1
|
Gao Y, Cui Y, Li M, Kang J, Yang Q, Ma Q, Long R. Comparative proteomic discovery of salt stress response in alfalfa roots and overexpression of MsANN2 confers salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109033. [PMID: 39137681 DOI: 10.1016/j.plaphy.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity constrains growth, development and yield of alfalfa (Medicago sativa L.). To illustrate the molecular mechanisms responsible for salt tolerance, a comparative proteome analysis was explored to characterize protein profiles of alfalfa seedling roots exposed to 100 and 200 mM NaCl for three weeks. There were 52 differentially expressed proteins identified, among which the mRNA expressions of 12 were verified by Real-Time-PCR analysis. The results showed increase in abundance of ascorbate peroxidase, POD, CBS protein and PR-10 in salt-stressed alfalfa, suggesting an effectively antioxidant and defense systems. Alfalfa enhanced protein quality control system to refold or degrade abnormal proteins induced by salt stress through upregulation of unfolded protein response (UPR) marker PDIs and molecular chaperones (eg. HSP70, TCP-1, and GroES) as well as the ubiquitin-proteasome system (UPS) including ubiquitin ligase enzyme (E3) and proteasome subunits. Upregulation of proteins responsible for calcium signal transduction including calmodulin and annexin helped alfalfa adapt to salt stress. Specifically, annexin (MsANN2), a key Ca2+-binding protein, was selected for further characterization. The heterologous of the MsANN2 in Arabidopsis conferred salt tolerance. These results provide detailed information for salt-responsive root proteins and highlight the importance of MsANN2 in adapting to salt stress in alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanjun Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qiaoli Ma
- College of Forestry and Prataculture, Ningxia University, No. 489 West Helanshan Road, Yinchuan, Ningxia, 750021, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
2
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
3
|
Wang J, Gao Y, Xiong X, Yan Y, Lou J, Noman M, Li D, Song F. The Ser/Thr protein kinase FonKin4-poly(ADP-ribose) polymerase FonPARP1 phosphorylation cascade is required for the pathogenicity of watermelon fusarium wilt fungus Fusarium oxysporum f. sp. niveum. Front Microbiol 2024; 15:1397688. [PMID: 38690366 PMCID: PMC11058995 DOI: 10.3389/fmicb.2024.1397688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC-MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiajing Wang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Xiong
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Liu Y, Song P, Yan M, Luo J, Wang Y, Fan F. Integrated Transcriptome and Proteome Analysis Reveals the Regulatory Mechanism of Root Growth by Protein Disulfide Isomerase in Arabidopsis. Int J Mol Sci 2024; 25:3596. [PMID: 38612408 PMCID: PMC11011405 DOI: 10.3390/ijms25073596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Protein disulfide isomerase (PDI, EC 5.3.4.1) is a thiol-disulfide oxidoreductase that plays a crucial role in catalyzing the oxidation and rearrangement of disulfides in substrate proteins. In plants, PDI is primarily involved in regulating seed germination and development, facilitating the oxidative folding of storage proteins in the endosperm, and also contributing to the formation of pollen. However, the role of PDI in root growth has not been previously studied. This research investigated the impact of PDI gene deficiency in plants by using 16F16 [2-(2-Chloroacetyl)-2,3,4,9-tetrahydro-1-methyl-1H-pyrido[3,4-b]indole-1-carboxylic acid methyl ester], a small-molecule inhibitor of PDI, to remove functional redundancy. The results showed that the growth of Arabidopsis roots was significantly inhibited when treated with 16F16. To further investigate the effects of 16F16 treatment, we conducted expression profiling of treated roots using RNA sequencing and a Tandem Mass Tag (TMT)-based quantitative proteomics approach at both the transcriptomic and proteomic levels. Our analysis revealed 994 differentially expressed genes (DEGs) at the transcript level, which were predominantly enriched in pathways associated with "phenylpropane biosynthesis", "plant hormone signal transduction", "plant-pathogen interaction" and "starch and sucrose metabolism" pathways. Additionally, we identified 120 differentially expressed proteins (DEPs) at the protein level. These proteins were mainly enriched in pathways such as "phenylpropanoid biosynthesis", "photosynthesis", "biosynthesis of various plant secondary metabolites", and "biosynthesis of secondary metabolites" pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network for root shortening in Arabidopsis seedlings under 16F16 treatment, mainly involving phenylpropane biosynthesis and plant hormone signal transduction pathways. This study enhances our understanding of the significant role of PDIs in Arabidopsis root growth and provides insights into the regulatory mechanisms of root shortening following 16F16 treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yingjuan Wang
- State Key Laboratory of Biotechnology of Shannxi Province, College of Life Science, Northwest University, Xi’an 710069, China; (Y.L.); (P.S.); (M.Y.); (J.L.)
| | - Fenggui Fan
- State Key Laboratory of Biotechnology of Shannxi Province, College of Life Science, Northwest University, Xi’an 710069, China; (Y.L.); (P.S.); (M.Y.); (J.L.)
| |
Collapse
|
5
|
Parveen K, Saddique MAB, Waqas MU, Attia KA, Rizwan M, Abushady AM, Shamsi IH. Genome-wide analysis and expression divergence of protein disulfide isomerase ( PDI) gene family members in chickpea ( Cicer arietinum) under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23253. [PMID: 38266276 DOI: 10.1071/fp23253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Chickpea (Cicer arietinum ) is a grain crop that is an important source of protein, vitamins, carbohydrates and minerals. It is highly sensitive to salt stress, and salt damage to cellular homeostasis and protein folding affects production. Plants have several mechanisms to prevent cellular damages under abiotic stresses, such as proteins in the endoplasmic reticulum (protein isulfide somerases (PDIs) and PDI-like proteins), which help prevent the build-up of mis-folded proteins that are damaged under abiotic stresses. In this study, we completed initial comprehensive genome-wide analysis of the chickpea PDI gene family. We found eight PDI genes are distributed on six out of eight chromosomes. Two pairs of paralogous genes were found to have segmental duplications. The phylogenetic analysis showed that the PDI s have a high degree of homology in C. arietinum, Cicer reticulatum, Lens culinaris, Phaseolus acutifolius, Pisum sativum and Oryza sativa . The gene structure analysis displayed that CaPDI1-CaPDI8 have 9-12 exons except for CaPDI5 , which has 25 exons. Subcellular localisation indicated accumulation of CaPDIs in endoplasmic reticulum. Protein-conserved motifs and domain analysis demonstrated that thioredoxin domains of PDI family is present in all CaPDIs. CaPDI proteins have strong protein-protein interaction. In silico expression analysis showed that four out of eight PDI genes (CPDI2, CaPDI6, CaPDI7 and CaPDI8 ) were expressed under salt stress. Of these, expression of CaPDI2 and CaPDI8 was the highest. This work indicated that PDI genes are involved in salt stress tolerance in chickpea and the CaPDIs may be further studied for their role of inducing salt tolerance.
Collapse
Affiliation(s)
- Kauser Parveen
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan, Pakistan
| | | | - Muhammad Umair Waqas
- Department of Pathobiology, MNS University of Agriculture Multan, Multan, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Riyadh 11451, Saudi Arabia
| | - Muhammad Rizwan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Sub-Campus Burewala, Vehari, Pakistan
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza 12588, Egypt; and Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
6
|
Ritz M, Ahmad N, Brueck T, Mehlmer N. Differential RNA-Seq Analysis Predicts Genes Related to Terpene Tailoring in Caryopteris × clandonensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2305. [PMID: 37375930 DOI: 10.3390/plants12122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Enzymatic terpene functionalization is an essential part of plant secondary metabolite diversity. Within this, multiple terpene-modifying enzymes are required to enable the chemical diversity of volatile compounds essential in plant communication and defense. This work sheds light on the differentially transcribed genes within Caryopteris × clandonensis that are capable of functionalizing cyclic terpene scaffolds, which are the product of terpene cyclase action. The available genomic reference was subjected to further improvements to provide a comprehensive basis, where the number of contigs was minimized. RNA-Seq data of six cultivars, Dark Knight, Grand Bleu, Good as Gold, Hint of Gold, Pink Perfection, and Sunny Blue, were mapped on the reference, and their distinct transcription profile investigated. Within this data resource, we detected interesting variations and additionally genes with high and low transcript abundancies in leaves of Caryopteris × clandonensis related to terpene functionalization. As previously described, different cultivars vary in their modification of monoterpenes, especially limonene, resulting in different limonene-derived molecules. This study focuses on predicting the cytochrome p450 enzymes underlying this varied transcription pattern between investigated samples. Thus, making them a reasonable explanation for terpenoid differences between these plants. Furthermore, these data provide the basis for functional assays and the verification of putative enzyme activities.
Collapse
Affiliation(s)
- Manfred Ritz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Nadim Ahmad
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Thomas Brueck
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
7
|
Musetti R, Pagliari L, Mian G, De Oliveira Cantao FR, Bernardini C, Santi S, van Bel AJE. The sieve-element endoplasmic reticulum: A focal point of phytoplasma-host plant interaction? Front Microbiol 2023; 14:1030414. [PMID: 36819061 PMCID: PMC9932721 DOI: 10.3389/fmicb.2023.1030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
The rough endoplasmic reticulum (r-ER) is of paramount importance for adaptive responses to biotic stresses due to an increased demand for de novo synthesis of immunity-related proteins and signaling components. In nucleate cells, disturbance of r-ER integrity and functionality leads to the "unfolded protein response" (UPR), which is an important component of innate plant immune signalling. In contrast to an abundance of reports on r-ER responses to biotic challenges, sieve-element endoplasmic reticulum (SE-ER) responses to phytoplasma infection have not been investigated. We found that morphological SE-ER changes, associated with phytoplasma infection, are accompanied by differential expression of genes encoding proteins involved in shaping and anchoring the reticulum. Phytoplasma infection also triggers an increased release of bZIP signals from the (SE-ER)/r-ER and consequent differential expression of UPR-related genes. The modified expression patterns seem to reflect a trade-off between survival of host cells, needed for the phytoplasmic biotrophic lifestyle, and phytoplasmas. Specialized plasmodesmata between sieve element and companion cell may provide a corridor for transfer of phytoplasma effectors inducing UPR-related gene expression in companion cells.
Collapse
Affiliation(s)
- Rita Musetti
- Department of Land, Environment, Agriculture and Forestry (TESAF), Università di Padova, via dell' Università, Legnaro, Italy,*Correspondence: Rita Musetti,
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Giovanni Mian
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Fernando R. De Oliveira Cantao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Chiara Bernardini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | | |
Collapse
|
8
|
Ming Q, Wang K, Wang J, Liu J, Li X, Wei P, Guo H, Chen J, Zong J. The combination of RNA-seq transcriptomics and data-independent acquisition proteomics reveals the mechanisms underlying enhanced salt tolerance by the ZmPDI gene in Zoysia matrella [L.] Merr. FRONTIERS IN PLANT SCIENCE 2022; 13:970651. [PMID: 36003810 PMCID: PMC9393727 DOI: 10.3389/fpls.2022.970651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Zoysia matrella [L.] Merr. is one of the three most economically important Zoysia species due to its strong salt tolerance and wide application. However, the molecular mechanisms regulating salt tolerance in Z. matrella remain unknown. The protein disulfide isomerase ZmPDI of Z. matrella was obtained by salt stress screening with yeast cells, and its expression was significantly upregulated after salt stress. Based on the obtained ZmPDI overexpression transgenic Z. matrella plants, we carried out salt tolerance identification and found that ZmPDI can significantly enhance the salt tolerance of Z. matrella. Root samples of OX-ZmPDI transgenic and wild-type plants were collected at 0 and 24 h after salt treatments for RNA-seq and data-independent acquisition (DIA) proteome sequencing. Combined analysis of the transcriptome and proteome revealed that ZmPDI may enhance the salt tolerance of Z. matrella by regulating TUBB2, PXG4, PLDα2, PFK4, and 4CL1. This research presents the molecular regulatory mechanism of the ZmPDI gene in Z. matrella for resistance to salt stress and facilitates the use of molecular breeding to improve the salt tolerance of grasses.
Collapse
Affiliation(s)
- Qiang Ming
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Kai Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaohui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Peipei Wei
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
9
|
Feng L, Dong T, Jiang P, Yang Z, Dong A, Xie SQ, Griffin CH, Wu R. An eco-evo-devo genetic network model of stress response. HORTICULTURE RESEARCH 2022; 9:uhac135. [PMID: 36061617 PMCID: PMC9433980 DOI: 10.1093/hr/uhac135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/04/2022] [Indexed: 05/23/2023]
Abstract
The capacity of plants to resist abiotic stresses is of great importance to agricultural, ecological and environmental sustainability, but little is known about its genetic underpinnings. Existing genetic tools can identify individual genetic variants mediating biochemical, physiological, and cellular defenses, but fail to chart an overall genetic atlas behind stress resistance. We view stress response as an eco-evo-devo process by which plants adaptively respond to stress through complex interactions of developmental canalization, phenotypic plasticity, and phenotypic integration. As such, we define and quantify stress response as the developmental change of adaptive traits from stress-free to stress-exposed environments. We integrate composite functional mapping and evolutionary game theory to reconstruct omnigenic, information-flow interaction networks for stress response. Using desert-adapted Euphrates poplar as an example, we infer salt resistance-related genome-wide interactome networks and trace the roadmap of how each SNP acts and interacts with any other possible SNPs to mediate salt resistance. We characterize the previously unknown regulatory mechanisms driving trait variation; i.e. the significance of a SNP may be due to the promotion of positive regulators, whereas the insignificance of a SNP may result from the inhibition of negative regulators. The regulator-regulatee interactions detected are not only experimentally validated by two complementary experiments, but also biologically interpreted by their encoded protein-protein interactions. Our eco-evo-devo model of genetic interactome networks provides an approach to interrogate the genetic architecture of stress response and informs precise gene editing for improving plants' capacity to live in stress environments.
Collapse
Affiliation(s)
| | | | | | - Zhenyu Yang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shang-Qian Xie
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou 570228, China
| | - Christopher H Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
10
|
Geddes-McAlister J, Prudhomme N, Gutierrez Gongora D, Cossar D, McLean MD. The emerging role of mass spectrometry-based proteomics in molecular pharming practices. Curr Opin Chem Biol 2022; 68:102133. [DOI: 10.1016/j.cbpa.2022.102133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
11
|
Jiang J, Shi Z, Ma F, Liu K. Identification of key proteins related to high-quality fiber in Upland cotton via proteomics analysis. PLANT CELL REPORTS 2022; 41:893-904. [PMID: 35094124 DOI: 10.1007/s00299-021-02825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The dynamics of cotton fiber elongation and microfibirl deposition orientation were delineated; advanced ethylene synthesis and redox reaction homeostasis may be crucial for high-quality fiber formation. Fiber length, strength, and fineness determine the use and commercial value of cotton fiber, but their underlying molecular mechanisms remain obscure. We compared the dynamic change trajectories of length, diameter and microfibril orientation angle of the fibers produced by an introgression line SY6167 which generates high-quality fibers even better than Sea island cotton with those of the common-quality fibers from TM-1 across 5 to 30 days post anthesis (DPA). The proteomes were profiled and compared at six representative time points using 2-DE and MS/MS. 14 proteins differentially expressed inside each of cotton line temporally and significantly different tween the two lines were identified. The dynamic change trajectories of fiber length and microfibril angle are close to "s" and reverse "s" growth curves, respectively. SY6167 and TM-1 fibers entered the logarithmic elongation phase simultaneously at 10 DPA, and SY6167 kept elongating logarithmically for 2 more days than TM-1. In parallel to logarithmic elongation, microfibril orientation angles dived sharply, and SY6167 declined faster for a shorter duration than TM-1. 53% of the identified proteins are related to redox homeostasis, and most of them are expressed at higher levels in SY6167 during logarithmic elongation. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO) started to accumulate at 16 DPA in SY6167, and its encoding genes were highly expressed at this stage, with a much higher level than TM-1. These findings suggest high-quality fibers are associated with high expression of the proteins related to stress and redox homeostasis, the continuously elevated expression of ethylene synthesis ACO gene may play an essential role.
Collapse
Affiliation(s)
- Jiuhua Jiang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhonghui Shi
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangfang Ma
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Liu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Expression Characterization of AtPDI11 and Functional Analysis of AtPDI11 D Domain in Oxidative Protein Folding. Int J Mol Sci 2022; 23:ijms23031409. [PMID: 35163331 PMCID: PMC8836223 DOI: 10.3390/ijms23031409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The formation and isomerization of disulfide bonds mediated by protein disulfide isomerase (PDI) in the endoplasmic reticulum (ER) is of fundamental importance in eukaryotes. Canonical PDI structure comprises four domains with the order of a-b-b′-a′. In Arabidopsis thaliana, the PDI-S subgroup contains only one member, AtPDI11, with an a-a′-D organization, which has no orthologs in mammals or yeast. However, the expression pattern of AtPDI11 and the functioning mechanism of AtPDI11 D domain are currently unclear. In this work, we found that PDI-S is evolutionarily conserved between land plants and algal organisms. AtPDI11 is expressed in various tissues and its induction by ER stress is disrupted in bzip28/60 and ire1a/b mutants that are null mutants of key components in the unfolded protein response (UPR) signal transduction pathway, suggesting that the induction of AtPDI11 by ER stress is mediated by the UPR signaling pathway. Furthermore, enzymatic activity assays and genetic evidence showed that the D domain is crucially important for the activities of AtPDI11. Overall, this work will help to further understand the working mechanism of AtPDI11 in catalyzing disulfide formation in plants.
Collapse
|
13
|
Niedziela A, Domżalska L, Dynkowska WM, Pernisová M, Rybka K. Aluminum Stress Induces Irreversible Proteomic Changes in the Roots of the Sensitive but Not the Tolerant Genotype of Triticale Seedlings. PLANTS 2022; 11:plants11020165. [PMID: 35050053 PMCID: PMC8781804 DOI: 10.3390/plants11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Triticale is a wheat–rye hybrid with a higher abiotic stress tolerance than wheat and is better adapted for cultivation in light-type soils, where aluminum ions are present as Al-complexes that are harmful to plants. The roots are the first plant organs to contact these ions and the inhibition of root growth is one of the first plant reactions. The proteomes of the root apices in Al-tolerant and -sensitive plants were investigated to compare their regeneration effects following stress. The materials used in this study consisted of seedlings of three triticale lines differing in Al3+ tolerance, first subjected to aluminum ion stress and then recovered. Two-dimensional electrophoresis (2-DE) was used for seedling root protein separation followed by differential spot analysis using liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS/MS). The plants’ tolerance to the stress was evaluated based on biometric screening of seedling root regrowth upon regeneration. Our results suggest that the Al-tolerant genotype can recover, without differentiation of proteome profiles, after stress relief, contrary to Al-sensitive genotypes that maintain the proteome modifications caused by unfavorable environments.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
- Correspondence: (A.N.); (K.R.); Tel.: +48-227-334-535 (A.N.); +48-227-334-537 (K.R.)
| | - Lucyna Domżalska
- Center for Biological Diversity Conservation in Powsin, Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Wioletta M. Dynkowska
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
| | - Markéta Pernisová
- Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Krystyna Rybka
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
- Correspondence: (A.N.); (K.R.); Tel.: +48-227-334-535 (A.N.); +48-227-334-537 (K.R.)
| |
Collapse
|
14
|
Lu Y, Yuan L, Zhou Z, Wang M, Wang X, Zhang S, Sun Q. The thiol-disulfide exchange activity of AtPDI1 is involved in the response to abiotic stresses. BMC PLANT BIOLOGY 2021; 21:557. [PMID: 34814838 PMCID: PMC8609882 DOI: 10.1186/s12870-021-03325-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Arabidopsis protein disulfide isomerase 1 (AtPDI1) has been demonstrated to have disulfide isomerase activity and to be involved in the stress response. However, whether the anti-stress function is directly related to the activities of thiol-disulfide exchange remains to be elucidated. RESULTS In the present study, encoding sequences of AtPDI1 of wild-type (WT) and double-cysteine-mutants were transformed into an AtPDI1 knockdown Arabidopsis line (pdi), and homozygous transgenic plants named pdi-AtPDI1, pdi-AtPDI1m1 and pdi-AtPDI1m2 were obtained. Compared with the WT and pdi-AtPDI1, the respective germination ratios of pdi-AtPDI1m1 and pdi-AtPDI1m2 were significantly lower under abiotic stresses and exogenous ABA treatment, whereas the highest germination rate was obtained with AtPDI1 overexpression in the WT (WT- AtPDI1). The root length among different lines was consistent with the germination rate; a higher germination rate was observed with a longer root length. When seedlings were treated with salt, drought, cold and high temperature stresses, pdi-AtPDI1m1, pdi-AtPDI1m2 and pdi displayed lower survival rates than WT and AtPDI1 overexpression plants. The transcriptional levels of ABA-responsive genes and genes encoding ROS-quenching enzymes were lower in pdi-AtPDI1m1 and pdi-AtPDI1m2 than in pdi-AtPDI1. CONCLUSION Taken together, these results clearly suggest that the anti-stress function of AtPDI1 is directly related to the activity of disulfide isomerase.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
- Institute of Shandong River Wetlands, Jinan, Shandong, 271100, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhou Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Mengyu Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shizhong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
15
|
Meng J, Wang L, Wang C, Zhao G, Wang H, Xu B, Guo X. AccPDIA6 from Apis cerana cerana plays important roles in antioxidation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104830. [PMID: 33993956 DOI: 10.1016/j.pestbp.2021.104830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
PDIA6 is a member of the protein disulfide isomerase (PDI) family, shows disulfide isomerase activity and oxidoreductase activity, and can act as a molecular chaperone. Its biological functions include modulating apoptosis, regulating the proliferation and invasion of cancer cells, supporting thrombosis and modulating insulin secretion. However, the roles of PDIA6 in Apis cerana cerana are poorly understood. Herein, we obtained the PDIA6 gene from A. cerana cerana (AccPDIA6). We investigated the expression patterns of AccPDIA6 in response to oxidative stress induced by H2O2, UV, HgCl2, extreme temperatures (4 °C, 42 °C) and pesticides (thiamethoxam and hexythiazox) and found that AccPDIA6 was upregulated by these treatments. Western blot analysis indicated that AccPDIA6 was also upregulated by oxidative stress at the protein level. In addition, a survival test demonstrated that the survival rate of E. coli cells expressing AccPDIA6 increased under oxidative stress, suggesting a possible antioxidant function of AccPDIA6. In addition, we tested the transcripts of other antioxidant genes and found that some of them were downregulated in AccPDIA6 knockdown samples. It was also discovered that the antioxidant enzymatic activity of superoxide dismutase (SOD) decreased in AccPDIA6-silenced bees. Moreover, the survival rate of AccPDIA6 knockdown bees decreased under oxidative stress, implying that AccPDIA6 may function in the oxidative stress response by enhancing the viability of honeybees. Taken together, these results indicated that AccPDIA6 may play an essential role in counteracting oxidative stress.
Collapse
Affiliation(s)
- Jie Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
16
|
Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato ( Solanum Lycopersicum L.). Genes (Basel) 2020; 12:genes12010023. [PMID: 33375673 PMCID: PMC7824348 DOI: 10.3390/genes12010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.
Collapse
|
17
|
Jedelská T, Luhová L, Petřivalský M. Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1426. [PMID: 33114295 PMCID: PMC7690881 DOI: 10.3390/plants9111426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
| | | | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (T.J.); (L.L.)
| |
Collapse
|
18
|
Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:88-102. [PMID: 32203884 DOI: 10.1016/j.plaphy.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 05/02/2023]
Abstract
Global warming has reached an alarming situation, which led to a dangerous climatic condition. The irregular rainfalls and land degradation are the significant consequences of these climatic changes causing a decrease in crop productivity. The effect of drought and its tolerance mechanism, a comparative roots proteomic analysis of chickpea seedlings grown under hydroponic conditions for three weeks, performed at different time points using 2-Dimensional gel electrophoresis (2-DE). After PD-Quest analysis, 110 differentially expressed spots subjected to MALDI-TOF/TOF and 75 spots identified with a significant score. These identified proteins classified into eight categories based on their functional annotation. Proteins involved in carbon and energy metabolism comprised 23% of total identified proteins include mainly glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase, transaldolase, and isocitrate dehydrogenase. Proteins related to stress response (heat-shock protein, CS domain protein, and chitinase 2-like) contributed 16% of total protein spots followed by 13% involved in protein metabolism (adenosine kinase 2, and protein disulfide isomerase). ROS metabolism contributed 13% (glutathione S-transferase, ascorbate peroxidase, and thioredoxin), and 9% for signal transduction (actin-101, and 14-3-3-like protein B). Five percent protein identified for secondary metabolism (cinnamoyl-CoA reductase-1 and chalcone-flavononeisomerase 2) and 7% for nitrogen (N) and amino acid metabolism (glutamine synthetase and homocysteine methyltransferase). The abundance of some proteins validated by using Western blotting and Real-Time-PCR. The detailed information for drought-responsive root protein(s) through comparative proteomics analysis can be utilized in the future for genetic improvement programs to develop drought-tolerant chickpea lines.
Collapse
Affiliation(s)
- Swati Gupta
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank Kumar Mishra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek Pandey
- Plant Ecology and Environmental Sciences, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Lalit Agrawal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Agriculture and Allied Sciences, Doon Business School, Dehradun, 248001, India.
| | - Chandra Shekhar Nautiyal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| | - Puneet Singh Chauhan
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
19
|
Desiderio A, Salzano AM, Scaloni A, Massa S, Pimpinella M, De Coste V, Pioli C, Nardi L, Benvenuto E, Villani ME. Effects of Simulated Space Radiations on the Tomato Root Proteome. FRONTIERS IN PLANT SCIENCE 2019; 10:1334. [PMID: 31708949 PMCID: PMC6821793 DOI: 10.3389/fpls.2019.01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/25/2019] [Indexed: 05/27/2023]
Abstract
Plant cultivation on spacecraft or planetary outposts is a promising and actual perspective both for food and bioactive molecules production. To this aim, plant response to ionizing radiations, as an important component of space radiation, must be assessed through on-ground experiments due to the potentially fatal effects on living systems. Hereby, we investigated the effects of X-rays and γ-rays exposure on tomato "hairy root" cultures (HRCs), which represent a solid platform for the production of pharmaceutically relevant molecules, including metabolites and recombinant proteins. In a space application perspective, we used an HRC system previously fortified through the accumulation of anthocyanins, which are known for their anti-oxidant properties. Roots were independently exposed to different photon radiations, namely X-rays (250 kV) and γ-rays (Co60, 1.25 MeV), both at the absorbed dose levels of 0.5, 5, and 10 Gy. Molecular changes induced in the proteome of HRCs were investigated by a comparative approach based on two-dimensional difference in-gel electrophoresis (2D-DIGE) technology, which allowed to highlight dynamic processes activated by these environmental stresses. Results revealed a comparable response to both photon treatments. In particular, the presence of differentially represented proteins were observed only when roots were exposed to 5 or 10 Gy of X-rays or γ-rays, while no variations were appreciated at 0.5 Gy of both radiations, when compared with unexposed control. Differentially represented proteins were identified by mass spectrometry procedures and their functional interactions were analyzed, revealing variations in the activation of stress response integrated mechanisms as well as in carbon/energy and protein metabolism. Specific results from above-mentioned procedures were validated by immunoblotting. Finally, a morphometric analysis verified the absence of significant alterations in the development of HRCs, allowing to ascribe the observed variations of protein expression to processes of acclimation to ionizing radiations. Overall results contribute to a meaningful risk evaluation for biological systems exposed to extra-terrestrial environments, in the perspective of manned interplanetary missions planned for the near future.
Collapse
Affiliation(s)
- Angiola Desiderio
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Silvia Massa
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Pimpinella
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Vanessa De Coste
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Claudio Pioli
- Division Health Protection Technologies, ENEA, Rome, Italy
| | - Luca Nardi
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenio Benvenuto
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Elena Villani
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|