1
|
Li Q, Qiao X, Li L, Gu C, Yin H, Qi K, Xie Z, Yang S, Zhao Q, Wang Z, Yang Y, Pan J, Li H, Wang J, Wang C, Rieseberg LH, Zhang S, Tao S. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. PLANT COMMUNICATIONS 2024; 5:101000. [PMID: 38859586 DOI: 10.1016/j.xplc.2024.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties, 'Yuluxiang' (YLX) and 'Hongxiangsu' (HXS), which share the same maternal parent but differ in their paternal parents. We then used these assemblies to explore the genome-scale landscape of allele-specific expression (ASE) and create a pangenome graph for pear. ASE was observed for close to 6000 genes in both hybrid cultivars. A subset of ASE genes related to aspects of fruit quality such as sugars, organic acids, and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, is absent in the paternal haplotypes of HXS and YLX. A pangenome graph was built based on our assemblies and seven published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous structural variant hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, and this association was functionally validated by Ma1 overexpression in pear fruit and calli. Overall, these results reveal the contributions of ASE to fruit-quality heterosis and provide a robust pangenome reference for high-resolution allele discovery and association mapping.
Collapse
Affiliation(s)
- Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lanqing Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaijie Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhihua Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qifeng Zhao
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zewen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuhang Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahui Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongxiang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shutian Tao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Ezer R, Manasherova E, Gur A, Schaffer AA, Tadmor Y, Cohen H. The dominant white color trait of the melon fruit rind is associated with epicuticular wax accumulation. PLANTA 2024; 260:97. [PMID: 39278990 DOI: 10.1007/s00425-024-04527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
MAIN CONCLUSION Microscopic analyses and chemical profiling demonstrate that the white rind phenotype in melon fruit is associated with the accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters. Serving as an indicator of quality, the rind (or external) color of fruit directly affects consumer choice. A fruit's color is influenced by factors such as the levels of pigments and deposited epicuticular waxes. The latter produces a white-grayish coating often referred to as "wax bloom". Previous reports have suggested that some melon (Cucumis melo L.) accessions may produce wax blooms, where a dominant white rind color trait was genetically mapped to a major locus on chromosome 7 and suggested to be inherited as a single gene named Wi. We here provide the first direct evidence of the contribution of epicuticular waxes to the dominant white rind trait in melon fruit. Our light and electron microscopy and gas chromatography-mass spectrometry (GC-MS) comparative analysis of melon accessions with white or green rinds reveals that the rind of melon fruit is rich in epicuticular waxes. These waxes are composed of various biochemical classes, including fatty acids, fatty alcohols, aldehydes, fatty amides, n-alkanes, tocopherols, triterpenoids, and wax esters. We show that the dominant white rind phenotype in melon fruit is associated with increased accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters, which are linked with the deposition of crystal-like wax platelets on their surfaces. Together, this study broadens the understanding of natural variation in an important quality trait of melon fruit and promotes the future identification of the causative gene for the dominant white rind trait.
Collapse
Affiliation(s)
- Ran Ezer
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel
- Cucurbits Section, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Institute, Newe Ya'Ar Research Center, Ramat Yishay, Israel
- Department of Plant Science and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Robert H. Smith, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel
| | - Amit Gur
- Cucurbits Section, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Institute, Newe Ya'Ar Research Center, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel
| | - Yaakov Tadmor
- Cucurbits Section, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Institute, Newe Ya'Ar Research Center, Ramat Yishay, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Le-Zion, Israel.
| |
Collapse
|
3
|
Huang H, Yan J, Yan H, Jiang B. Chemical compositions and cryo-adhesive probing of the epicuticular wax crystals on fruit surface of wax gourd (Benincasa hispida). Food Chem 2024; 441:138277. [PMID: 38176138 DOI: 10.1016/j.foodchem.2023.138277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Surface wax crystals play important roles in protecting plants from pest and disease invasions, and UV irradiation. The wax crystals are less probed individually from the fruit surfaces. Herein the morphologies, chemicals and an efficient method to sample the wax blooms of white wax gourd were addressed. Various crystalloids such as rodlets, platelets, fragments, and granules were observed, which stacked as fine wax film covering on wax gourd fruit surface. The wax blooms were effectively removed by cryo-adhesive after consecutive manipulating set by a high-end device with cylinders. Wax crystals were dominated by triterpenols and triterpenol acetates over 61 % of total crystals, followed by vey-long-chain aliphatics. Accordingly, the high-end device with cryo-adhesive provides an efficient approach to selectively probe the wax crystals from those fruits covering wax blooms. The elucidation of morphologies and chemical compositions of wax crystals may help to better understand their regulations on fruit quality traits.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Huaxue Yan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| |
Collapse
|
4
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Wu J, You Y, Wu X, Liu F, Li G, Yin H, Gu C, Qi K, Wei Q, Wang S, Yao Q, Zhan R, Zhang S. The dynamic changes of mango ( Mangifera indica L.) epicuticular wax during fruit development and effect of epicuticular wax on Colletotrichum gloeosporioides invasion. FRONTIERS IN PLANT SCIENCE 2023; 14:1264660. [PMID: 37860233 PMCID: PMC10584308 DOI: 10.3389/fpls.2023.1264660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Mango fruits are susceptible to diseases, such as anthracnose, during fruit development, leading to yield reduction. Epicuticular wax is closely related to resistance of plants to pathogenic bacterial invasion. In this study, the effect of mango fruit epicuticular wax on the invasion of Colletotrichum gloeosporioides was investigated, followed by to understand the changes of wax chemical composition and crystal morphology during mango fruit development using GC-MS and SEM. Results showed that the epicuticular wax of mango fruits can prevent the invasion of C. gloeosporioides, and 'Renong' showed the strongest resistance to C. gloeosporioides. The wax content of four mango varieties first increased and then decreased from 40 days after full bloom (DAFB) to 120 DAFB. In addition, 95 compounds were detected in the epicuticular wax of the four mango varieties at five developmental periods, in which primary alcohols, terpenoids and esters were the main wax chemical composition. Furthermore, the surface wax structure of mango fruit changed dynamically during fruit development, and irregular platelet-like crystals were the main wax structure. The present study showed the changes of wax content, chemical composition and crystal morphology during mango fruit development, and the special terpenoids (squalene, farnesyl acetate and farnesol) and dense crystal structure in the epicuticular wax of 'Renong' fruit may be the main reason for its stronger resistance to C. gloeosporioides than other varieties. Therefore, these results provide a reference for the follow-up study of mango fruit epicuticular wax synthesis mechanism and breeding.
Collapse
Affiliation(s)
- Jingbo Wu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yuquan You
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wu
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Feng Liu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Guoping Li
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Chao Gu
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qing Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agriculture Sciences, Sanya, China
| | - Songbiao Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agriculture Sciences, Sanya, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Zhang J, Zhang C, Li X, Liu ZY, Liu X, Wang CL. Comprehensive analysis of KCS gene family in pear reveals the involvement of PbrKCSs in cuticular wax and suberin synthesis and pear fruit skin formation. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01371-3. [PMID: 37523053 DOI: 10.1007/s11103-023-01371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Cuticular wax, cutin and suberin polyesters covering the surface of some fleshy fruit are tightly associated with skin color and appearance. β-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme participating in the synthesis of very-long-chain fatty acids (VLCFAs), the essential precursors of cuticular waxes and aliphatic monomers of suberin. However, information on the KCS gene family in pear genome and the specific members involved in pear fruit skin formation remain unclear. In the present study, we performed an investigation of the composition and amount of cuticular waxes, cutin and aliphatic suberin in skins of four sand pear varieties with distinct colors (russet, semi-russet, and green) and demonstrated that the metabolic shifts of cuticular waxes and suberin leading to the significant differences of sand pear skin color. A genome-wide identification of KCS genes from the pear genome was conducted and 35 KCS coding genes were characterized and analyzed. Expression profile analysis revealed that the KCS genes had diverse expression patterns among different pear skins and the transcript abundance of PbrKCS15, PbrKCS19, PbrKCS24, and PbrKCS28 were consistent with the accumulation of cuticular waxes and suberin in fruit skin respectively. Subcellular localization analysis demonstrated that PbrKCS15, PbrKCS19, PbrKCS24 and PbrKCS28 located on the endoplasmic reticulum (ER). Further, transient over-expression of PbrKCS15, PbrKCS19, and PbrKCS24 in pear fruit skins significantly increased cuticular wax accumulation, whereas PbrKCS28 notably induced suberin deposition. In conclusion, pear fruit skin color and appearance are controlled in a coordinated way by the deposition of the cuticular waxes and suberin. PbrKCS15, PbrKCS19, and PbrKCS24 are involved in cuticular wax biosynthesis, and PbrKCS28 is involved in suberin biosynthesis, which play essential roles in pear fruit skin formation. Moreover, this work provides a foundation for further understanding the functions of KCS genes in pear.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Zi-Yu Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
7
|
Liu C, Li H, Ren A, Chen G, Ye W, Wu Y, Ma P, Yu W, He T. A comparison of the mineral element content of 70 different varieties of pear fruit ( Pyrus ussuriensis) in China. PeerJ 2023; 11:e15328. [PMID: 37180575 PMCID: PMC10174059 DOI: 10.7717/peerj.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background Pyrus ussuriensis (Maxim.) is a unique pear tree that grows in northern China. The tree has strong cold resistance and can withstand low temperatures from -30 °C to -35 °C. Due to its unique growth environment, its fruit is rich in minerals and has much higher levels of minerals such as K, Ca and Mg than the fruit of Pyrus pyrifolia (Nakai.) and Pyrus bretschneideri (Rehd.) on the market, and many say the ripe fruit tastes better than other varieties. A comprehensive analysis of the characteristics of mineral elements in the fruits of different varieties of P. ussuriensis will provide a valuable scientific basis for the selection, breeding and production of consumer varieties of P. ussuriensis, and provide a more complete understanding of nutritional differences between fruit varieties. Methods In this study, 70 varieties of wild, domesticated and cultivated species of P. ussuriensis from different geographical locations were compared. Targeting four main mineral elements and eight trace mineral elements contained in the fruit, the differences in mineral content in the peel and pulp of different varieties of P. ussuriensis were analyzed, compared and classified using modern microwave digestion ICP-MS. Results The mineral elements in the fruit of P. ussuriensis generally followed the following content pattern: K > P > Ca > Mg > Na > Al > Fe > Zn > Cu > Cr > Pb > Cd. The mineral element compositions in the peel and pulp of different fruits were also significantly different. The four main mineral elements in the peel were K > Ca > P > Mg, and K > P > Mg > Ca in the pulp. The mineral element content of wild fruit varieties was higher than that of cultivated and domesticated varieties. Correlation analysis results showed that there was a significant positive correlation between K, P and Cu in both the peel and pulp of P. ussuriensis fruit (P < 0. 01). Cluster analysis results showed that the 70 varieties of P. ussuriensis could be divided into three slightly different categories according to the content of the peel or pulp. According to the contents of the fruit peel, these varieties were divided into: (1) varieties with high Na, Mg, P, K, Fe and Zn content, (2) varieties with high Ca content and (3) varieties with medium levels of mineral elements. According to the fruit pulp content, these varieties were divided into: (1) varieties with high Mg, P and K content, (2) varieties with low mineral element content, and (3) varieties with high Na and Ca content. The comprehensive analysis of relevant mineral element content factors showed that 'SSHMSL,' 'QYL,' 'SWSL' and 'ZLTSL-3' were the best varieties, and could be used as the focus varieties of future breeding programs for large-scale pear production.
Collapse
Affiliation(s)
- Chang Liu
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Fruit Breeding and Cultivation in Cold Areas, Mudanjiang, Heilongjiang, China
| | - Honglian Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Aihua Ren
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guoyou Chen
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences/Inspection and Testing Center for Quality of Cereals and Their Products (Harbin), Ministry of Agriculture and Rural Affairs, Heilongjiang, China
| | - Wanjun Ye
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuxia Wu
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Ping Ma
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
- Bayin Guoleng Vocational and Technical College, Korla, China
| | - Wenquan Yu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Fruit Breeding and Cultivation in Cold Areas, Mudanjiang, Heilongjiang, China
| | - Tianming He
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
8
|
Li D, Cheng Y, Shang Z, Guan J. Changing surface wax compositions and related gene expression in three cultivars of Chinese pear fruits during cold storage. PeerJ 2022; 10:e14328. [PMID: 36340202 PMCID: PMC9635359 DOI: 10.7717/peerj.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The surface wax of fruit has a significant effect on abiotic stress and fruit quality. In this study, the composition of the waxes found on fruit surfaces and the related gene expression of three different pear cultivars (Xuehua, Yali, and Yuluxiang) were investigated during cold storage. The results showed that 35 wax compositions were found on the surfaces of the three pear cultivars, mainly including C29 alkane, three fatty acids, two esters, three aldehydes, three fatty alcohols, and three triterpenoids. The largest amount of C29 alkane, three fatty acids and two esters were found in Yuluxiang (YLX) on day 90, while aldehydes with carbons of C30 and C32 were the highest in Yali (YL). Xuehua (XH) showed the largest amount of C22 fatty alcohol on day 180 compared to YLX and YL. Larger amounts of triterpenoids were found in XH and YL when compared to YLX. The expression levels of fifteen wax related genes (LACS1, KCS2, KCS6, FDH, KCS20, GL8, CER10, CER60, LTPG1, LTP4, ABCG12, CER1L, CAC3, CAC3L, and DGAT1L) reached their peak at day 45 in YLX, compared to XH and YL, their expression levels in YLX were higher to different degrees. These results suggest that the different expression patterns of wax-related genes may be closely related to the difference in wax compositions of the surface wax of three pear cultivars.
Collapse
Affiliation(s)
- Dan Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China,College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China,School of Life Science and Engineering, Handan University, Handan, Hebei, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Cao Y, Zang Y, Wu S, Li T, Li J, Xu K, Hong SB, Wu B, Zhang W, Zheng W. Melatonin affects cuticular wax profile in rabbiteye blueberry (Vaccinium ashei) during fruit development. Food Chem 2022; 384:132381. [DOI: 10.1016/j.foodchem.2022.132381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/12/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
|
10
|
Wen H, Wang W, Jiang X, Wu M, Bai H, Wu C, Shen L. Transcriptome analysis to identify candidate genes related to chlorogenic acid biosynthesis during development of Korla fragrant pear in Xinjiang. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
García-Coronado H, Tafolla-Arellano JC, Hernández-Oñate MÁ, Burgara-Estrella AJ, Robles-Parra JM, Tiznado-Hernández ME. Molecular Biology, Composition and Physiological Functions of Cuticle Lipids in Fleshy Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091133. [PMID: 35567134 PMCID: PMC9099731 DOI: 10.3390/plants11091133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle's structure and composition change in response to the fruit's developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits' postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops.
Collapse
Affiliation(s)
- Heriberto García-Coronado
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Julio César Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Coahuila, Mexico;
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Alexel Jesús Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico;
| | - Jesús Martín Robles-Parra
- Coordinación de Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| |
Collapse
|
12
|
Li J, Zhang M, Li X, Khan A, Kumar S, Allan AC, Lin-Wang K, Espley RV, Wang C, Wang R, Xue C, Yao G, Qin M, Sun M, Tegtmeier R, Liu H, Wei W, Ming M, Zhang S, Zhao K, Song B, Ni J, An J, Korban SS, Wu J. Pear genetics: Recent advances, new prospects, and a roadmap for the future. HORTICULTURE RESEARCH 2022; 9:uhab040. [PMID: 35031796 PMCID: PMC8778596 DOI: 10.1093/hr/uhab040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".
Collapse
Affiliation(s)
- Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Andrew Charles Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Richard Victor Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mengfan Qin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Tegtmeier
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Hainan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weilin Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kejiao Zhao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangping Ni
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Schuyler S Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Carvajal F, Castro-Cegrí A, Jiménez-Muñoz R, Jamilena M, Garrido D, Palma F. Changes in Morphology, Metabolism and Composition of Cuticular Wax in Zucchini Fruit During Postharvest Cold Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:778745. [PMID: 34950169 PMCID: PMC8691734 DOI: 10.3389/fpls.2021.778745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Cuticle composition is an important economic trait in agriculture, as it is the first protective barrier of the plant against environmental conditions. The main goal of this work was to study the role of the cuticular wax in maintaining the postharvest quality of zucchini fruit, by comparing two commercial varieties with contrasting behavior against low temperatures; the cold-tolerant variety 'Natura', and the cold-sensitive 'Sinatra', as well as 'Sinatra' fruit with induced-chilling tolerance through a preconditioning treatment (15°C for 48 h). The freshly-harvested 'Natura' fruit had a well-detectable cuticle with a significant lower permeability and a subset of 15 up-regulated cuticle-related genes. SEM showed that zucchini epicuticular waxes mainly consisted of round-shaped crystals and clusters of them, and areas with more dense crystal deposition were found in fruit of 'Natura' and of preconditioned 'Sinatra'. The cuticular wax load per surface was higher in 'Natura' than in 'Sinatra' fruit at harvest and after 14 days at 4°C. In addition, total cuticular wax load only increased in 'Natura' and preconditioned 'Sinatra' fruit with cold storage. With respect to the chemical composition of the waxes, the most abundant components were alkanes, in both 'Natura' and 'Sinatra', with similar values at harvest. The total alkane content only increased in 'Natura' fruit and in the preconditioned 'Sinatra' fruit after cold storage, whereas the amount of total acids decreased, with the lowest values observed in the fruit that showed less chilling injury (CI) and weight loss. Two esters were detected, and their content also decreased with the storage in both varieties, with a greater reduction observed in the cold-tolerant variety in response to low temperature. Gene expression analysis showed significant differences between varieties, especially in CpCER1-like and CpCER3-like genes, involved in alkane production, as well as in the transcription factors CpWIN1-like and CpFUL1-like, associated with cuticle development and epidermal wax accumulation in other species. These results suggest an important role of the alkane biosynthetic pathway and cuticle morphology in maintaining the postharvest quality of zucchini fruit during the storage at low temperatures.
Collapse
Affiliation(s)
- Fátima Carvajal
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Alejandro Castro-Cegrí
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Raquel Jiménez-Muñoz
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), University of Almería, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
15
|
Lykholat YV, Khromykh NO, Didur OO, Okovytyy SI, Sklyar TV, Davydov VR, Lykholat TY, Kovalenko IM. Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.
Collapse
|
16
|
Wang P, Wang J, Zhang H, Wang C, Zhao L, Huang T, Qing K. Chemical Composition, Crystal Morphology, and Key Gene Expression of the Cuticular Waxes of Goji ( Lycium barbarum L.) Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7874-7883. [PMID: 34251203 DOI: 10.1021/acs.jafc.1c02009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cuticular wax of fruit is closely related to quality, storability, and pathogen susceptibility after harvest. However, little is known about the cuticular wax of goji berry (Lycium barbarum L.) cultivars. In the present study, the chemical composition, crystal structures, and expression levels of associated genes of the cuticular wax of six goji cultivars were investigated. We detected 70 epicuticular wax compounds in six goji cultivars. Among them, fatty acids, alkanes, and primary alcohols were the major components of the cuticular wax of goji berries, which were related to the formation of irregular lamellar crystal structures. The terpenoid compounds in the cuticular wax of goji berries were highly resistant to Alternaria rot. Moreover, the CER1, CER6, LACS1, MAH1, LTP4, ABC11, MYB96, and WIN1 genes in goji berries might be closely related to wax synthesis. These results provide valuable information for breeding and screening goji cultivars suitable for postharvest storage.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Cong Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Ting Huang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Ken Qing
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
17
|
Pimentel BS, Negri G, Cordeiro I, Motta LB, Salatino A. Taxonomic significance of the distribution of constituents of leaf cuticular waxes of Croton species (Euphorbiaceae). BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Chai Y, Li A, Chit Wai S, Song C, Zhao Y, Duan Y, Zhang B, Lin Q. Cuticular wax composition changes of 10 apple cultivars during postharvest storage. Food Chem 2020; 324:126903. [PMID: 32361095 DOI: 10.1016/j.foodchem.2020.126903] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Cuticular wax chemicals differ among fruit cultivars and contribute to storage ability. However, wax analysis in apple cultivars, particularly during storage, has not been described. In this work, the chemicals and crystal structures of cuticular wax in 10 apple cultivars were analyzed to observe wax functions in apple during storage. Results showed that alkanes and primary alcohols decreased while fatty acids increased in stored fruits of all cultivars compared with the fruits before storage. Terpenoids, aldehydes, and phenols were observed in stored fruits but not in the fruits before storage in all cultivars except 'Red Star' fruit. The weight loss rate was significantly correlated with six components including C13 alcohol, C14 alkanes, total alkanes, total wax, C13 alkanes and C54 alkanes in 10 cultivar apple fruits during storage. Our findings indicate that the total wax, particularly alkanes, in the peel of apple fruits is essential for storage and quality control.
Collapse
Affiliation(s)
- Yifeng Chai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Shenyang Agricultural University, Liaoning 100193, People's Republic of China
| | - Ang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Su Chit Wai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Congcong Song
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yaoyao Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Baiqing Zhang
- Shenyang Agricultural University, Liaoning 100193, People's Republic of China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
19
|
Chang G, Yue B, Gao T, Yan W, Pan G. Phytoremediation of phenol by Hydrilla verticillata (L.f.) Royle and associated effects on physiological parameters. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121569. [PMID: 31945590 DOI: 10.1016/j.jhazmat.2019.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Phenol contamination is a common occurrence in aquatic environments in different parts of the world and strategies that utilize cheap and eco-friendly phytoremediation technologies are required to overcome associated environmental problems. In the present study, the submersed macrophyte Hydrilla verticillata (L.F.) Royle was exposed to different concentrations of phenol (0-200 mg L-1) to assess its potential in phenol treatment. H. verticillata efficiently degraded phenol in solutions with initial concentrations lower than 200 mg L-1. The adverse effects of phenol on physiological parameters of H. verticillata were also investigated after 7 d of phenol stress. In order to explore the effect of phenol on the metabolism of H. verticillata during phytoremediation, gas chromatography-mass spectrometry (GC-MS) was used to analyze endogenous soluble organic compounds. The results revealed the presence of greater than 60 soluble organic compounds in H. verticillata. In the process of phenol degradation, fatty acid composition and carbon number distribution were affected in the plants while unsaturated fatty acid content was significantly lower, and several compounds including aliphatic dicarboxylic acids and aromatic ketones were degraded while new compounds were synthesized by the plant. In summary, H. verticillata is a promising candidate for the phytoremediation of the phenol-contaminated aquatic system.
Collapse
Affiliation(s)
- Guohua Chang
- School of Geography and Environmental Engineering, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Gansu 730070, China.
| | - Bin Yue
- School of Geography and Environmental Engineering, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Gansu 730070, China
| | - Tianpeng Gao
- School of Geography and Environmental Engineering, Lanzhou City University, The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Gansu 730070, China
| | - Wende Yan
- Research Section of Ecology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Gang Pan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham 999020, UK
| |
Collapse
|
20
|
Wu X, Chen Y, Shi X, Qi K, Cao P, Liu X, Yin H, Zhang S. Effects of palmitic acid (16:0), hexacosanoic acid (26:0), ethephon and methyl jasmonate on the cuticular wax composition, structure and expression of key gene in the fruits of three pear cultivars. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:156-169. [PMID: 31930956 DOI: 10.1071/fp19117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The chemical composition, crystal morphology and expression levels of associated genes involved in the cuticular wax of three pear cultivars 'Housui', 'Cuiguan' and 'Yuluxiang' after treatment with palmitic acid (PA), hexacosanoic acid (HA), ethephon and methyl jasmonate (Meja) were determined. A total of 59 cuticular wax compounds were detected across all samples. The wax coverage of 'Housui' fruits increased by 71.74, 93.48 and 89.13% after treatment with PA, ethephon and Meja, respectively, and treatment with PA, HA and Meja also increased the wax coverage in 'Cuiguan' (65.33, 20.00 and 21.33% respectively) and in 'Yuluxiang' (38.60, 63.16 and 42.11% respectively) fruits. Heatmap clustering analysis and partial least-squares-discriminate analysis (PLS-DA) also revealed that the different treatments exerted various influences on cuticular wax among the different cultivars. In addition, the wax component coverage and wax crystal structures showed variations among the different cultivars as well as different treatments. Gene expression analysis revealed 11 genes likely to be involved in pear fruit wax synthesis, transport and regulation. Taken together, the results of this study demonstrate that the differences in the cuticular waxes of the fruits of different cultivars after treatment with PA, HA, ethephon or Meja might lead to a better understanding of the regulatory effect of a substrate or elicitor on the composition and deposition of cuticular waxes.
Collapse
Affiliation(s)
- Xiao Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yangyang Chen
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xinjie Shi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Peng Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xueying Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; and Corresponding authors. ;
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; and Corresponding authors. ;
| |
Collapse
|
21
|
Diarte C, Lai PH, Huang H, Romero A, Casero T, Gatius F, Graell J, Medina V, East A, Riederer M, Lara I. Insights Into Olive Fruit Surface Functions: A Comparison of Cuticular Composition, Water Permeability, and Surface Topography in Nine Cultivars During Maturation. FRONTIERS IN PLANT SCIENCE 2019; 10:1484. [PMID: 31798618 PMCID: PMC6878217 DOI: 10.3389/fpls.2019.01484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 05/02/2023]
Abstract
Olive (Olea europaea L.) growing has outstanding economic relevance in Spain, the main olive oil producer and exporter in the world. Fruit skin properties are very relevant for fruit and oil quality, water loss, and susceptibility to mechanical damage, rots, and infestations, but limited research focus has been placed on the cuticle of intact olive fruit. In this work, fruit samples from nine olive cultivars ("Arbequina," "Argudell," "Empeltre," "Farga," "Manzanilla," "Marfil," "Morrut," "Picual," and "Sevillenca") were harvested from an experimental orchard at three different ripening stages (green, turning, and ripe), and cuticular membranes were enzymatically isolated from fruit skin. The total contents of cuticular wax and cutin significantly differed among cultivars both in absolute and in relative terms. The wax to cutin ratio generally decreased along fruit maturation, with the exception of "Marfil" and "Picual." In contrast, increased water permeance values in ripe fruit were observed uniquely for "Argudell," "Morrut," and "Marfil" fruit. The toluidine blue test revealed surface discontinuities on green samples of "Argudell," "Empeltre," "Manzanilla," "Marfil," and "Sevillenca" fruit, but not on "Arbequina," "Farga," "Morrut," or "Picual." No apparent relationship was found between water permeability and total wax coverage or the results of the toluidine blue test. The composition of cuticular waxes and cutin monomers was analyzed in detail, and sections of fruit pericarp were stained in Sudan IV for microscopy observations. Skin surface topography was also studied by means of fringe projection, showing large differences in surface roughness among the cultivars, "Farga" and "Morrut" fruits displaying the most irregular surfaces. Cultivar-related differences in cuticle and surface features of fruit are presented and discussed.
Collapse
Affiliation(s)
- Clara Diarte
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| | - Po-Han Lai
- Massey Agrifood Technology Partnership, Massey University, Palmerston North, New Zealand
| | - Hua Huang
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Würzburg, Germany
| | - Agustí Romero
- Oliviculture, Oil Science and Nuts, IRTA-Mas de Bover, Constantí, Spain
| | | | | | - Jordi Graell
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| | - Vicente Medina
- Universitat de Lleida, Lleida, Spain
- Applied Plant Biotechnology, AGROTÈCNIO, Lleida, Spain
| | - Andrew East
- Massey Agrifood Technology Partnership, Massey University, Palmerston North, New Zealand
| | - Markus Riederer
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Würzburg, Germany
| | - Isabel Lara
- Universitat de Lleida, Lleida, Spain
- Postharvest Unit-XaRTA, AGROTÈCNIO, Lleida, Spain
| |
Collapse
|
22
|
Wu X, Shi X, Bai M, Chen Y, Li X, Qi K, Cao P, Li M, Yin H, Zhang S. Transcriptomic and Gas Chromatography-Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing 'Yuluxiang' Pear Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8319-8331. [PMID: 31287308 DOI: 10.1021/acs.jafc.9b01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The layer of cuticular wax covering fruits plays important roles in protecting against disease, preventing non-stomatal water loss, and extending shelf life. However, the molecular basis of cuticular wax biosynthesis in pear (Pyrus) fruits remains elusive. Our study thoroughly investigates cuticular wax biosynthesis during pear fruit development from morphologic, transcriptomic, and gas chromatography-mass spectrometry metabolomic perspectives. Our results showed that cuticular wax concentrations increased during the early stage [20-80 days after full bloom (DAFB)] from 0.64 mg/cm2 (50 DAFB) to 1.75 mg/cm2 (80 DAFB) and then slightly decreased to 1.22 mg/cm2 during the fruit ripening period (80-140 DAFB). Scanning electron microscopy imaging indicated that wax plate crystals increased and wax structures varied during the pear fruit development. The combined transcriptomic and metabolomic profiling analysis revealed 27 genes, including 12 genes encoding transcription factors and a new structural gene (Pbr028523) encoding β-amyrin synthase, participating in the biosynthesis, transport, and regulation of cuticular wax according to their expression patterns in pear fruit. The quantitative real-time polymerase chain reaction experiments of 18 differentially expressed genes were performed and confirmed the accuracy of the RNA-Seq-derived transcript expression. A model of VLCFAs and cuticular wax synthesis and transport in pear fruit is proposed, providing a mechanistic framework for understanding cuticular wax biosynthesis in pear fruit. These results and data sets provide a foundation for the molecular events related to cuticular wax in 'Yuluxiang' pear fruit and may also help guide the functional analyses of candidate genes important for improving the cuticular wax of pear fruit in the future.
Collapse
Affiliation(s)
- Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xinjie Shi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Mudan Bai
- Pomology Research Institute , Shanxi Academy of Agricultural Sciences , Jinzhong , Shanxi 030815 , People's Republic of China
| | - Yangyang Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Peng Cao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Mingzhi Li
- Genepioneer Biotechnologies Company, Limited , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
23
|
Trivedi P, Nguyen N, Hykkerud AL, Häggman H, Martinussen I, Jaakola L, Karppinen K. Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:431. [PMID: 31110509 PMCID: PMC6499192 DOI: 10.3389/fpls.2019.00431] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Laura Jaakola
- Norwegian Institute of Bioeconomy Research, Ås, Norway
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Katja Karppinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
24
|
Budzinski IGF, de Moraes FE, Cataldi TR, Franceschini LM, Labate CA. Network Analyses and Data Integration of Proteomics and Metabolomics From Leaves of Two Contrasting Varieties of Sugarcane in Response to Drought. FRONTIERS IN PLANT SCIENCE 2019; 10:1524. [PMID: 31850025 PMCID: PMC6892781 DOI: 10.3389/fpls.2019.01524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/01/2019] [Indexed: 05/11/2023]
Abstract
Uncovering the molecular mechanisms involved in the responses of crops to drought is crucial to understand and enhance drought tolerance mechanisms. Sugarcane (Saccharum spp.) is an important commercial crop cultivated mainly in tropical and subtropical areas for sucrose and ethanol production. Usually, drought tolerance has been investigated by single omics analysis (e.g. global transcripts identification). Here we combine label-free quantitative proteomics and metabolomics data (GC-TOF-MS), using a network-based approach, to understand how two contrasting commercial varieties of sugarcane, CTC15 (tolerant) and SP90-3414 (susceptible), adjust their leaf metabolism in response to drought. To this aim, we propose the utilization of regularized canonical correlation analysis (rCCA), which is a modification of classical CCA, and explores the linear relationships between two datasets of quantitative variables from the same experimental units, with a threshold set to 0.99. Light curves revealed that after 4 days of drought, the susceptible variety had its photosynthetic capacity already significantly reduced, while the tolerant variety did not show major reduction. Upon 12 days of drought, photosynthesis in the susceptible plants was completely reduced, while the tolerant variety was at a third of its rate under control conditions. Network analysis of proteins and metabolites revealed that different biological process had a stronger impact in each variety (e.g. translation in CTC15, generation of precursor metabolites, response to stress and energy in SP90-3414). Our results provide a reference data set and demonstrate that rCCA can be a powerful tool to infer experimentally metabolite-protein or protein-metabolite associations to understand plant biology.
Collapse
|