanga
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa;
- Directorate of Agricultural Research and Development, Ministry of Agriculture, Water and Land Reform, Private Bag 13184, Windhoek, Namibia
- Correspondence:
| | - Hussein Shimelis
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa;
| | - Lydia N. Horn
- Multidisciplinary Research Centre, University of Namibia, Private Bag 13301, Windhoek, Namibia;
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
27
|
Reddy SH, Singhal RK, DaCosta MVJ, Kambalimath SK, Rajanna MP, Muthurajan R, Sevanthi AM, Mohapatra T, Sarla N, Chinnusamy V, S GK, Singh AK, Singh NK, Sharma RP, Pathappa N, Sheshshayee SM. Leaf mass area determines water use efficiency through its influence on carbon gain in rice mutants. PHYSIOLOGIA PLANTARUM 2020; 169:194-213. [PMID: 31912892 DOI: 10.1111/ppl.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Saving water and enhancing rice productivity are consensually the most important research goals globally. While increasing canopy cover would enhance growth rates by higher photosynthetic carbon gain, an accompanied increase in transpiration would have a negative impact on saving water as well as for sustainability under water-limited conditions. Increased water use efficiency (WUE) by virtue of higher carbon assimilatory capacity can significantly circumvent this trade-off. Here, we report leaf mass area (LMA) has an important canopy architecture trait which when combined with superior carboxylation efficiency (CE) would achieve higher water productivity in rice. A set of 130 ethyl methanesulfonate induced mutants of an upland cultivar Nagina-22 (N22), was screened for leaf morphological traits leading to the identification of mutants differing in LMA. The wild-type, N22, along with a selected low-LMA (380-4-3) and two high-LMA mutants (392-9-1 and 457-1-3), all with comparable total leaf area, were raised under well-watered (100% Field Capacity (FC)) and water-limited (60% FC) conditions. Low Δ13 C and a higher RuBisCO content in high-LMA mutants indicated higher carboxylation efficiency, leading to increased carbon gain. Single parent backcross populations developed by crossing high and the low-LMA mutants with N22, separately, were screened for LMA, Δ13 C and growth traits. Comparison of dry matter accumulation per unit leaf area among the progenies differing in LMA and Δ13 C reiterated the association of LMA with CE. Results illustrated that high-LMA when combined with higher CE (low Δ13 C) lead to increased WUE and growth rates.
Collapse
Affiliation(s)
| | - Rajesh Kumar Singhal
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | | | | | - Raveendran Muthurajan
- Center for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gopala Krishnan S
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | - Sreeman M Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
28
|
Chen J, Jiao Y, Laza H, Payton P, Ware D, Xin Z. Identification of the First Nuclear Male Sterility Gene (Male-sterile 9) in Sorghum. THE PLANT GENOME 2019; 12:1-12. [PMID: 33016577 DOI: 10.3835/plantgenome2019.03.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/03/2019] [Indexed: 06/11/2023]
Abstract
The male-sterile 9 (ms9) is a novel nuclear male-sterile mutant in sorghum. The Ms9 gene encodes a PHD-finger transcription factor critical for pollen development. The identification of the Ms9 gene provides a strategy to control male sterility in sorghum. Nuclear male sterility (NMS) is important for understanding microspore development and could facilitate the development of new strategies to control male sterility. Several NMS lines and mutants have been reported in sorghum [Sorghum bicolor (L.) Moench] previously. However, no male-sterile gene has been identified, hampering the utility of NMS in sorghum breeding. In this study, we characterized a new NMS mutant, male sterile 9 (ms9), which is distinct from all other reported NMS loci. The ms9 mutant is stable under a variety of environmental conditions. Homozygous ms9 plants produced normal ovaries but small pale-colored anthers that contained no pollen grains. Microscopic analyses revealed abnormal microspore development of ms9 at the midmicrospore stage, causing degeneration of microspore inside the anther lobes and male sterility of ms9 plants. Using MutMap, we identified the Ms9 gene as a plant homeotic domain (PHD)-finger transcription factor similar to Ms1 in Arabidopsis thaliana (L.) Heynh. and Ptc1 in rice (Oryza sativa L.). Ms9 is the first NMS gene identified in sorghum. Thus, the Ms9 gene and ms9 mutant provide new genetic tools for studying pollen development and controlling male sterility in sorghum.
Collapse
Affiliation(s)
- Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415
| | | | - Haydee Laza
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415
| | - Paxton Payton
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415
| | - Doreen Ware
- Cold Spring Harbor Lab., Cold Spring Harbor, NY
- Soil and Nutrition Lab. Research Unit, USDA-ARS, Cornell Univ., Ithaca, NY
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415
| |
Collapse
|
29
|
Dampanaboina L, Jiao Y, Chen J, Gladman N, Chopra R, Burow G, Hayes C, Christensen SA, Burke J, Ware D, Xin Z. Sorghum MSD3 Encodes an ω-3 Fatty Acid Desaturase that Increases Grain Number by Reducing Jasmonic Acid Levels. Int J Mol Sci 2019; 20:ijms20215359. [PMID: 31661847 PMCID: PMC6862555 DOI: 10.3390/ijms20215359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022] Open
Abstract
Grain number per panicle is an important component of grain yield in sorghum (Sorghum bicolor (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 (MSD1) and MSD2 genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions. Here, we report the identification of another gene, MSD3, which is also involved in the regulation of grain numbers in sorghum. Four bulked F2 populations from crosses between BTx623 and each of the independent msd mutants p6, p14, p21, and p24 were sequenced to 20× coverage of the whole genome on a HiSeq 2000 system. Bioinformatic analyses of the sequence data showed that one gene, Sorbi_3001G407600, harbored homozygous mutations in all four populations. This gene encodes a plastidial ω-3 fatty acid desaturase that catalyzes the conversion of linoleic acid (18:2) to linolenic acid (18:3), a substrate for jasmonic acid (JA) biosynthesis. The msd3 mutants had reduced levels of linolenic acid in both leaves and developing panicles that in turn decreased the levels of JA. Furthermore, the msd3 panicle phenotype was reversed by treatment with methyl-JA (MeJA). Our characterization of MSD1, MSD2, and now MSD3 demonstrates that JA-regulated processes are critical to the msd phenotype. The identification of the MSD3 gene reveals a new target that could be manipulated to increase grain number per panicle in sorghum, and potentially other cereal crops, through the genomic editing of MSD3 functional orthologs.
Collapse
Affiliation(s)
- Lavanya Dampanaboina
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
| | - Yinping Jiao
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
| | - Nicholas Gladman
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Ratan Chopra
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
- Current address: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA.
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
| | - Shawn A Christensen
- Chemistry Research Unit, USDA-ARS, 1700 S.W. 23rd Drive, Gainesville, FL 32608, USA.
| | - John Burke
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, NY 14853, USA.
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX 79415, USA.
| |
Collapse
|
30
|
Chen J, Zou G, Xin Z. Development of a Pedigreed Sorghum Mutant Library. Methods Mol Biol 2019; 1931:61-73. [PMID: 30652283 DOI: 10.1007/978-1-4939-9039-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Induced mutagenesis is a powerful approach to generate variations for elucidation of gene function and to create new traits for breeding. Here, we described a procedure to develop a pedigreed mutant library through chemical mutagenesis with ethylmethane sulfonate (EMS) treated seeds in sorghum and discussed its potential to generate new traits for sorghum improvement. Unlike random mutagenesis, a pedigreed mutant library, once properly established, can serve as a powerful resource to isolate and recover mutations of both agronomical and biological importance. With the development of affordable and high-throughput next-generation sequencing technologies, identification of causal mutations from a mutant library with a uniform genetic background becomes increasingly efficient and cost-effective. Fast causal gene discovery from mutant libraries combined with precise genome editing techniques will accelerate incorporation of new traits and revolutionize crop breeding.
Collapse
Affiliation(s)
- Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, USA
| | - Guihua Zou
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, USA
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, USA.
| |
Collapse
|
31
|
Klein H, Xiao Y, Conklin PA, Govindarajulu R, Kelly JA, Scanlon MJ, Whipple CJ, Bartlett M. Bulked-Segregant Analysis Coupled to Whole Genome Sequencing (BSA-Seq) for Rapid Gene Cloning in Maize. G3 (BETHESDA, MD.) 2018; 8:3583-3592. [PMID: 30194092 PMCID: PMC6222591 DOI: 10.1534/g3.118.200499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1 Our method provides a quick, simple way to clone genes in maize.
Collapse
Affiliation(s)
- Harry Klein
- Plant Biology Graduate Program and Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | | | | | - Jacob A Kelly
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | | | - Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | - Madelaine Bartlett
- Plant Biology Graduate Program and Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|