1
|
Ermakova M, Fitzpatrick D, Larkum AWD. Cyclic electron flow and Photosystem II-less photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24185. [PMID: 39471160 DOI: 10.1071/fp24185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.
Collapse
Affiliation(s)
- Maria Ermakova
- School of Biological Sciences, Monash University, Melbourne, Vic 3800, Australia; and Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Duncan Fitzpatrick
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Maekawa S, Ohnishi M, Wada S, Ifuku K, Miyake C. Enhanced Reduction of Ferredoxin in PGR5-Deficient Mutant of Arabidopsis thaliana Stimulated Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I. Int J Mol Sci 2024; 25:2677. [PMID: 38473924 DOI: 10.3390/ijms25052677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.
Collapse
Affiliation(s)
- Shu Maekawa
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Miho Ohnishi
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| | - Shinya Wada
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
- Graduate School for Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chikahiro Miyake
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Short AW, Sebastian JSV, Huang J, Wang G, Dassanayake M, Finnegan PM, Parker JD, Cao KF, Wee AKS. Comparative transcriptomics of the chilling stress response in two Asian mangrove species, Bruguiera gymnorhiza and Rhizophora apiculata. TREE PHYSIOLOGY 2024; 44:tpae019. [PMID: 38366388 PMCID: PMC11443552 DOI: 10.1093/treephys/tpae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.
Collapse
Affiliation(s)
- Aidan W Short
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- Institute of Ecology and Evolution, Department of Biology, 5289 University of Oregon, Eugene, OR 97403, USA
| | - John Sunoj V Sebastian
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, China
| | - Jie Huang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University (LSU), 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - John D Parker
- Smithsonian Environmental Research Center, Smithsonian Institution, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, China
| | - Alison K S Wee
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, China
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Malaysia
| |
Collapse
|
4
|
Li Y, Feng H, Xian S, Wang J, Zheng X, Song X. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108065. [PMID: 37797385 DOI: 10.1016/j.plaphy.2023.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) has attracted increasing attention due to their combined toxicity to terrestrial vegetation. Photosynthesis which utilizes light energy to synthesize organic substances is crucial for crop production. However, the plant photosynthetic response to the joint toxicity of MPs and Cd is still unknown. Here, we studied the effects of polyethylene (PE) MPs on the photosynthetic performance of two maize cultivars Xianyu 335 (XY) and Zhengdan 958 (ZD) grown in a Cd contaminated soil. Results showed that the leaf Cd concentration in XY and ZD reached 26.1 and 31.9 μg g-1, respectively. PE-MPs did not influence the leaf Cd content, but posed direct and negative effects on photosynthesis by increasing the malondialdehyde content, reducing the chlorophyll content, inhibiting photosynthetic capacity, disrupting the PSII donor side, blocking electron transfer in different photosystems, and suppressing the oxidation and reduction states of PSI. Transcriptomic analysis revealed that the inhibitory effect of combined PE-MPs and Cd on maize photosynthesis was attributed to suppressed expression of the genes encoding PSII, PSI, F-type ATPase, cytochrome b6/f complex, and electron transport between PSII and PSI. Using WGCNA, we identified a MEturquoise module highly correlated with photosynthetic traits. Hub genes bridging carbohydrate metabolism, amino acid metabolism, lipid metabolism, and translation provided the molecular mechanisms of PE-MPs and Cd tolerance in maize plants. The comprehensive information on the phytotoxicity mechanisms of Cd stress in the presence or absence of PE-MPs on the photosynthesis of maize is helpful for cloning Cd and PE-MP resistance genes in the future.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hongyu Feng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Shutong Xian
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Jiawei Wang
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Xuebo Zheng
- Institute of Tobacco Research of CAAS, Qingdao, 266101, China.
| | - Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| |
Collapse
|
5
|
Wu X, Yuan D, Bian X, Huo R, Lü G, Gong B, Li J, Liu S, Gao H. Transcriptome analysis showed that tomato-rootstock enhanced salt tolerance of grafted seedlings was accompanied by multiple metabolic processes and gene differences. FRONTIERS IN PLANT SCIENCE 2023; 14:1167145. [PMID: 37332726 PMCID: PMC10272605 DOI: 10.3389/fpls.2023.1167145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Grafting is a commonly used cultural practice to counteract salt stress and is especially important for vegetable production. However, it is not clear which metabolic processes and genes are involved in the response of tomato rootstocks to salt stress. Methods To elucidate the regulatory mechanism through which grafting enhances salt tolerance, we first evaluated the salt damage index, electrolyte permeability and Na+ accumulation in tomato (Solanum lycopersicum L.) leaves of grafted seedlings (GSs) and nongrafted seedlings (NGSs) subjected to 175 mmol·L- 1 NaCl for 0-96 h, covering the front, middle and rear ranges. Results Compared with the NGS, the GSs were more salt tolerant, and the Na+ content in the leaves decreased significantly. Through transcriptome sequencing data analysis of 36 samples, we found that GSs exhibited more stable gene expression patterns, with a lower number of DEGs. WRKY and PosF21 transcription factors were significantly upregulated in the GSs compared to the NGSs. Moreover, the GSs presented more amino acids, a higher photosynthetic index and a higher content of growth-promoting hormones. The main differences between GSs and NGSs were in the expression levels of genes involved in the BR signaling pathway, with significant upregulation of XTHs. The above results show that the metabolic pathways of "photosynthetic antenna protein", "amino acid biosynthesis" and "plant hormone signal transduction" participate in the salt tolerance response of grafted seedlings at different stages of salt stress, maintaining the stability of the photosynthetic system and increasing the contents of amino acids and growth-promoting hormones (especially BRs). In this process, the transcription factors WRKYs, PosF21 and XTHs might play an important role at the molecular level. Discussion The results of this study demonstrates that grafting on salt tolerant rootstocks can bring different metabolic processes and transcription levels changes to scion leaves, thereby the scion leaves show stronger salt tolerance. This information provides new insight into the mechanism underlying tolerance to salt stress regulation and provides useful molecular biological basis for improving plant salt resistance.
Collapse
Affiliation(s)
- Xiaolei Wu
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ding Yuan
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Xinyu Bian
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ruixiao Huo
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Guiyun Lü
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Binbin Gong
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Jingrui Li
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Sichao Liu
- Chengde Vegetable Technology Promotion Station, Chengde, China
| | - Hongbo Gao
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| |
Collapse
|
6
|
Novel Insights into the Contribution of Cyclic Electron Flow to Cotton Bracts in Response to High Light. Int J Mol Sci 2023; 24:ijms24065589. [PMID: 36982664 PMCID: PMC10054306 DOI: 10.3390/ijms24065589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Cyclic electron flow around photosystem I (CEF-PSI) is shown to be an important protective mechanism to photosynthesis in cotton leaves. However, it is still unclear how CEF-PSI is regulated in non-foliar green photosynthetic tissues such as bracts. In order to learn more about the regulatory function of photoprotection in bracts, we investigated the CEF-PSI attributes in Yunnan 1 cotton genotypes (Gossypium bar-badense L.) between leaves and bracts. Our findings demonstrated that cotton bracts possessed PROTON GRADIENT REGULATION5 (PGR5)-mediated and the choroplastic NAD(P)H dehydrogenase (NDH)-mediated CEF-PSI by the same mechanism as leaves, albeit at a lower rate than in leaves. The ATP synthase activity of bracts was also lower, while the proton gradient across thylakoid membrane (ΔpH), rate of synthesis of zeaxanthin, and heat dissipation were higher than those of the leaves. These results imply that cotton leaves under high light conditions primarily depend on CEF to activate ATP synthase and optimize ATP/NADPH. In contrast, bracts mainly protect photosynthesis by establishing a ΔpH through CEF to stimulate the heat dissipation process.
Collapse
|
7
|
Colpo A, Demaria S, Baldisserotto C, Pancaldi S, Brestič M, Živčak M, Ferroni L. Long-Term Alleviation of the Functional Phenotype in Chlorophyll-Deficient Wheat and Impact on Productivity: A Semi-Field Phenotyping Experiment. PLANTS (BASEL, SWITZERLAND) 2023; 12:822. [PMID: 36840171 PMCID: PMC9964019 DOI: 10.3390/plants12040822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Wheat mutants with a reduced chlorophyll synthesis are affected by a defective control of the photosynthetic electron flow, but tend to recover a wild-type phenotype. The sensitivity of some mutants to light fluctuations suggested that cultivation outdoors could significantly impact productivity. Six mutant lines of Triticum durum or Triticum aestivum with their respective wild-type cultivars were cultivated with a regular seasonal cycle (October-May) in a semi-field experiment. Leaf chlorophyll content and fluorescence parameters were analysed at the early (November) and late (May) developmental stages, and checked for correlation with morphometric and grain-production parameters. The alleviation of the phenotype severity concerned primarily the recovery of the photosynthetic-membrane functionality, but not the leaf chlorophyll content. Photosystem II (PSII) was less photoprotected in the mutants, but a moderate PSII photoinhibition could help control the electron flow into the chain. The accumulation of interchain electron carriers was a primary acclimative response towards the naturally fluctuating environment, maximally exploited by the mature durum-wheat mutants. The mutation itself and/or the energy-consuming compensatory mechanisms markedly influenced the plant morphogenesis, leading especially to reduced tillering, which in turn resulted in lower grain production per plant. Consistently with the interrelation between early photosynthetic phenotype and grain-yield per plant, chlorophyll-fluorescence indexes related to the level of photoprotective thermal dissipation (pNPQ), photosystem II antenna size (ABS/RC), and pool of electron carriers (Sm) are proposed as good candidates for the in-field phenotyping of chlorophyll-deficient wheat.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Marian Brestič
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marek Živčak
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Cun Z, Xu XZ, Zhang JY, Shuang SP, Wu HM, An TX, Chen JW. Responses of photosystem to long-term light stress in a typically shade-tolerant species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2023; 13:1095726. [PMID: 36714733 PMCID: PMC9878349 DOI: 10.3389/fpls.2022.1095726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiang-Zeng Xu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Research Center for Collection and Utilization of Tropical Crop Resources, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Tong-Xin An
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Kumar A, Pandey SS, Kumar D, Tripathi BN. Genetic manipulation of photosynthesis to enhance crop productivity under changing environmental conditions. PHOTOSYNTHESIS RESEARCH 2023; 155:1-21. [PMID: 36319887 DOI: 10.1007/s11120-022-00977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Current global agricultural production needs to be increased to feed the unconstrained growing population. The changing climatic condition due to anthropogenic activities also makes the conditions more challenging to meet the required crop productivity in the future. The increase in crop productivity in the post green revolution era most likely became stagnant, or no major enhancement in crop productivity observed. In this review article, we discuss the emerging approaches for the enhancement of crop production along with dealing to the future climate changes like rise in temperature, increase in precipitation and decrease in snow and ice level, etc. At first, we discuss the efforts made for the genetic manipulation of chlorophyll metabolism, antenna engineering, electron transport chain, carbon fixation, and photorespiratory processes to enhance the photosynthesis of plants and to develop tolerance in plants to cope with changing environmental conditions. The application of CRISPR to enhance the crop productivity and develop abiotic stress-tolerant plants to face the current changing climatic conditions is also discussed.
Collapse
Affiliation(s)
- Abhishek Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| | - Dhananjay Kumar
- Laboratory of Algal Biotechnology, Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University, Srinagar, Garhwal, 246 174, India.
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484886, India
| |
Collapse
|
10
|
Photosynthetic Variability of Oblačinska Sour Cherry Ecotypes under Drought. PLANTS 2022; 11:plants11131764. [PMID: 35807716 PMCID: PMC9268958 DOI: 10.3390/plants11131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
The selection of drought-tolerant sour cherry genotypes is essential for developing sustainable fruit production in today’s climate-change conditions. The phenotypic heterogenic population of sour cherry Oblačinska, with high and regular yield suitable for mechanical harvesting and industrial processing, is a traditional and predominant cultivar in northern Croatia (Pannonian region) and Serbia commercial orchards. In this context, 2-year old virus-free sour cherry plants of 4 isolated Oblačinska sour cherry ecotypes (OS, 18, D6, and BOR) produced by micropropagation were exposed to severe drought in a greenhouse under semi-controlled conditions to evaluate its photosynthetic intra-varietal variability. Relative water content (RWC), chlorophyll fluorescence (ChlF), and photosynthetic pigments were evaluated during the ten days of the experiment. As a visible symptom of stress, the withering of plants was followed by a diminution of RWC and photosynthetic pigments in the drought exposed leaves of sour cherry ecotypes compared to the control treatment. ChlF elucidated variability in the photosynthetic efficiency within studied sour cherry ecotypes, highlighting PIABS, PItotal, and ψE0 as the most sensitive and thus the most informative JIP parameters for drought screening. Among the investigated ecotypes, BOR proved to be the most sensitive. The Oblačinska sour cherry ecotype OS showed the highest tolerance to drought conditions and, therefore, can be used as a source of tolerance in sour cherry breeding programs.
Collapse
|
11
|
Wei D, Zhang T, Wang B, Zhang H, Ma M, Li S, Chen THH, Brestic M, Liu Y, Yang X. Glycinebetaine mitigates tomato chilling stress by maintaining high-cyclic electron flow rate of photosystem I and stability of photosystem II. PLANT CELL REPORTS 2022; 41:1087-1101. [PMID: 35150305 DOI: 10.1007/s00299-022-02839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Glycinebetaine alleviates chilling stress by protecting photosystems I and II in BADH-transgenic and GB-treated tomato plants, which can be an effective strategy for improving crop chilling tolerance. Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world, but is highly susceptible to chilling stress and does not naturally accumulate glycinebetaine (GB), one of the most effective stress protectants. The protective mechanisms of GB on photosystem I (PSI) and photosystem II (PSII) against chilling stress, however, remain poorly understood. Here, we address this problem through exogenous GB application and generation of transgenic tomatoes (Moneymaker) with a gene encoding betaine aldehyde dehydrogenase (BADH), which is the key enzyme in the synthesis of GB, from spinach. Our results demonstrated that GB can protect chloroplast ultramicrostructure, alleviate PSII photoinhibition and maintain PSII stability under chilling stress. More importantly, GB increased the electron transfer between QA and QB and the redox potential of QB and maintained a high rate of cyclic electron flow around PSI, contributing to reduced production of reactive oxygen species, thereby mitigating PSI photodamage under chilling stress. Our results highlight the novel roles of GB in enhancing chilling tolerance via the protection of PSI and PSII in BADH transgenic and GB-treated tomato plants under chilling stress. Thus, introducing GB-biosynthetic pathway into tomato and exogenous GB application are effective strategies for improving chilling tolerance.
Collapse
Affiliation(s)
- Dandan Wei
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
- Xinzhou Teachers University, Xinzhou, 034000, Shanxi, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bingquan Wang
- Maize Research Institution, Shanxi Academy of Agricultural Sciences, XinzhouShanxi, 034000, China
| | - Huiling Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingyang Ma
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shufen Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Tony H H Chen
- Department of Horticulture, Oregon State University, ALS 4017, Corvallis, OR, 97331, USA
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
12
|
Cun Z, Wu HM, Zhang JY, Shuang SP, Hong J, Chen JW. Responses of Linear and Cyclic Electron Flow to Nitrogen Stress in an N-Sensitive Species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 13:796931. [PMID: 35242152 PMCID: PMC8885595 DOI: 10.3389/fpls.2022.796931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (P n) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (F v/F m), maximum photo-oxidation P700+ (P m), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Mlinarić S, Begović L, Tripić N, Piškor A, Cesar V. Evaluation of Light-Dependent Photosynthetic Reactions in Reynoutria japonica Houtt. Leaves Grown at Different Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:612702. [PMID: 34421934 PMCID: PMC8371261 DOI: 10.3389/fpls.2021.612702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The Japanese knotweed (Reynoutria japonica Houtt.) is considered as one of the most aggressive and highly successful invasive plants with a negative impact on invaded habitats. Its uncontrolled expansion became a significant threat to the native species throughout Europe. Due to its extensive rhizome system, rapid growth, and allelopathic activity, it usually forms monocultures that negatively affect the nearby vegetation. The efficient regulation of partitioning and utilization of energy in photosynthesis enables invasive plants to adapt rapidly a variety of environmental conditions. Therefore, we aimed to determine the influence of light conditions on photosynthetic reactions in the Japanese knotweed. Plants were grown under two different light regimes, namely, constant low light (CLL, 40 μmol/m2/s) and fluctuating light (FL, 0-1,250 μmol/m2/s). To evaluate the photosynthetic performance, the direct and modulated chlorophyll a fluorescence was measured. Plants grown at a CLL served as control. The photosynthetic measurements revealed better photosystem II (PSII) stability and functional oxygen-evolving center of plants grown in FL. They also exhibited more efficient conversion of excitation energy to electron transport and an efficient electron transport beyond the primary electron acceptor QA, all the way to PSI. The enhanced photochemical activity of PSI suggested the formation of a successful adaptive mechanism by regulating the distribution of excitation energy between PSII and PSI to minimize photooxidative damage. A faster oxidation at the PSI side most probably resulted in the generation of the cyclic electron flow around PSI. Besides, the short-term exposure of FL-grown knotweeds to high light intensity increased the yield induced by downregulatory processes, suggesting that the generation of the cyclic electron flow protected PSI from photoinhibition.
Collapse
Affiliation(s)
- Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Neven Tripić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Antonija Piškor
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
14
|
Physiological and thylakoid proteome analyses of Anabaena sp. PCC 7120 for monitoring the photosynthetic responses under cadmium stress. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Kramer M, Rodriguez-Heredia M, Saccon F, Mosebach L, Twachtmann M, Krieger-Liszkay A, Duffy C, Knell RJ, Finazzi G, Hanke GT. Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions. eLife 2021; 10:56088. [PMID: 33685582 PMCID: PMC7984839 DOI: 10.7554/elife.56088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/25/2021] [Indexed: 01/12/2023] Open
Abstract
During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.
Collapse
Affiliation(s)
- Manuela Kramer
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom.,Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | - Francesco Saccon
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Manuel Twachtmann
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Paris, France
| | - Chris Duffy
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Robert J Knell
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat a` l'Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, Grenoble, France
| | - Guy Thomas Hanke
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom.,Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
16
|
Cun Z, Zhang JY, Wu HM, Zhang L, Chen JW. High nitrogen inhibits photosynthetic performance in a shade-tolerant and N-sensitive species Panax notoginseng. PHOTOSYNTHESIS RESEARCH 2021; 147:283-300. [PMID: 33587246 DOI: 10.1007/s11120-021-00823-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of high-N-driven inhibition on photosynthetic efficiency and photoprotection is still unclear in the shade-tolerant and N-sensitive species such as Panax notoginseng. Leaf chlorophyll (Chl) content, Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity and content, N allocation in the photosynthetic apparatus, photosynthetic performance and Chl fluorescence were comparatively analyzed in a shade-tolerant and N-sensitive species P. notoginseng grown under the levels of moderate nitrogen (MN) and high nitrogen (HN). The results showed that Rubisco content, Chl content and specific leaf nitrogen (SLN) were greater in the HN individuals. Rubisco activity, net photosynthetic rate (Anet), photosynthetic N use efficiency (PNUE), maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) were lower when plants were exposed to HN as compared with ones to MN. A large proportion of leaf N was allocated to the carboxylation component under the levels of MN. More N was only served as a form of N storage and not contributed to photosynthesis in HN individuals. Compared with the MN plants, the maximum quantum yield of photosystem II (Fv/Fm), non-photochemical quenching of PSII (NPQ), effective quantum yield and electron transport rate were obviously reduced in the HN plants. Cycle electron flow (CEF) was considerably enhanced in the MN individuals. There was not a significant difference in maximum photo-oxidation P700+ (Pm) between the HN and MN individuals. Most importantly, the HN individuals showed higher K phase in the fast chlorophyll fluorescence induction kinetic curve (OJIP kinetic curve) than the MN ones. The results obtained suggest that photosynthetic capacity might be primarily inhibited by the inactivated Rubisco in the HN individuals, and HN-induced depression of photoprotection might be caused by the photodamage to the donor side of PSII oxygen-evolving complex.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
17
|
Moreau S, van Aubel G, Janky R, Van Cutsem P. Chloroplast Electron Chain, ROS Production, and Redox Homeostasis Are Modulated by COS-OGA Elicitation in Tomato ( Solanum lycopersicum) Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:597589. [PMID: 33381134 PMCID: PMC7768011 DOI: 10.3389/fpls.2020.597589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The stimulation of plant innate immunity by elicitors is an emerging technique in agriculture that contributes more and more to residue-free crop protection. Here, we used RNA-sequencing to study gene transcription in tomato leaves treated three times with the chitooligosaccharides-oligogalacturonides (COS-OGA) elicitor FytoSave® that induces plants to fend off against biotrophic pathogens. Results showed a clear upregulation of sequences that code for chloroplast proteins of the electron transport chain, especially Photosystem I (PSI) and ferredoxin. Concomitantly, stomatal conductance decreased by half, reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] content and reactive oxygen species production doubled, but fresh and dry weights were unaffected. Chlorophyll, β-carotene, violaxanthin, and neoxanthin contents decreased consistently upon repeated elicitations. Fluorescence measurements indicated a transient decrease of the effective PSII quantum yield and a non-photochemical quenching increase but only after the first spraying. Taken together, this suggests that plant defense induction by COS-OGA induces a long-term acclimation mechanism and increases the role of the electron transport chain of the chloroplast to supply electrons needed to mount defenses targeted to the apoplast without compromising biomass accumulation.
Collapse
Affiliation(s)
- Sophie Moreau
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Géraldine van Aubel
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| | | | - Pierre Van Cutsem
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| |
Collapse
|
18
|
Dubberstein D, Lidon FC, Rodrigues AP, Semedo JN, Marques I, Rodrigues WP, Gouveia D, Armengaud J, Semedo MC, Martins S, Simões-Costa MC, Moura I, Pais IP, Scotti-Campos P, Partelli FL, Campostrini E, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:1049. [PMID: 32733525 PMCID: PMC7363965 DOI: 10.3389/fpls.2020.01049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
This study unveils the single and combined drought and heat impacts on the photosynthetic performance of Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered (WW) potted plants were gradually submitted to severe water deficit (SWD) along 20 days under adequate temperature (25/20°C, day/night), and thereafter exposed to a gradual temperature rise up to 42/30°C, followed by a 14-day water and temperature recovery. Single drought affected all gas exchanges (including Amax ) and most fluorescence parameters in both genotypes. However, Icatu maintained Fv/Fm and RuBisCO activity, and reinforced electron transport rates, carrier contents, and proton gradient regulation (PGR5) and chloroplast NADH dehydrogenase-like (NDH) complex proteins abundance. This suggested negligible non-stomatal limitations of photosynthesis that were accompanied by a triggering of protective cyclic electron transport (CEF) involving both photosystems (PSs). These findings contrasted with declines in RuBisCO and PSs activities, and cytochromes (b559 , f, b563 ) contents in CL153. Remarkable heat tolerance in potential photosynthetic functioning was detected in WW plants of both genotypes (up to 37/28°C or 39/30°C), likely associated with CEF in Icatu. Yet, at 42/30°C the tolerance limit was exceeded. Reduced Amax and increased Ci values reflected non-stomatal limitations of photosynthesis, agreeing with impairments in energy capture (F0 rise), PSII photochemical efficiency, and RuBisCO and Ru5PK activities. In contrast to PSs activities and electron carrier contents, enzyme activities were highly heat sensitive. Until 37/28°C, stresses interaction was largely absent, and drought played the major role in constraining photosynthesis functioning. Harsher conditions (SWD, 42/30°C) exacerbated impairments to PSs, enzymes, and electron carriers, but uncontrolled energy dissipation was mitigated by photoprotective mechanisms. Most parameters recovered fully between 4 and 14 days after stress relief in both genotypes, although some aftereffects persisted in SWD plants. Icatu was more drought tolerant, with WW and SWD plants usually showing a faster and/or greater recovery than CL153. Heat affected both genotypes mostly at 42/30°C, especially in SWD and Icatu plants. Overall, photochemical components were highly tolerant to heat and to stress interaction in contrast to enzymes that deserve special attention by breeding programs to increase coffee sustainability in climate change scenarios.
Collapse
Affiliation(s)
- Danielly Dubberstein
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - José N. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Isabel Marques
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Weverton P. Rodrigues
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Estreito, Brazil
| | - Duarte Gouveia
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Bagnols-sur-Cèze, France
| | - Magda C. Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Maria C. Simões-Costa
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - I. Moura
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
| | - Isabel P. Pais
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Paula Scotti-Campos
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, Brazil
| | - Ana I. Ribeiro-Barros
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio M. DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, Brazil
| | - José C. Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
19
|
Yang J, Du L, Cheng Y, Shi S, Xiang C, Sun J, Chen B. Assessing different regression algorithms for paddy rice leaf nitrogen concentration estimations from the first-derivative fluorescence spectrum. OPTICS EXPRESS 2020; 28:18728-18741. [PMID: 32672167 DOI: 10.1364/oe.395478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The non-destructive and rapid estimation of the crop's leaf nitrogen concentration (LNC) is significant for the quality evaluation and precise management of nitrogen (N) fertilizer. First derivative can be applied to reduce the noise in the spectral analysis, which is suited to estimate leaf N and chlorophyll concentration with different fertilization levels. In this study, the first-derivative fluorescence spectrum (FDFS) was calculated in terms of the laser-induced fluorescence (LIF) spectra and was combined with different regression algorithms, including principal component analysis (PCA), partial least-square regression (PLSR), random forest (RF), radial basic function neural network (RBF-NN), and back-propagation neural network (BPNN) for paddy rice LNC estimation. Then, the effect of diverse inner parameters on regression algorithm for LNC estimation based on the calculated FDFS served as input variables were discussed, and the optimal parameters of each model were acquired. Subsequently, the performance of different models (PLSR, RF, BPNN, RBF-NN, PCA-RF, PCA-BPNN, and PCA-RBFNN) with the optimal parameter for LNC estimation based on FDFS was discussed. Results demonstrated that PCA can efficiently extract major spectral information without obviously losing, which can improve the stability and robustness of model (PLSR, PCA-RF, PCA-BNN, and PCA-RBFNN) for LNC estimation. Then, PCA-RBFNN model exhibited better potential for LNC estimation with higher average R2 (R2=0.8743) and lower SD values (SD=0.0256) than that the other regression models in this study. And, PLSR also exhibited promising potential for LNC estimation in which the R2 values (average R2=0.8412) are higher than that the other models except for PCA-RBFNN.
Collapse
|
20
|
Yan K, He W, Bian L, Zhang Z, Tang X, An M, Li L, Han G. Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination. BMC PLANT BIOLOGY 2020; 20:155. [PMID: 32276592 PMCID: PMC7149873 DOI: 10.1186/s12870-020-02371-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/30/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Glycine soja is a halophytic soybean native to saline soil in Yellow River Delta, China. Photosystem I (PSI) performance and the interaction between photosystem II (PSII) and PSI remain unclear in Glycine soja under salt stress. This study aimed to explore salt adaptability in Glycine soja in terms of photosystems coordination. RESULTS Potted Glycine soja was exposed to 300 mM NaCl for 9 days with a cultivated soybean, Glycine max, as control. Under salt stress, the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR0) were significantly decreased with the loss of PSI and PSII reaction center proteins in Glycine max, and greater PSI vulnerability was suggested by earlier decrease in △MR/MR0 than Fv/Fm and depressed PSI oxidation in modulated 820 nm reflection transients. Inversely, PSI stability was defined in Glycine soja, as △MR/MR0 and PSI reaction center protein abundance were not affected by salt stress. Consistently, chloroplast ultrastructure and leaf lipid peroxidation were not affected in Glycine soja under salt stress. Inhibition on electron flow at PSII acceptor side helped protect PSI by restricting electron flow to PSI and seemed as a positive response in Glycine soja due to its rapid recovery after salt stress. Reciprocally, PSI stability aided in preventing PSII photoinhibition, as the simulated feedback inhibition by PSI inactivation induced great decrease in Fv/Fm under salt stress. In contrast, PSI inactivation elevated PSII excitation pressure through inhibition on PSII acceptor side and accelerated PSII photoinhibition in Glycine max, according to the positive and negative correlation of △MR/MR0 with efficiency that an electron moves beyond primary quinone and PSII excitation pressure respectively. CONCLUSION Therefore, photosystems coordination depending on PSI stability and rapid response of PSII acceptor side contributed to defending salt-induced oxidative stress on photosynthetic apparatus in Glycine soja. Photosystems interaction should be considered as one of the salt adaptable mechanisms in this halophytic soybean.
Collapse
Affiliation(s)
- Kun Yan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.
| | - Wenjun He
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China
| | - Lanxing Bian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China
- College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Zishan Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Xiaoli Tang
- School of Agriculture, Ludong University, Yantai, 264025, P. R. China
| | - Mengxin An
- School of Agriculture, Ludong University, Yantai, 264025, P. R. China
| | - Lixia Li
- College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Guangxuan Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.
| |
Collapse
|
21
|
Scartazza A, Fambrini M, Mariotti L, Picciarelli P, Pugliesi C. Energy conversion processes and related gene expression in a sunflower mutant with altered salicylic acid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:122-132. [PMID: 31958679 DOI: 10.1016/j.plaphy.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Salicylic acid (SA) is involved in several responses associated with plant development and defence against biotic and abiotic stress, but its role on photosynthetic regulation is still under debate. This work investigated energy conversion processes and related gene expression in the brachytic mutant of sunflower lingering hope (linho). This mutant was characterized by a higher ratio between the free SA form and its conjugate form SA O-β-D-glucoside (SAG) compared to wild type (WT), without significant changes in the endogenous level of abscisic acid and hydrogen peroxide. The mutant showed an inhibition of photosynthesis due to a combination of both stomatal and non-stomatal limitations, although the latter seemed to play a major role. The reduced carboxylation efficiency was associated with a down-regulation of the gene expression for both the large and small subunits of Rubisco and the Rubisco activase enzyme. Moreover, linho showed an alteration of photosystem II (PSII) functionality, with reduced PSII photochemistry, increased PSII excitation pressure and decreased thermal energy dissipation of excessive light energy. These responses were associated with a lower photosynthetic pigments concentration and a reduced expression of genes encoding for light-harvesting chlorophyll a/b binding proteins (i.e. HaLhcA), chlorophyll binding subunits of PSII proteins (i.e. HaPsbS and HaPsbX), phytoene synthase enzyme and a different expression level for genes related to PSII repair cycle, such as HaPsbA and HaPsbD. The concomitant stimulation of respiratory metabolism, suggests that linho activated a coordinate modulation of chloroplast and mitochondria activities to compensate the energy imbalance and regulate energy conversion processes.
Collapse
Affiliation(s)
- Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Moruzzi 1, I-56124, Pisa, Italy.
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| |
Collapse
|
22
|
Huihui Z, Yue W, Xin L, Guoqiang H, Yanhui C, Zhiyuan T, Jieyu S, Nan X, Guangyu S. Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO 3 stress revealed by TMT-based proteomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110164. [PMID: 31927191 DOI: 10.1016/j.ecoenv.2020.110164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
Chlorophyll (Chl) and effective photoprotective mechanism are important prerequisites to ensure the photosynthetic function of plants under stress. In this study, the effects of 100 mmol L-1 NaCl and NaHCO3 stress on chlorophyll synthesis and photosynthetic function of mulberry seedlings were studied by physiological combined with proteomics technology. The results show that: NaCl stress had little effect on the expression of Chl synthesis related proteins, and there were no significant changes in Chl content and Chl a:b ratio. However, 13 of the 15 key proteins in the process of Chl synthesis were significantly decreased under NaHCO3 stress, and the contents of Chl a and Chl b were significantly decreased (especially Chl a). Although stomatal conductance (Gs) decreased significantly under NaCl stress, net photosynthetic rate (Pn), PSII maximum photochemical efficiency (Fv/Fm) and electron transfer rate (ETR) did not change significantly, but under NaHCO3 stress, not only Gs decreased significantly, PSII activity and photosynthetic carbon were the same. In the photoprotective mechanism under NaCl stress, NAD(P)H dehydrogenase (NDH)-dependent cyclic electron flow (CEF) enhanced, the expression of related proteins subunit, ndhH, ndhI, ndhK, and ndhM, the key enzyme of the xanthophyll cycle, violaxanthin de-epoxidase (VDE) were up-regulated, the ratio of (A + Z)/(V + A + Z) and non-photochemical quenching (NPQ) was increased. The expressions of proteins FTR and Fd-NiR were also significant up-regulated under NaCl stress, Fd-dependent ROS metabolism and nitrogen metabolism can effectively reduce the electronic pressure on Fd. Under NaHCO3 stress, the expressions of NDH-dependent CEF related proteins subunit (ndhH, ndhI, ndhK, ndhM and ndhN), VDE, ZE, FTR, Fd-NiR and Fd-GOGAT, were significant down-regulated, and ZE, CP26, ndhK, ndhM, Fd-NiR, Fd-GOGAT and FTR genes expression also significantly decreased, the photoprotective mechanism, like the xanthophyll cycle,CEF and Fd-dependent ROS metabolism and nitrogen metabolism might be damaged, resulting in the inhibition of PSII electron transfer and carbon assimilation in mulberry leaves under NaHCO3 stress.
Collapse
Affiliation(s)
- Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - He Guoqiang
- Mudanjang Tobacco Science Research Institute, Mudanjang, Heilongjiang, China
| | - Che Yanhui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Teng Zhiyuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shao Jieyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xu Nan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
23
|
Hui-Hui Z, Guang-Liang S, Jie-Yu S, Xin L, Ma-Bo L, Liang M, Nan X, Guang-Yu S. Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO 3 stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109624. [PMID: 31487570 DOI: 10.1016/j.ecoenv.2019.109624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 05/20/2023]
Abstract
In order to explore the response and adaptation mechanisms of photosynthesis of the leaves of mulberry (Morus alba L.) seedlings to saline-alkali stress. Photosynthetic activity, and the response of related proteomics of M. alba seedling leaves under NaCl and NaHCO3 stress were studied by using chlorophyll fluorescence and gas exchange technique combined with TMT proteomics. The results showed that NaCl stress had no significant effect on photosystem II (PSII) activity in M. alba seedling leaves. In addition, the expressions of proteins of the PSII oxygen-evolving complex (OEE3-1 and PPD4) and the LHCII antenna (CP24 10A, CP26, and CP29) were increased, and the photosystem I (PSI) activity in the leaves of M. alba seedlings was increased, as well as expressions of proteins, such as PsaF, PsaG, PsaH, PsaL, PsaN, and Ycf4. Under NaHCO3 stress, the activity of PSII and PSI and the expression of their protein complexes and the electron transfer-related proteins significantly decreased. NaCl stress had little effect on RuBP regeneration during dark reaction in the leaves and the expressions of glucose synthesis related proteins and net photosynthetic rate (Pn) did not decrease significantly. The leaves could adapt to NaCl stress by reducing stomatal conductance (Gs) and increasing water use efficiency (WUE). Under NaHCO3 stress, the expression of dark reaction-related proteins was mostly down-regulated, while Gs was reduced, which indicated that non-stomatal factors can be responsible for inhibition of carbon assimilation.
Collapse
Affiliation(s)
- Zhang Hui-Hui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shi Guang-Liang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shao Jie-Yu
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li Ma-Bo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Meng Liang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Nan
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guang-Yu
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
24
|
Trinh MDL, Sato R, Masuda S. Genetic characterization of a flap1 null mutation in Arabidopsis npq4 and pgr5 plants suggests that the regulatory role of FLAP1 involves the control of proton homeostasis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2019; 139:413-424. [PMID: 30390180 DOI: 10.1007/s11120-018-0575-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/24/2018] [Indexed: 05/21/2023]
Abstract
Precise control of the proton concentration gradient across thylakoid membranes (ΔpH) is essential for photosynthesis and its regulation because the gradient contributes to the generation of the proton motive force used for ATP synthesis and also for the fast and reversible induction of non-photochemical quenching (NPQ) to avoid photoinhibition and photodamage. However, the regulatory mechanism(s) controlling ΔpH in response to fluctuating light has not been fully elucidated. We previously described a new NPQ-regulatory chloroplastic protein, Fluctuating-Light-Acclimation Protein1 (FLAP1), which is important for plant growth and modulation of ΔpH under fluctuating light conditions. For this report, we further characterized FLAP1 activity by individually crossing an Arabidopsis flap1 mutant with npq4 and pgr5 plants; npq4 is defective in PsbS-dependent NPQ, and pgr5 is defective in induction of steady-state proton motive force (pmf) and energy-dependent quenching (qE). Both npq4 and npq4 flap1 exhibited similar NPQ kinetics and other photosynthetic parameters under constant or fluctuating actinic light. Conversely, pgr5 flap1 had recovered NPQ, photosystem II quantum yield and growth under fluctuating light, each of which was impaired in pgr5. Together with other data, we propose that FLAP1 activity controls proton homeostasis under steady-state photosynthesis to manipulate luminal acidification levels appropriately to balance photoprotection and photochemical processes.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ryoichi Sato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
25
|
Sato R, Kawashima R, Trinh MDL, Nakano M, Nagai T, Masuda S. Significance of PGR5-dependent cyclic electron flow for optimizing the rate of ATP synthesis and consumption in Arabidopsis chloroplasts. PHOTOSYNTHESIS RESEARCH 2019; 139:359-365. [PMID: 29916043 DOI: 10.1007/s11120-018-0533-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/09/2018] [Indexed: 05/11/2023]
Abstract
The proton motive force (PMF) across the chloroplast thylakoid membrane that is generated by electron transport during photosynthesis is the driving force for ATP synthesis in plants. The PMF mainly arises from the oxidation of water in photosystem II and from electron transfer within the cytochrome b6f complex. There are two electron transfer pathways related to PMF formation: linear electron flow and cyclic electron flow. Proton gradient regulation 5 (PGR5) is a major component of the cyclic electron flow pathway, and the Arabidopsis pgr5 mutant shows a substantial reduction in the PMF. How the PGR5-dependent cyclic electron flow contributes to ATP synthesis has not, however, been fully delineated. In this study, we monitored in vivo ATP levels in Arabidopsis chloroplasts in real time using a genetically encoded bioluminescence-based ATP indicator, Nano-lantern(ATP1). The increase in ATP in the chloroplast stroma of pgr5 leaves upon illumination with actinic light was significantly slower than in wild type, and the decrease in ATP levels when this illumination stopped was significantly faster in pgr5 leaves than in wild type. These results indicated that PGR5-dependent cyclic electron flow around photosystem I helps to sustain the rate of ATP synthesis, which is important for growth under fluctuating light conditions.
Collapse
Affiliation(s)
- Ryoichi Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Rinya Kawashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Mai Duy Luu Trinh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masahiro Nakano
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
26
|
Yang J, Du L, Gong W, Shi S, Sun J, Chen B. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration. OPTICS EXPRESS 2019; 27:3978-3990. [PMID: 30876021 DOI: 10.1364/oe.27.003978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Nitrogen (N) is an essential nutrient for crop growth. The rapid and non-destructive monitoring of N nutrition in crops through remote sensing is important for the accurate diagnosis and quality evaluation of crop growth status. Leaf nitrogen concentration (LNC), which has been widely utilized in remote sensing, serves as a crucial indicator for the monitoring of crops growth status. In this study, the first-derivative fluorescence spectrum (FDFS) based on laser-induced fluorescence (LIF) was proposed for LNC estimation in paddy rice. First, the correlation between the LNC and FDFS at each wavelength was analyzed in detail using different excitation light wavelengths (ELWs; 355, 420, and 556 nm). Then, FDFS was used as an input parameter to train a back-propagation neural networks (BPNN) model for LNC estimation. The coefficients of determination (R2) of the linear regression analysis between the measured and predicted LNC were 0.823, 0.743, and 0.837, corresponding to 355, 420, and 556 nm ELWs, respectively. Second, the principal components analysis was performed for the extraction of the main characteristics of FDFS, and the calculated variables were used for LNC inversion. The R2 values were 0.891, 0.815, and 0.907 for 355, 420, and 556 nm ELWs, respectively. In addition, the correlation between the ratio of FDFS and LNC was also analyzed, which can provide a reference for the selection of optimal wavelengths for LNC monitoring. The experimental results exhibited the promising potential of FDFS combined with multivariate analysis for LNC monitoring, which can allow additional fluorescence characteristics to improve the accuracy of LNC monitoring.
Collapse
|
27
|
Alboresi A, Storti M, Morosinotto T. Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution. THE NEW PHYTOLOGIST 2019; 221:105-109. [PMID: 30084195 DOI: 10.1111/nph.15372] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/26/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 105 I. Introduction 105 II. Diversity of molecular mechanisms for regulation of photosynthetic electron transport 106 III. Role of FLVs in the regulation of photosynthesis in eukaryotes 107 IV. Why were FLVs lost in angiosperms? 108 V. Conclusions 108 Acknowledgements 109 References 109 SUMMARY: Photosynthetic electron transport requires continuous modulation to maintain the balance between light availability and metabolic demands. Multiple mechanisms for the regulation of electron transport have been identified and are unevenly distributed among photosynthetic organisms. Flavodiiron proteins (FLVs) influence photosynthetic electron transport by accepting electrons downstream of photosystem I to reduce oxygen to water. FLV activity has been demonstrated in cyanobacteria, green algae and mosses to be important in avoiding photosystem I overreduction upon changes in light intensity. FLV-encoding sequences were nevertheless lost during evolution by angiosperms, suggesting that these plants increased the efficiency of other mechanisms capable of accepting electrons from photosystem I, making the FLV activity for protection from overreduction superfluous or even detrimental for photosynthetic efficiency.
Collapse
Affiliation(s)
- Alessandro Alboresi
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| | - Mattia Storti
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| |
Collapse
|
28
|
Ferroni L, Giovanardi M, Poggioli M, Baldisserotto C, Pancaldi S. Enhanced photosynthetic linear electron flow in mixotrophic green microalga Ettlia oleoabundans UTEX 1185. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:215-223. [PMID: 30014925 DOI: 10.1016/j.plaphy.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Basic understanding of the photosynthetic physiology of the oleaginous green microalga Ettlia oleoabundans is still very limited, including the modulation of the photosynthetic membrane upon metabolism conversion from autotrophy to mixotrophy. It was previously reported that, upon glucose supply in the culture medium, E. oleoabundans preserves photosystem II (PSII) from degradation by virtue of a higher packing of thylakoid complexes. In this work, it was investigated whether in the mixotrophic exponential growth phase the PSII activity is merely preserved or even enhanced. Modulated fluorescence parameters were then recorded under short-term treatments with increasing irradiance values of white light. It was found that the mixotrophic microalga down-regulated the chlororespiratory electron recycling from photosystem I (PSI), but enhanced the linear electron flow from PSII to PSI. Ability to keep PSII more open than in autotrophic growth conditions indicated that the respiration of the glucose taken up from the medium fed the carbon fixing reactions with CO2. The overall electron poise was indeed well regulated, with a lesser need for thermal dissipation of excess absorbed energy. It is proposed that the significant, though small, increase in PSII maximum quantum yield in mixotrophic cells just reflects an improved light energy use and an increased photochemical capacity as compared to the autotrophic cells.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Martina Giovanardi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Mariachiara Poggioli
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este 32, 44121, Ferrara, Italy.
| |
Collapse
|