1
|
Shakir AM, Geng M, Tian J, Wang R. Dissection of QTLs underlying the genetic basis of drought resistance in wheat: a meta-analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:25. [PMID: 39786445 DOI: 10.1007/s00122-024-04811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production. Among the abiotic stresses, drought is recognized as a significant stress and poses a substantial threat to food production and quality throughout the world. Raising drought tolerance of wheat varieties through genetic regulation is therefore considered as one of the most effective ways to combat the challenges caused by drought stress. Meta-QTL analysis has demonstrated its effectiveness in identifying consensus QTL regions in wheat drought resistance in numerous instances. In this study, we present a comprehensive meta-analysis aimed at unraveling the drought tolerance genetic basis associated with agronomic traits in bread wheat. Extracting data from 34 previously published studies, we aggregated a corpus of 1291 Quantitative Trait Loci (QTL) pertinent to wheat drought tolerance. Then, the translation of the consensus genetic map yielded a comprehensive compendium of 49 distinct MQTLs, each associated with diverse agronomic traits. Prominently featured among the MQTLs were MQTLs 1.1, 1.7, 1.8 (1D), 4.1 (4A), 4.6 (4D), 5.2 (5B), 6.6 (6B), and 7.2 (7B), distinguished as pivotal MQTLs offering significant potential for application in marker-assisted breeding endeavors. Altogether, a total of 66 putative candidate genes (CGs)-related drought tolerance were identified. This work illustrates a translational research approach in transferring information from published mapping studies to genomic regions hosting major QTLs governing key agronomical traits in wheat.
Collapse
Affiliation(s)
- Arif Mehmood Shakir
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Miaomiao Geng
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Jiahao Tian
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China
| | - Ruihui Wang
- College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China.
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, 071000, Hebei, China.
| |
Collapse
|
2
|
Li H, Zhu L, Fan R, Li Z, Liu Y, Shaheen A, Nie F, Li C, Liu X, Li Y, Liu W, Yang Y, Guo T, Zhu Y, Bu M, Li C, Liang H, Bai S, Ma F, Guo G, Zhang Z, Huang J, Zhou Y, Song CP. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc 2024; 19:281-312. [PMID: 38017137 DOI: 10.1038/s41596-023-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Can Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuqin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenjuan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingying Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tutu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengchen Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenglin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Kou H, Zhang Z, Yang Y, Wei C, Xu L, Zhang G. Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040880. [PMID: 36840228 PMCID: PMC9966637 DOI: 10.3390/plants12040880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/02/2023]
Abstract
Aegilops tauschii is one of the malignant weeds that affect wheat production and is also the wild species ancestor of the D genome of hexaploid wheat (Triticum aestivum, AABBDD). It contains many disease resistance genes that have been lost in the long-term evolution of wheat and is an important genetic resource for the mining and utilization of wheat disease resistance genes. In recent years, the genome sequence of Aegilops tauschii has been preliminarily completed, which has laid a good foundation for the further exploration of wheat disease resistance genes in Aegilops tauschii. There are many studies on disease resistance genes in Aegilops tauschii; in order to provide better help for the disease resistance breeding of wheat, this paper analyzes and reviews the relationship between Aegilops tauschii and wheat, the research progress of Aegilops tauschii, the discovery of disease resistance genes from Aegilops tauschii, and the application of disease resistance genes from Aegilops tauschii to modern wheat breeding, providing a reference for the further exploration and utilization of Aegilops tauschii in wheat disease resistance breeding.
Collapse
Affiliation(s)
- Hongyun Kou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Zhenbo Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Yu Yang
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Changfeng Wei
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Lili Xu
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
- Shandong Shofine Seed Technology Co., Ltd., Jining 272400, China
| |
Collapse
|
4
|
The heat stress transcription factor family in Aegilops tauschii: genome-wide identification and expression analysis under various abiotic stresses and light conditions. Mol Genet Genomics 2022; 297:1689-1709. [DOI: 10.1007/s00438-022-01952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
|
5
|
Wijerathna-Yapa A, Ramtekey V, Ranawaka B, Basnet BR. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2273. [PMID: 36079653 PMCID: PMC9459818 DOI: 10.3390/plants11172273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022]
Abstract
Sources of new genetic variability have been limited to existing germplasm in the past. Wheat has been studied extensively for various agronomic traits located throughout the genome. The large size of the chromosomes and the ability of its polyploid genome to tolerate the addition or loss of chromosomes facilitated rapid progress in the early study of wheat genetics using cytogenetic techniques. At the same time, its large genome size has limited the progress in genetic characterization studies focused on diploid species, with a small genome and genetic engineering procedures already developed. Today, the genetic transformation and gene editing procedures offer attractive alternatives to conventional techniques for breeding wheat because they allow one or more of the genes to be introduced or altered into an elite cultivar without affecting its genetic background. Recently, significant advances have been made in regenerating various plant tissues, providing the essential basis for regenerating transgenic plants. In addition, Agrobacterium-mediated, biolistic, and in planta particle bombardment (iPB) gene delivery procedures have been developed for wheat transformation and advanced transgenic wheat development. As a result, several useful genes are now available that have been transferred or would be helpful to be transferred to wheat in addition to the current traditional effort to improve trait values, such as resistance to abiotic and biotic factors, grain quality, and plant architecture. Furthermore, the in planta genome editing method will significantly contribute to the social implementation of genome-edited crops to innovate the breeding pipeline and leverage unique climate adaptations.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vinita Ramtekey
- ICAR-Indian Institute of Seed Science, Kushmaur, Mau, Uttar Pradesh 275103, India
| | - Buddhini Ranawaka
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Bhoja Raj Basnet
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batán 56237, Mexico
| |
Collapse
|
6
|
Li J, Guo J, Wei C, Meng Y, Wang X, Yu P, Yang L, Liang Y, Guo S, Yuan J. A set of sampling, preparation, and staining techniques for studying meiosis in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111245. [PMID: 35487654 DOI: 10.1016/j.plantsci.2022.111245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The development of genetic and genomic resources for biological studies in cucumber has experienced an unprecedented boom in recent years. To investigate the function of putative meiotic genes and germplasm in breeding programs, an accurate cytogenetic characterization is required. Cytological methods and reference to investigate meiosis in cucumber are limited at present. Here we provide a set of cytological techniques that have been adapted for the study of meiosis in cucumber. The meiotic stages can be identified with high precision using hierarchical criteria from developing buds, undisturbed meiocytes, and freshly stained chromosomes. A meiotic cytological atlas of all stages is presented as a reference for identifying particular stages and for comparison of meiosis between normal and mutant plants. We performed a comparative analysis of the distribution of cytoplasmic organelles between cucumber and Arabidopsis, and we described a highly nonsynchronous condensation of chromosome parts during diplotene. A simplified fluorescence in situ hybridization (FISH) protocol, using robustly spread chromosomes, were developed. In addition, we designed a single oligonucleotide probe for 5S rDNA to use in karyotyping and monitoring of homologous chromosome pairing, which will make FISH analysis of 5S rDNA easier and more economical.
Collapse
Affiliation(s)
- Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Jinjin Guo
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chenchen Wei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yao Meng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaoduan Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Panpan Yu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Lin Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yi Liang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinhong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
New insights into the dispersion history and adaptive evolution of taxon Aegilops tauschii in China. J Genet Genomics 2021; 49:185-194. [PMID: 34838726 DOI: 10.1016/j.jgg.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Aegilops tauschii, the wild progenitor of wheat D-genome and a valuable germplasm for wheat improvement, has a wide natural distribution from eastern Turkey to China. However, the phylogenetic relationship and dispersion history of Ae. tauschii in China has not been scientifically clarified. In this study, we genotyped 208 accessions (with 104 in China) using ddRAD sequencing and 55K SNP array, and classified the population into six sublineages. Three possible spreading routes or events were identified, resulting in specific distribution patterns, with four sublineages found in Xinjiang, one in Qinghai, two in Shaanxi and one in Henan. We also established the correlation of SNP-based, karyotype-based and spike-morphology-based techniques to demonstrate the internal classification of Ae. tauschii, and developed consensus dataset with 1245 putative accessions by merging data previously published. Our analysis suggested that eight inter-lineage accessions could be assigned to the putative Lineage 3 and these accessions would help to conserve the genetic diversity of the species. By developing the consensus phylogenetic relationships of Ae. tauschii, our work validated the hypothesis on the dispersal history of Ae. tauschii in China, and contributed to the efficient and comprehensive germplasm-mining of the species.
Collapse
|
8
|
Reynolds MP, Lewis JM, Ammar K, Basnet BR, Crespo-Herrera L, Crossa J, Dhugga KS, Dreisigacker S, Juliana P, Karwat H, Kishii M, Krause MR, Langridge P, Lashkari A, Mondal S, Payne T, Pequeno D, Pinto F, Sansaloni C, Schulthess U, Singh RP, Sonder K, Sukumaran S, Xiong W, Braun HJ. Harnessing translational research in wheat for climate resilience. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5134-5157. [PMID: 34139769 PMCID: PMC8272565 DOI: 10.1093/jxb/erab256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 05/24/2023]
Abstract
Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.
Collapse
Affiliation(s)
- Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Janet M Lewis
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Bhoja R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Kanwarpal S Dhugga
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Hannes Karwat
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Margaret R Krause
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond SA 5064, Australia
- Wheat Initiative, Julius Kühn-Institute, Königin-Luise-Str. 19, 14195 Berlin, Germany
| | - Azam Lashkari
- CIMMYT-Henan Collaborative Innovation Center, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Suchismita Mondal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Thomas Payne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Diego Pequeno
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Francisco Pinto
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Urs Schulthess
- CIMMYT-Henan Collaborative Innovation Center, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Wei Xiong
- CIMMYT-Henan Collaborative Innovation Center, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Hans J Braun
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
9
|
Zhou Y, Bai S, Li H, Sun G, Zhang D, Ma F, Zhao X, Nie F, Li J, Chen L, Lv L, Zhu L, Fan R, Ge Y, Shaheen A, Guo G, Zhang Z, Ma J, Liang H, Qiu X, Hu J, Sun T, Hou J, Xu H, Xue S, Jiang W, Huang J, Li S, Zou C, Song CP. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. NATURE PLANTS 2021; 7:774-786. [PMID: 34045708 DOI: 10.1038/s41477-021-00934-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Increasing crop production is necessary to feed the world's expanding population, and crop breeders often utilize genetic variations to improve crop yield and quality. However, the narrow diversity of the wheat D genome seriously restricts its selective breeding. A practical solution is to exploit the genomic variations of Aegilops tauschii via introgression. Here, we established a rapid introgression platform for transferring the overall genetic variations of A. tauschii to elite wheats, thereby enriching the wheat germplasm pool. To accelerate the process, we assembled four new reference genomes, resequenced 278 accessions of A. tauschii and constructed the variation landscape of this wheat progenitor species. Genome comparisons highlighted diverse functional genes or novel haplotypes with potential applications in wheat improvement. We constructed the core germplasm of A. tauschii, including 85 accessions covering more than 99% of the species' overall genetic variations. This was crossed with elite wheat cultivars to generate an A. tauschii-wheat synthetic octoploid wheat (A-WSOW) pool. Laboratory and field analysis with two examples of the introgression lines confirmed its great potential for wheat breeding. Our high-quality reference genomes, genomic variation landscape of A. tauschii and the A-WSOW pool provide valuable resources to facilitate gene discovery and breeding in wheat.
Collapse
Affiliation(s)
- Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinpeng Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing, China
| | - Linlin Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Ge
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiamin Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ting Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyi Hou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Changsong Zou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
10
|
Identification of QTLs and a Candidate Gene for Reducing Pre-Harvest Sprouting in Aegilops tauschii- Triticum aestivum Chromosome Segment Substitution Lines. Int J Mol Sci 2021; 22:ijms22073729. [PMID: 33918469 PMCID: PMC8038248 DOI: 10.3390/ijms22073729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Wheat pre-harvest sprouting (PHS) causes serious losses in wheat yield. In this study, precise mapping was carried out in the chromosome segment substitution lines (CSSL) F2 population generated by a direct cross of Zhoumai 18 (PHS-sensitive) and Aegilops tauschii accession T093 (highly PHS-resistant). Three Ae. tauschii-derived quantitative trait loci (QTLs), QDor.3D.1, QDor.3D.2, and QDor.3D.3, were detected on chromosome 3DL using four simple sequence repeats (SSR) markers and 10 developed Kompetitive allele-specific PCR (KASP) markers. Alongside these QTL results, the RNA-Seq and qRT-PCR analysis revealed expression levels of TraesCS3D01G466100 in the QDor.3D.2 region that were significantly higher in CSSLs 495 than in Zhoumai 18 during the seed imbibition treatment. The cDNA sequencing results of TraesCS3D01G466100 showed two single nucleotide polymorphisms (SNPs), resulting in two changed amino acid substitutions between Zhoumai 18 and line 495, and the 148 nt amino acid substitution of TraesCS3D01G466100, derived from Ae. tauschii T093, which may play an important role in the functioning of ubiquitin ligase enzymes 3 (E3) according to the homology protein analysis, which could lead to differential PHS-resistance phenotypes. Taken together, our results may foster a better understanding of the mechanism of PHS resistance and are potentially valuable for marker-assisted selection in practical wheat breeding efforts.
Collapse
|
11
|
Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020; 10:13346. [PMID: 32770019 PMCID: PMC7414872 DOI: 10.1038/s41598-020-70314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mohsin Ali
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
12
|
Muhammad A, Hu W, Li Z, Li J, Xie G, Wang J, Wang L. Appraising the Genetic Architecture of Kernel Traits in Hexaploid Wheat Using GWAS. Int J Mol Sci 2020; 21:ijms21165649. [PMID: 32781752 PMCID: PMC7460857 DOI: 10.3390/ijms21165649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Kernel morphology is one of the major yield traits of wheat, the genetic architecture of which is always important in crop breeding. In this study, we performed a genome-wide association study (GWAS) to appraise the genetic architecture of the kernel traits of 319 wheat accessions using 22,905 single nucleotide polymorphism (SNP) markers from a wheat 90K SNP array. As a result, 111 and 104 significant SNPs for Kernel traits were detected using four multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB) and three single-locus models (FarmCPU, MLM, and MLMM), respectively. Among the 111 SNPs detected by the multi-locus models, 24 SNPs were simultaneously detected across multiple models, including seven for kernel length, six for kernel width, six for kernels per spike, and five for thousand kernel weight. Interestingly, the five most stable SNPs (RAC875_29540_391, Kukri_07961_503, tplb0034e07_1581, BS00074341_51, and BobWhite_049_3064) were simultaneously detected by at least three multi-locus models. Integrating these newly developed multi-locus GWAS models to unravel the genetic architecture of kernel traits, the mrMLM approach detected the maximum number of SNPs. Furthermore, a total of 41 putative candidate genes were predicted to likely be involved in the genetic architecture underlining kernel traits. These findings can facilitate a better understanding of the complex genetic mechanisms of kernel traits and may lead to the genetic improvement of grain yield in wheat.
Collapse
Affiliation(s)
- Ali Muhammad
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Weicheng Hu
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Zhaoyang Li
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Jianguo Li
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Guosheng Xie
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Jibin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (J.W.); (L.W.)
| | - Lingqiang Wang
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (J.W.); (L.W.)
| |
Collapse
|
13
|
Zhang J, Yang F, Jiang Y, Guo Y, Wang Y, Zhu X, Li J, Wan H, Wang Q, Deng Z, Xuan P, Yang W. Preferential Subgenome Elimination and Chromosomal Structural Changes Occurring in Newly Formed Tetraploid Wheat- Aegilops ventricosa Amphiploid (AABBD vD vN vN v). Front Genet 2020; 11:330. [PMID: 32477398 PMCID: PMC7235383 DOI: 10.3389/fgene.2020.00330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/20/2020] [Indexed: 11/15/2022] Open
Abstract
Artificial allopolyploids derived from the genera Triticum and Aegilops have been used as genetic resources for wheat improvement and are a classic example of evolution via allopolyploidization. In this study, we investigated chromosomes and subgenome transmission behavior in the newly formed allopolyploid of wheat group via multicolor Fluorescence in situ hybridization (mc-FISH), using pSc119.2, pTa535, and (GAA)7 as probe combinations, to enabled us to precisely identify individual chromosomes in 381 S3 and S4 generations plants derived from reciprocal crosses between Ae. ventricosa (DvDvNvNv) and T. turgidum (AABB). A higher rate of aneuploidy, constituting 66.04–86.41% individuals, was observed in these two early generations. Of the four constituent subgenomes, Dv showed the highest frequency of elimination, followed by Nv and B, while A was the most stable. In addition, structural chromosomal changes occurred ubiquitously in the selfed progenies of allopolyploids. Among the constituent subgenomes, B showed the highest number of aberrations. In terms of chromosomal dynamics, there was no significant association between the chromosomal behavior model and the cytoplasm, with the exception of chromosomal loss in the Dv subgenome. The chromosome loss frequency in the Dv subgenome was significantly higher in the T. turgidum × Ae. ventricosa cross than in the Ae. ventricosa × T. turgidum cross. This result indicates that, although the D subgenome showed great instability, allopolyploids containing D subgenome could probably be maintained after a certain hybridization in which the D subgenome donor was used as the maternal parent at its onset stage. Our findings provide valuable information pertaining to the behavior patterns of subgenomes during allopolyploidization. Moreover, the allopolyploids developed here could be used as potential resources for the genetic improvement of wheat.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China
| | - Fan Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanlin Guo
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ying Wang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - XinGuo Zhu
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ziyuan Deng
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Pu Xuan
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - WuYun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, China.,Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
14
|
Zhao X, Bai S, Li L, Han X, Li J, Zhu Y, Fang Y, Zhang D, Li S. Comparative Transcriptome Analysis of Two Aegilops tauschii with Contrasting Drought Tolerance by RNA-Seq. Int J Mol Sci 2020; 21:ijms21103595. [PMID: 32438769 PMCID: PMC7279474 DOI: 10.3390/ijms21103595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/03/2023] Open
Abstract
As the diploid progenitor of common wheat, Aegilops tauschii is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported concerning the molecular mechanism of drought tolerance in Ae. tauschii. In this work, the drought tolerance of 155 Ae. tauschii accessions was firstly screened on the basis of their coleoptile lengths under simulated drought stress. Subsequently, two accessions (XJ002 and XJ098) with contrasting coleoptile lengths were selected and intensively analyzed on rate of water loss (RWL) as well as physiological characters, confirming the difference in drought tolerance at the seedling stage. Further, RNA-seq was utilized for global transcriptome profiling of the two accessions seedling leaves under drought stress conditions. A total of 6969 differentially expressed genes (DEGs) associated with drought tolerance were identified, and their functional annotations demonstrated that the stress response was mediated by pathways involving alpha-linolenic acid metabolism, starch and sucrose metabolism, peroxisome, mitogen-activated protein kinase (MAPK) signaling, carbon fixation in photosynthetic organisms, and glycerophospholipid metabolism. In addition, DEGs with obvious differences between the two accessions were intensively analyzed, indicating that the expression level of DEGs was basically in alignment with the physiological changes of Ae. tauschii under drought stress. The results not only shed fundamental light on the regulatory process of drought tolerance in Ae. tauschii, but also provide a new gene resource for improving the drought tolerance of common wheat.
Collapse
Affiliation(s)
- Xinpeng Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Lechen Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Xue Han
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Jiahui Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Yumeng Zhu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Yuan Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Dale Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
- Correspondence:
| | - Suoping Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| |
Collapse
|
15
|
Su Q, Liu L, Zhao M, Zhang C, Zhang D, Li Y, Li S. The complete chloroplast genomes of seventeen Aegilops tauschii: genome comparative analysis and phylogenetic inference. PeerJ 2020; 8:e8678. [PMID: 32181055 PMCID: PMC7060751 DOI: 10.7717/peerj.8678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 11/20/2022] Open
Abstract
The D genome progenitor of bread wheat, Aegilops tauschii Cosson (DD, 2n = 2x = 14), which is naturally distributed in Central Eurasia, ranging from northern Syria and Turkey to western China, is considered a potential genetic resource for improving bread wheat. In this study, the chloroplast (cp) genomes of 17 Ae. tauschii accessions were reconstructed. The cp genome sizes ranged from 135,551 bp to 136,009 bp and contained a typical quadripartite structure of angiosperms. Within these genomes, we identified a total of 124 functional genes, including 82 protein-coding genes, 34 transfer RNA genes and eight ribosomal RNA genes, with 17 duplicated genes in the IRs. Although the comparative analysis revealed that the genomic structure (gene order, gene number and IR/SC boundary regions) is conserved, a few variant loci were detected, predominantly in the non-coding regions (intergenic spacer regions). The phylogenetic relationships determined based on the complete genome sequences were consistent with the hypothesis that Ae. tauschii populations in the Yellow River region of China originated in South Asia not Xinjiang province or Iran, which could contribute to more effective utilization of wild germplasm resources. Furthermore, we confirmed that Ae. tauschii was derived from monophyletic speciation rather than hybrid speciation at the cp genome level. We also identified four variable genomic regions, rpl32-trnL-UAG, ccsA-ndhD, rbcL-psaI and rps18-rpl20, showing high levels of nucleotide polymorphisms, which may accordingly prove useful as cpDNA markers in studying the intraspecific genetic structure and diversity of Ae. tauschii.
Collapse
Affiliation(s)
- Qing Su
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Luxian Liu
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Mengyu Zhao
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Cancan Zhang
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Dale Zhang
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Youyong Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Suoping Li
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| |
Collapse
|
16
|
Chen P, Zhang HM, Yao BM, Chen SC, Sun GX, Zhu YG. Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121160. [PMID: 31518812 DOI: 10.1016/j.jhazmat.2019.121160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The application of current soil quality standards based on total arsenic (As) fails to assess the ecological risks of soil arsenic or to ensure the safety of crops and foods. In this study, bioavailable arsenic instead of total arsenic was applied to improve predictive models for arsenic transfer from soil to wheat (Triticum turgidum L.). The stepwise multiple-linear regression analysis showed that bioavailable arsenic and amorphous iron oxides (FeOX) were the two most important factors contributing to arsenic accumulation in wheat grain, with the explained percentage of variation being up to 82%. Compared with the bioavailable arsenic extracted by NH4H2PO4, bioavailable arsenic extracted by HNO3 from soils generated better predictions of the amount of arsenic in grain. The best reliable model was log[Asgrain] = 0.917 log[HNO3-As] - 0.452 log[FeOX] - 1.507 (R2 = 0.82, P < 0.001). Consistently, bioavailable arsenic and FeOX were also the key factors to predict arsenic accumulation in wheat straw, leaves and spikes. Our prediction models was successfully verified for three independent soils. Our results highlight the role of soil bioavailable heavy metals in predicting their transfer in soil-plant systems and can be used to improve existing Chinese soil quality standards.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Hong-Mei Zhang
- Jiaxing Academy of Agricultural Sciences, Xiuzhou District, Jiaxing, 314016, China
| | - Bao-Min Yao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Song-Can Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences. Beijing, 100049, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing, 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences. Beijing, 100049, China
| |
Collapse
|
17
|
Kishii M. An Update of Recent Use of Aegilops Species in Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:585. [PMID: 31143197 PMCID: PMC6521781 DOI: 10.3389/fpls.2019.00585] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 05/16/2023]
Abstract
Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Collapse
Affiliation(s)
- Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
18
|
Singh N, Wu S, Tiwari V, Sehgal S, Raupp J, Wilson D, Abbasov M, Gill B, Poland J. Genomic Analysis Confirms Population Structure and Identifies Inter-Lineage Hybrids in Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2019; 10:9. [PMID: 30740115 PMCID: PMC6357674 DOI: 10.3389/fpls.2019.00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/07/2019] [Indexed: 05/21/2023]
Abstract
Aegilops tauschii, the D-genome donor of bread wheat, Triticum aestivum, is a storehouse of genetic diversity, and an important resource for future wheat improvement. Genomic and population analysis of 549 Ae. tauschii and 103 wheat accessions was performed by using 13,135 high quality SNPs. Population structure, principal component, and cluster analysis confirmed the differentiation of Ae. tauschii into two lineages; lineage 1 (L1) and lineage 2 (L2), the latter being the wheat D-genome donor. Lineage L1 contributes only 2.7% of the total introgression from Ae. tauschii for a set of United States winter wheat lines, confirming the great amount of untapped genetic diversity in L1. Lineage L2 accessions had overall greater allelic diversity and wheat accessions had the least allelic diversity. Both lineages also showed intra-lineage differentiation with L1 being driven by longitudinal gradient and L2 differentiated by altitude. There has previously been little reported on natural hybridization between L1 and L2. We found nine putative inter-lineage hybrids in the population structure analysis, each containing numerous lineage-specific private alleles from both lineages. One hybrid was confirmed as a recombinant inbred between the two lineages, likely artificially post collection. Of the remaining eight putative hybrids, a group of seven from Georgia carry 713 SNPs with private alleles, which points to the possibility of a novel L1-L2 hybrid lineage. To facilitate the use of Ae. tauschii in wheat improvement, a MiniCore consisting of 29 L1 and 11 L2 accessions, has been developed based on genotypic, phenotypic and geographical data. MiniCore reduces the collection size by over 10-fold and captures 84% of the total allelic diversity in the whole collection.
Collapse
Affiliation(s)
- Narinder Singh
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Shuangye Wu
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Vijay Tiwari
- Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sunish Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - John Raupp
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Duane Wilson
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Mehraj Abbasov
- Genetic Resources Institute, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Bikram Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| |
Collapse
|