1
|
Rodak BW, Freitas DS, Rossi ML, Linhares FS, Moro E, Campos CNS, Reis AR, Guilherme LRG, Lavres J. A study on nickel application methods for optimizing soybean growth. Sci Rep 2024; 14:10556. [PMID: 38719847 PMCID: PMC11078936 DOI: 10.1038/s41598-024-58149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.
Collapse
Affiliation(s)
- Bruna Wurr Rodak
- Department of Agronomy, São Paulo Western University, Presidente Prudente, São Paulo, 19067-175, Brazil.
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13416-000, Brazil.
| | - Douglas Siqueira Freitas
- Department of Agricultural and Natural Sciences, State University of Minas Gerais, Ituiutaba, Minas Gerais, 38302-192, Brazil
| | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13416-000, Brazil
| | - Francisco Scaglia Linhares
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13416-000, Brazil
| | - Edemar Moro
- Department of Agronomy, São Paulo Western University, Presidente Prudente, São Paulo, 19067-175, Brazil
| | - Cid Naudi Silva Campos
- Chapadão of Sul Campus, Federal University of Mato Grosso of Sul, Chapadão do Sul, Mato Grosso do Sul, 79560-000, Brazil
| | - André Rodrigues Reis
- School of Science and Engineering, São Paulo State University, Tupã, São Paulo, 17602-496, Brazil
| | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13416-000, Brazil
| |
Collapse
|
2
|
Lilay GH, Thiébaut N, du Mee D, Assunção AGL, Schjoerring JK, Husted S, Persson DP. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. THE NEW PHYTOLOGIST 2024; 242:881-902. [PMID: 38433319 DOI: 10.1111/nph.19645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In this review, we untangle the physiological key functions of the essential micronutrients and link them to the deficiency responses in plants. Knowledge of these responses at the mechanistic level, and the resulting deficiency symptoms, have improved over the last decade and it appears timely to review recent insights for each of them. A proper understanding of the links between function and symptom is indispensable for an accurate and timely identification of nutritional disorders, thereby informing the design and development of sustainable fertilization strategies. Similarly, improved knowledge of the molecular and physiological functions of micronutrients will be important for breeding programmes aiming to develop new crop genotypes with improved nutrient-use efficiency and resilience in the face of changing soil and climate conditions.
Collapse
Affiliation(s)
- Grmay Hailu Lilay
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Noémie Thiébaut
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
- Earth and Life Institute, Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Dorine du Mee
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Ana G L Assunção
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
3
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Schuler L, Zust D, Dahm G, Clabots F. Nickel in foodstuffs available on the Luxembourgish market and dietary intake. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:350-360. [PMID: 37691281 DOI: 10.1080/19393210.2023.2249434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Nickel is a food contaminant of natural or anthropogenic origin. Monitoring of contaminants in food in general allows obtaining an overview on the presence of substances that are undesirable to health. The aim of this study was to analyse nickel content in food of non-animal origin and beverages sold in Luxembourg to determine the exposure of the population to this contaminant. In total, 660 samples were analysed in the timeframe from 2017 to 2021. The results demonstrate high concentrations of nickel in cashew nuts, walnuts, hemp and sunflower seeds, dried peas, oregano, and cocoa powder. Surveillance of contaminants in food allows identifying contributors to the chronic and acute exposure of nickel in order to potentially set official maximum levels in European legislation in the future, allowing for better enforcement actions in case of contaminated products and increasing consumer protection.
Collapse
Affiliation(s)
- Luc Schuler
- Ministry of Agriculture, Viticulture and Rural Development, Luxembourg Veterinary and Food Administration, Strassen, Grand Duchy of Luxembourg
| | - Danny Zust
- Ministry of Agriculture, Viticulture and Rural Development, Luxembourg Veterinary and Food Administration, Strassen, Grand Duchy of Luxembourg
| | - Georges Dahm
- Laboratoire National de Sante, Department of Forensic Medecine, Dudelange, Grand Duchy of Luxembourg
| | - Fabienne Clabots
- Ministry of Agriculture, Viticulture and Rural Development, Luxembourg Veterinary and Food Administration, Strassen, Grand Duchy of Luxembourg
| |
Collapse
|
5
|
Mendes NAC, Cunha MLO, Bosse MA, Silva VM, Moro AL, Agathokleous E, Vicente EF, Reis ARD. Physiological and biochemical role of nickel in nodulation and biological nitrogen fixation in Vigna unguiculata L. Walp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107869. [PMID: 37421847 DOI: 10.1016/j.plaphy.2023.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Studies on the role of nickel (Ni) in photosynthetic and antioxidant metabolism, as well as in flavonoid synthesis and biological fixation nitrogen in cowpea crop are scarce. The aim of this study was to elucidate the role of Ni in metabolism, photosynthesis and nodulation of cowpea plants. A completely randomized experiment was performed in greenhouse, with cowpea plants cultivated under 0, 0.5, 1, 2, or 3 mg kg-1 Ni, as Ni sulfate. In the study the following parameters were evaluated: activity of urease, nitrate reductase, superoxide dismutase, catalase and ascorbate peroxidase; concentration of urea, n-compounds, photosynthetic pigments, flavonoids, H2O2 and MDA; estimative of gas exchange, and biomass as plants, yield and weight of 100 seeds. At whole-plant level, Ni affected root biomass, number of seeds per pot, and yield, increasing it at 0.5 mg kg-1 and leading to inhibition at 2-3 mg kg-1 (e.g. number of seeds per pot and nodulation). The whole-plant level enhancement by 0.5 mg Ni kg-1 occurred along with increased photosynthetic pigments, photosynthesis, ureides, and catalase, and decreased hydrogen peroxide concentration. This study presents fundamental new insights regarding Ni effect on N metabolism, and nodulation that can be helpful to increase cowpea yield. Considering the increasing population and its demand for staple food, these results contribute to the enhancement of agricultural techniques that increase crop productivity and help to maintain human food security.
Collapse
Affiliation(s)
| | - Matheus Luís Oliveira Cunha
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, Jaboticabal, SP, Postal Code 14884-900, Brazil
| | - Marco Antonio Bosse
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, Jaboticabal, SP, Postal Code 14884-900, Brazil
| | - Vinícius Martins Silva
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, Jaboticabal, SP, Postal Code 14884-900, Brazil
| | - Adriana Lima Moro
- Department of Crop Production, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, Jiangsu, China
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, Jd. Itaipu, Postal Code 17602-496, Tupã, SP, Brazil
| | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, Jd. Itaipu, Postal Code 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
6
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
7
|
Zhou P, Jiang Y, Adeel M, Shakoor N, Zhao W, Liu Y, Li Y, Li M, Azeem I, Rui Y, Tan Z, White JC, Guo Z, Lynch I, Zhang P. Nickel Oxide Nanoparticles Improve Soybean Yield and Enhance Nitrogen Assimilation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7547-7558. [PMID: 37134233 DOI: 10.1021/acs.est.3c00959] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO4 at 10-200 mg kg-1 on plant growth and nutritional content of soybean. n-NiO at 50 mg kg-1 significantly promoted the seed yield by 39%. Only 50 mg kg-1 n-NiO promoted total fatty acid content and starch content by 28 and 19%, respectively. The increased yield and nutrition could be attributed to the regulatory effects of n-NiO, including photosynthesis, mineral homeostasis, phytohormone, and nitrogen metabolism. Furthermore, n-NiO maintained a Ni2+ supply for more extended periods than NiSO4, reducing potential phytotoxicity concerns. Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the first time confirmed that the majority of the Ni in seeds is in ionic form, with only 28-34% as n-NiO. These findings deepen our understanding of the potential of nanoscale and non-nanoscale Ni to accumulate and translocate in soybean, as well as the long-term fate of these materials in agricultural soils as a strategy for nanoenabled agriculture.
Collapse
Affiliation(s)
- Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanwanjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
8
|
Ahmad MSA, Riffat A, Hussain M, Hameed M, Alvi AK. Toxicity and tolerance of nickel in sunflower (Helianthus annuus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50346-50363. [PMID: 36795210 DOI: 10.1007/s11356-023-25705-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
This study aimed at exploration of nickel (Ni) application (0, 10, 20, 30, and 40 mg L-1) on physiological and biochemical attributes of sunflower cultivars (Hysun-33 and SF-187) grown in sand culture. Results revealed a significant decrease in vegetative parameters in both sunflower cultivars by increasing Ni concentration, although low levels of Ni (10 mg L-1) improved growth attributes to some extent. Among photosynthetic attributes, 30 and 40 mg L-1 Ni application severely reduced the photosynthetic rate (A), stomatal conductance (gs), water use efficiency (WUE), and Ci/Ca ratio but improved the transpiration rate (E) in both sunflower cultivars. The same level of Ni application also reduced leaf water potential, osmotic potentials, and relative water contents but increased leaf turgor potential and membrane permeability. At low level (10 and 20 mg L-1), Ni improved the soluble proteins, while high Ni concentration decreased it. The opposite was true for total free amino acids and soluble sugars. To conclude, the high Ni concentration in various plant organs had a strong impact with the changes in vegetative growth, physiological and biochemical attributes. A positive correlation of growth, physiological, water relations, and gas exchange parameters at low levels of Ni and negative correlation at higher Ni level confirmed that the supplementation of low Ni levels greatly modulated studied attributes. Based on observed attributes, Hysun-33 showed high tolerance to Ni stress as compared to SF-187.
Collapse
Affiliation(s)
| | - Alia Riffat
- Department of Botany, University of Agriculture, Faisalabad, Pakistan.
| | - Mumtaz Hussain
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
9
|
Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. PLANT GROWTH REGULATION 2023; 100:355-371. [PMID: 36686885 PMCID: PMC9845834 DOI: 10.1007/s10725-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023]
Abstract
Micronutrients are essential mineral elements required for both plant and human development.An integrated system involving soil, climatic conditions, and types of crop plants determines the level of micronutrient acquisition and utilization. Most of the staple food crops consumed globally predominantly include the cereal grains, tubers and roots, respectively and in many cases, particularly in the resource-poor countries they are grown in nutrient-deficient soils. These situations frequently lead to micronutrient deficiency in crops. Moreover, crop plants with micronutrient deficiency also show high level of susceptibility to various abiotic and biotic stress factors. Apart from this, climate change and soil pollution severely affect the accumulation of micronutrients, such as zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), and copper (Cu) in food crops. Therefore, overcoming the issue of micronutrient deficiency in staple crops and to achieve the adequate level of food production with enriched nutrient value is one of the major global challenges at present. Conventional breeding approaches are not adequate to feed the increasing global population with nutrient-rich staple food crops. To address these issues, alongside traditional approaches, genetic modification strategies have been adopted during the past couple of years in order to enhance the transport, production, enrichment and bioavailability of micronutrients in staple crops. Recent advances in agricultural biotechnology and genome editing approaches have shown promising response in the development of micronutrient enriched biofortified crops. This review highlights the current advancement of our knowledge on the possible implications of various biotechnological tools for the enrichment and enhancement of bioavailability of micronutrients in crops.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Pinaki Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Shreyashi Nandi
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| |
Collapse
|
10
|
Xu N, Xu Y, Smith N, Chen H, Guo Z, Lee J, Wu X. MTM1 displays a new function in the regulation of nickel resistance in Saccharomyces cerevisiae. Metallomics 2022; 14:6711704. [PMID: 36138538 PMCID: PMC9989664 DOI: 10.1093/mtomcs/mfac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
Nickel (Ni) is an essential yet toxic trace element. Although a cofactor for many metalloenzymes, nickel function and metabolism is not fully explored in eukaryotes. Molecular biology and metallomic methods were utilized to explore the new physiological functions of nickel in Saccharomyces cerevisiae. Here we showed that MTM1 knockout cells displayed much stronger nickel tolerance than wild-type cells and mitochondrial accumulations of Ni and Fe of mtm1Δ cells dramatically decreased compared to wild-type cells when exposed to excess nickel. Superoxide dismutase 2 (Sod2p) activity in mtm1Δ cells was severely attenuated and restored through Ni supplementation in media or total protein. SOD2 mRNA level of mtm1Δ cells was significantly higher than that in the wild-type strain but was decreased by Ni supplementation. MTM1 knockout afforded resistance to excess nickel mediated through reactive oxygen species levels. Meanwhile, additional Ni showed no significant effect on the localization of Mtm1p. Our study reveals the MTM1 gene plays an important role in nickel homeostasis and identifies a novel function of nickel in promoting Sod2p activity in yeast cells.
Collapse
Affiliation(s)
- Naifeng Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuan Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln 68588-0664, Nebraska
| | - Huizhu Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ziguo Guo
- Hubei Inspection Center for Quality and Safety of Agricultural Food, Wuhan 430070, China
| | - Jaekwon Lee
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln 68588-0664, Nebraska
| | - Xiaobin Wu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
11
|
Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Scartazza A, Di Baccio D, Mariotti L, Bettarini I, Selvi F, Pazzagli L, Colzi I, Gonnelli C. Photosynthesizing while hyperaccumulating nickel: Insights from the genus Odontarrhena (Brassicaceae). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:9-20. [PMID: 35182963 DOI: 10.1016/j.plaphy.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Nickel-induced changes in photosynthetic activity were investigated in three Ni-hyperaccumulating Odontarrhena species with increasing Ni tolerance and accumulation capacity, O. muralis, O. moravensis, and O. chalcidica. Plantlets were grown in hydroponics at increasing NiSO4 concentrations (0, 0.25, and 1 mM) for one week, and the effects of Ni on growth, metal accumulation, photosynthesis, and nitrogen (N) allocation to components of the photosynthetic apparatus were analysed. Nickel treatments in O. chalcidica, and O. moravensis to a lesser extent, increased not only the photochemical efficiency of photosystem II (PSII) and the CO2 assimilation rate, but also CO2 diffusion from the atmosphere to the carboxylation sites. These two species displayed a specific increase and/or rearrangement of the photosynthetic pigments and a higher leaf N allocation to the photosynthetic components in the presence of the metal. Odontarrhena muralis displayed a decrease in photosynthetic performance at the lowest Ni concentration due to a combination of both stomatal and non-stomatal limitations. Our data represent the first complete investigation of the effects of Ni on the photosynthetic machinery in Ni hyperaccumulating plants. Our findings clearly indicate a stimulatory, hormetic-like, effect of the metal on both biophysics and biochemistry of photosynthesis in the species with the highest hyperaccumulation capacity.
Collapse
Affiliation(s)
- Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, I-56124, Pisa, Italy.
| | - Daniela Di Baccio
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, I-56124, Pisa, Italy.
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, via Mariscoglio 34, I-56124, Pisa, Italy.
| | - Isabella Bettarini
- Department of Biology, University of Florence, via Micheli 1, I-50121, Firenze, Italy.
| | - Federico Selvi
- Department of Agriculture, Food, Environment and Forest Sciences, Laboratories of Botany, Università degli Studi di Firenze, P. le Cascine 28, I-50144, Firenze, Italy.
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, I-50134, Firenze, Italy.
| | - Ilaria Colzi
- Department of Biology, University of Florence, via Micheli 1, I-50121, Firenze, Italy.
| | - Cristina Gonnelli
- Department of Biology, University of Florence, via Micheli 1, I-50121, Firenze, Italy.
| |
Collapse
|
13
|
Valero A, Palacino B, Ascaso S, Valero A. Exergy assessment of topsoil fertility. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Abstract
Soil micronutrients limit crop productivity in many regions worldwide, and micronutrient deficiencies affect over two billion people globally. Microbial biofertilizers could combat these issues by inoculating arable soils with microorganisms that mobilize micronutrients, increasing their availability to crop plants in an environmentally sustainable and cost-effective manner. However, the widespread application of biofertilizers is limited by complex micronutrient–microbe–plant interactions, which reduce their effectiveness under field conditions. Here, we review the current state of seven micronutrients in food production. We examine the mechanisms underpinning microbial micronutrient mobilization in natural ecosystems and synthesize the state-of-knowledge to improve our overall understanding of biofertilizers in food crop production. We demonstrate that, although soil micronutrient concentrations are strongly influenced by soil conditions, land management practices can also substantially affect micronutrient availability and uptake by plants. The effectiveness of biofertilizers varies, but several lines of evidence indicate substantial benefits in co-applying biofertilizers with conventional inorganic or organic fertilizers. Studies of micronutrient cycling in natural ecosystems provide examples of microbial taxa capable of mobilizing multiple micronutrients whilst withstanding harsh environmental conditions. Research into the mechanisms of microbial nutrient mobilization in natural ecosystems could, therefore, yield effective biofertilizers to improve crop nutrition under global changes.
Collapse
|
15
|
Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. SUSTAINABILITY 2021. [DOI: 10.3390/su132111766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plants need only a small quantity of micronutrients, but they are essential for vital cell functions. Critical micronutrients for plant growth and development include iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), chlorine (Cl), and nickel (Ni). The deficiency of one or more micronutrients can greatly affect plant production and quality. To explore the potential for using micronutrients, we reviewed the literature evaluating the effect of micronutrients on soybean production in the U.S. Midwest and beyond. Soil and foliar applications were the major micronutrient application methods. Overall, studies indicated the positive yield response of soybean to micronutrients. However, soybean yield response to micronutrients was not consistent among studies, mainly because of different environmental conditions such as soil type, soil organic matter (SOM), moisture, and temperature. Despite this inconsistency, there has been increased pressure for growers to apply micronutrients to soybeans due to a fact that deficiencies have increased with the increased use of high-yielding cultivars. Further studies on quantification and variable rate application of micronutrients under different soil and environmental conditions are warranted to acquire more knowledge and improve the micronutrient management strategies in soybean. Since the SOM could meet the micronutrient need of many crops, management strategies that increase SOM should be encouraged to ensure nutrient availability and improve soil fertility and health for sustainable soybean production.
Collapse
|
16
|
Sharma A, Bhagat M, Urfan M, Ahmed B, Langer A, Ali V, Vyas D, Yadav NS, Hakla HR, Sharma S, Pal S. Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats. Sci Rep 2021; 11:3369. [PMID: 33564007 PMCID: PMC7873240 DOI: 10.1038/s41598-020-73441-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
Bryophytes are potent metal absorbers, thriving well on heavy metal (HM)-polluted soils. Mechanisms controlling uptake, compartmentalization and impacts of HMs on bryophytes life cycle are largely unknown. The current study is an effort to decipher mechanisms of nickel (Ni) excess-induced effects on the phenological events of two bryophytes, Asterella wallichiana and Plagiochasma apendiculatum growing in natural habitats. Observations revealed Ni-excess induced negative impacts on abundance, frequency of occurrence of reproductive organs, population viability and morphological traits, spore viability and physiological attributes of both the liverworts. Results led us conclude that P. appendiculatum survived better with the lowest impact on its life cycle events than A. wallichiana under Ni excess in natural habitats. Our findings collectively provide insights into the previously unknown mechanisms of Ni-induced responses in liverworts with respect to phenological attributes, as well as demonstrate the potential of P. appendiculatum to survive better in Ni excess habitats.
Collapse
Affiliation(s)
- Anil Sharma
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Madhu Bhagat
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Mohammad Urfan
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Bilal Ahmed
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Anima Langer
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Villayat Ali
- Biodiversity and Applied Botany Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | | | - Shubham Sharma
- Department of Botany, University of Jammu, Jammu, 180-006, India
| | - Sikander Pal
- Department of Botany, University of Jammu, Jammu, 180-006, India.
| |
Collapse
|
17
|
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N 2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3043-3064. [PMID: 31838702 DOI: 10.1007/s11356-019-07300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Nickel (Ni) is an essential micronutrient but considered toxic for plant growth when present in excess in the soil. Polyamines (PAs) and arbuscular mycorrhiza (AM) play key roles in alleviating metal toxicity in plants. Present study compared the roles of AM and PAs in improving rhizobial symbiosis, ureide, and trehalose (Tre) metabolism under Ni stress in Cajanus cajan (pigeon pea) genotypes (Pusa 2001, AL 201). The results documented significant negative impacts of Ni on plant biomass, especially roots, more in AL 201 than Pusa 2001. Symbiotic efficiency with Rhizobium and AM declined under Ni stress, resulting in reduced AM colonization, N2 fixation, and ureide biosynthesis. This decline was proportionate to increased Ni uptake in roots and nodules. Put-reduced Ni uptake improved plant growth and functional efficiency of nodules and ureides synthesis, with higher positive effects than other PAs. However, AM inoculations were most effective in enhancing nodulation, nitrogen fixing potential, and Tre synthesis under Ni toxicity. Combined applications of AM with respective PAs, especially +Put+AM, were highly beneficial in alleviating Ni-induced nodule senescence by arresting leghemoglobin degradation and improving functional efficiency of nodules by boosting Tre metabolism, especially in Pusa 2001. The study suggested use of Put along with AM as a promising approach in imparting Ni tolerance to pigeon pea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Kiran Saroy
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|