1
|
Li P, Rehman A, Yu J, Weng J, Zhan B, Wu Y, Zhang Y, Chang L, Niu Q. Characterization and stress-responsive regulation of CmPHT1 genes involved in phosphate uptake and transport in Melon (Cucumis melo L.). BMC PLANT BIOLOGY 2024; 24:696. [PMID: 39044142 PMCID: PMC11264433 DOI: 10.1186/s12870-024-05405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Phosphorus (P) deficiency, a major nutrient stress, greatly hinders plant growth. Phosphate (Pi) uptake in plant roots relies on PHT1 family transporters. However, melon (Cucumis melo L.) lacks comprehensive identification and characterization of PHT1 genes, particularly their response patterns under diverse stresses. RESULTS This study identified and analyzed seven putative CmPHT1 genes on chromosomes 3, 4, 5, 6, and 7 using the melon genome. Phylogenetic analysis revealed shared motifs, domain compositions, and evolutionary relationships among genes with close histories. Exon number varied from 1 to 3. Collinearity analysis suggested segmental and tandem duplications as the primary mechanisms for CmPHT1 gene family expansion. CmPHT1;4 and CmPHT1;5 emerged as a tandemly duplicated pair. Analysis of cis-elements in CmPHT1 promoters identified 14 functional categories, including putative PHR1-binding sites (P1BS) in CmPHT1;4, CmPHT1;6, and CmPHT1;7. We identified that three WRKY transcription factors regulated CmPHT1;5 expression by binding to its W-box element. Notably, CmPHT1 promoters harbored cis-elements responsive to hormones and abiotic factors. Different stresses regulated CmPHT1 expression differently, suggesting that the adjusted expression patterns might contribute to plant adaptation. CONCLUSIONS This study unveils the characteristics, evolutionary diversity, and stress responsiveness of CmPHT1 genes in melon. These findings lay the foundation for in-depth investigations into their functional mechanisms in Cucurbitaceae crops.
Collapse
Affiliation(s)
- Pengli Li
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Asad Rehman
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyang Weng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Beibei Zhan
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueyue Wu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yidong Zhang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liying Chang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingliang Niu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Song M, Lin X, Wei X, Zeng Q, Mu C, Zhou X. Trichoderma viride improves phosphorus uptake and the growth of Chloris virgata under phosphorus-deficient conditions. Front Microbiol 2024; 15:1425034. [PMID: 39027109 PMCID: PMC11255847 DOI: 10.3389/fmicb.2024.1425034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Phosphorus (P) readily forms insoluble complexes in soil, thereby inhibiting the absorption and utilization of this essential nutrient by plants. Phosphorus deficiency can significantly impede the growth of forage grass. While Trichoderma viride (T. viride) has been recognized for promoting the assimilation of otherwise unobtainable nutrients, its impact on P uptake remains understudied. Consequently, it is imperative to gain a more comprehensive insight into the role of T. viride in facilitating the uptake and utilization of insoluble P in forage grass. Methods This research explored the influence of T. viride inoculation on P absorption and the growth of Chloris virgata (C. virgata) across various P sources. We treated plants with control P (P), tricalcium phosphate (TCP), calcium phytate (PHY), and low P (LP), with and without T. viride inoculation (P+T, TCP+T, PHY+T, LP+T). We analyzed photosynthesis parameters, growth indices, pigment accumulation, P content, leaf acid phosphatase activity. Results Results demonstrated that T. viride inoculation alleviated inhibition of photosynthesis, reduced leaf acid phosphatase activity, and enhanced growth of C. virgata in the presence of insoluble P sources. Additionally, T. viride inoculation enabled the plants to extract more available P from insoluble P sources, as evidenced by a substantial increase in P content: shoot P content surged by 58.23 to 59.08%, and root P content rose by 55.13 to 55.2%. Biomass P-use efficiency (PUE) declined by 38% upon inoculation with T. viride compared to the non-inoculated insoluble P sources, paralleled by a reduction in photosynthetic P-use efficiency (PPUE) by 26 to 29%. Inoculation under insoluble P sources further triggered a lower allocation to root biomass (25 to 26%) and a higher investment in shoot biomass (74 to 75%). However, its application under low P condition curtailed the growth of C. virgata. Discussion Our results suggest that T. viride inoculation represents an innovative approach for plants to acquire available P from insoluble P sources, thereby promoting growth amid environmental P limitations. This insight is crucial for comprehending the synergy among forage grass, P, and T. viride.
Collapse
Affiliation(s)
- Mingxia Song
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- School of Life Sciences, Tonghua Normal University, Tonghua, China
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xiaoru Lin
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xiaowei Wei
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Qingpan Zeng
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Chunsheng Mu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xiaofu Zhou
- Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| |
Collapse
|
3
|
Sun Z, Bai C, Liu Y, Ma M, Zhang S, Liu H, Bai R, Han X, Yong JWH. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115388. [PMID: 37611478 DOI: 10.1016/j.ecoenv.2023.115388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.
Collapse
Affiliation(s)
- Zhiyu Sun
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
4
|
Sagwal V, Kumar U, Sihag P, Singh Y, Balyan P, Singh KP. Physiological traits and expression profile of genes associated with nitrogen and phosphorous use efficiency in wheat. Mol Biol Rep 2023; 50:5091-5103. [PMID: 37101006 DOI: 10.1007/s11033-023-08413-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Nitrogen (N) and phosphorous (P) play a very important role in the growth and development of wheat as well as major constituents of biological membranes. To meet the plant's nutritional demand these nutrients are applied in the form of fertilizers. But the plant can utilize only half of the applied fertilizer whereas the rest is lost through surface runoff, leaching and volatilization. Thus, to overcome the N/P loss we need to elucidate the molecular mechanism behind the N/P uptake. METHODS In our study, we used DBW16 (low NUE), and WH147 (high NUE) wheat genotypes under different doses of N, whereas HD2967 (low PUE) and WH1100 (high PUE) genotypes were studied under different doses of P. To check the effect of different doses of N/P, the physiological parameters like total chlorophyll content, net photosynthetic rate, N/P content, and N/PUE of these genotypes were calculated. In addition, gene expression of various genes involved in N uptake, utilization, and acquisition such as Nitrite reductase (NiR), Nitrate transporter 1/Peptide transporter family (NPF2.4/2.5), Nitrate transporter (NRT1) and NIN Like Protein (NLP) and induced phosphate starvation (IPS), Phosphate Transporter (PHT1.7) and Phosphate 2 (PHO2) acquisition was studied by quantitative real-time PCR. RESULTS Statistical analysis revealed a lower percent reduction in TCC, NPR, and N/P content in N/P efficient wheat genotypes (WH147 & WH1100). A significant increase in relative fold expression of genes under low N/P concentration was observed in N/P efficient genotypes as compared to N/P deficient genotypes. CONCLUSION Significant differences in physiological data and gene expression among N/ P efficient and deficient wheat genotypes could be useful for future improvement of N/P use efficiency.
Collapse
Affiliation(s)
- Vijeta Sagwal
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| |
Collapse
|
5
|
Kayoumu M, Iqbal A, Muhammad N, Li X, Li L, Wang X, Gui H, Qi Q, Ruan S, Guo R, Zhang X, Song M, Dong Q. Phosphorus Availability Affects the Photosynthesis and Antioxidant System of Contrasting Low-P-Tolerant Cotton Genotypes. Antioxidants (Basel) 2023; 12:antiox12020466. [PMID: 36830024 PMCID: PMC9952849 DOI: 10.3390/antiox12020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Phosphorus (P) is an essential macronutrient, and an important component of plant metabolism. However, little is known about the effects of low P availability on P absorption, the photosynthetic electron transport chain, and the antioxidant system in cotton. This study used cotton genotypes (sensitive FJA and DLNTDH and tolerant BX014 and LuYuan343) with contrasting low-P tolerance in a hydroponic experiment under 15 µM, 50 µM, and 500 μM P concentrations. The results showed that low P availability reduced plant development and leaf area, shoot length, and dry weight in FJA and DLNADH, compared to BX014 and LuYuan343. The low P availability decreased the gas-exchange parameters such as the net photosynthetic rate, transpiration rate, and stomatal conductance, and increased the intercellular CO2 concentration. Chlorophyll a fluorescence demonstrated that the leaves' absorption and trapped-energy flux were largely steady. In contrast, considerable gains in absorption and trapped-energy flux per reaction center resulted from decreases in the electron transport per reaction center under low-P conditions. In addition, low P availability reduced the activities of antioxidant enzymes and increased the content of malondialdehyde in the cotton genotypes, especially in FJA and DLNTDH. Moreover, low P availability reduced the activity of PEPC and generated a decline in the content of ATP and NADPH. Our research can provide a theoretical physiological basis for the growth and tolerance of cotton under low-P conditions.
Collapse
Affiliation(s)
- Mirezhatijiang Kayoumu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Asif Iqbal
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Department of Agriculture, Hazara University, Mansehra 21120, Pakistan
| | - Noor Muhammad
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Xiaotong Li
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Leilei Li
- Rice Cultivation Laboratory, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangru Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Huiping Gui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Qian Qi
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Sijia Ruan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Ruishi Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
| | - Xiling Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Correspondence: (X.Z.); (M.S.); (Q.D.); Tel.: +86-0372-2562-308 (Q.D.)
| | - Meizhen Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Correspondence: (X.Z.); (M.S.); (Q.D.); Tel.: +86-0372-2562-308 (Q.D.)
| | - Qiang Dong
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology/School of Agricultural Sciences, Zhengzhou University, Anyang 455000, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
- Correspondence: (X.Z.); (M.S.); (Q.D.); Tel.: +86-0372-2562-308 (Q.D.)
| |
Collapse
|
6
|
Hua LQ, Yang SQ, Xia ZF, Zeng H. Application of Sophora alopecuroides organic fertilizer changes the rhizosphere microbial community structure of melon plants and increases the fruit sugar content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:164-175. [PMID: 35837792 DOI: 10.1002/jsfa.12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sophora alopecuroides L. is a leguminous plant commonly found in northwest China. In Xinjiang, the fresh herb of S. alopecuroides is often applied as a green fertilizer to the rhizosphere of melon (Cucumis melo) plants at the end of their flowering period, to improve the taste of the fruits. However, the effects of S. alopecuroides-based fertilizers on the microbial community structure of soil and crop-root systems are unclear. In order to study the sweetening mechanism of the S. alopecuroides organic fertilizer, three different varieties of melon were selected. The untreated plants were used as the control (CK) group, and the plants treated with S. alopecuroides-based organic fertilizer were selected as the treatment (T) group. The physical and chemical properties, enzyme activities and microbial community structure of the rhizosphere samples were also determined, and a correlation analysis with the fruit sweetness index was conducted. RESULTS Sugar content of group T was at least 40% higher than that of group CK. The increase in fruit sugar content positively correlated with the increase in the abundance of beneficial microorganisms, including Pseudomonas, Bacillus, Mycobacterium, Burkholderia, Streptomyces, Acinetobacter, Proteobacteria, Lysobacter, Actinomycetes, Penicillium and Aspergillus. CONCLUSION Sophora alopecuroides organic fertilizer could alter the composition and function of bacterial and fungal communities and promote the growth of beneficial bacteria in the melon plant rhizosphere. Further, it could increase the content of soluble solids and sugar in the fruits to achieve a sweetening effect. This fertilizer can be applied as a fruit sweetener in melon cultivation, improving the sugar content of the fruit and consequently the sweetness. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling-Qi Hua
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China
| | - Sheng-Qiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Zhan-Feng Xia
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China
| | - Hong Zeng
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise, People's Republic of China
| |
Collapse
|
7
|
Li P, Yu J, Feng N, Weng J, Rehman A, Huang J, Tu S, Niu Q. Physiological and Transcriptomic Analyses Uncover the Reason for the Inhibition of Photosynthesis by Phosphate Deficiency in Cucumis melo L. Int J Mol Sci 2022; 23:ijms232012073. [PMID: 36292929 PMCID: PMC9603772 DOI: 10.3390/ijms232012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the physiological, histochemical, and transcriptomic methods to investigate the effect of low-Pi stress on photosynthetic gas exchange parameters, cell membrane lipid, chloroplast ultrastructure, and transcriptional regulation of key genes in melon seedlings. The results showed that Pi deficiency significantly downregulated the expression of aquaporin genes, induced an increase in ABA levels, and reduced the water content and free water content of melon leaves, which caused physiological drought in melon leaves. Therefore, gas exchange was disturbed. Pi deficiency also reduced the phospholipid contents in leaf cell membranes, caused the peroxidation of membrane lipids, and destroyed the ultrastructure of chloroplasts. The transcriptomic analysis showed that 822 differentially expressed genes (DEGs) were upregulated and 1254 downregulated by Pi deficiency in leaves. GO and KEGG enrichment analysis showed that DEGs significantly enriched in chloroplast thylakoid membrane composition (GO:0009535), photosynthesis-antenna proteins (map00196), and photosynthesis pathways (map00195) were downregulated by Pi deficiency. It indicated that Pi deficiency regulated photosynthesis-related genes at the transcriptional level, thereby affecting the histochemical properties and physiological functions, and consequently causing the reduced light assimilation ability and photosynthesis efficiency. It enriches the mechanism of photosynthesis inhibition by Pi deficiency.
Collapse
|
8
|
Phosphorus Dynamics in the Soil–Plant–Environment Relationship in Cropping Systems: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work performs a review of the relevant aspects of agronomic dynamics of phosphorus (P) in the soil–plant relationship as a community (crop ecophysiology), the effect of environmental conditions and global warming on the redistribution and translocation of P in some crop, and the use of good agricultural practices with the aim of improving the efficiency of the element. The research focuses on Northern Europe, North-Eastern Asia, Oceania, North America, and the tropical area of Latin America. This review covers general research and specific works on P found in the literature, 70% of which date from the last 10 years, as well as some older studies that have been of great relevance as references and starting points for more recent investigations. The dynamics of P in a system implies taking into account genetic aspects of the plant, component of the soil–plant–fertilizer–environment relationship, and use of technologies at the molecular level. In addition, in a climate change scenario, the availability of this element can significantly change depending on whether it is labile or non-labile.
Collapse
|
9
|
Su L, Xie J, Wen W, Li J, Zhou P, An Y. Interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via promoting proton motive force and reducing proton gradient in alfalfa. BMC PLANT BIOLOGY 2020; 20:433. [PMID: 32948141 PMCID: PMC7501636 DOI: 10.1186/s12870-020-02643-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In acidic soils, aluminum (Al) competing with Zn results in Zn deficiency in plants. Zn is essential for auxin biosynthesis. Zn-mediated alleviation of Al toxicity has been rarely studied, the mechanism of Zn alleviation on Al-induced photoinhibition in photosystems remains unclear. The objective of this study was to investigate the effects of Zn and IAA on photosystems of Al-stressed alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or100 μM AlCl3 combined with 0 or 50 μM ZnCl2, and then foliar spray with water or 6 mg L- 1 IAA. RESULTS Our results showed that Al stress significantly decreased plant growth rate, net photosynthetic rate (Pn), quantum yields and electron transfer rates of PSI and PSII. Exogenous application of Zn and IAA significantly alleviated the Al-induced negative effects on photosynthetic machinery, and an interaction of Zn and IAA played an important role in the alleviative effects. After removing apical buds of Al-stressed alfalfa seedlings, the values of pmf, gH+ and Y(II) under exogenous spraying IAA were significantly higher, and ΔpHpmf was significantly lower in Zn addition than Al treatment alone, but the changes did not occur under none spraying IAA. The interaction of Zn and IAA directly increased Y(I), Y(II), ETRI and ETRII, and decreased O2- content of Al-stressed seedlings. In addition, the transcriptome analysis showed that fourteen functionally noted genes classified into functional category of energy production and conversion were differentially expressed in leaves of alfalfa seedlings with and without apical buds. CONCLUSION Our results suggest that the interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via increasing pmf and decreasing ΔpHpmf between lumen and stroma.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianping Xie
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China.
| |
Collapse
|
10
|
Sha J, Wang F, Xu X, Chen Q, Zhu Z, Jiang Y, Ge S. Studies on the translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:636-645. [PMID: 32912493 DOI: 10.1016/j.plaphy.2020.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
In order to define translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple, the 13C labeled tracer method was used in whole five-year-old 'Fuji'3/M26/Malus hupehensis (Pamp.) Rehder apple trees at different days after flowering (DAF). The changes in 13C translocation to the fruit, source strength of the leaves, and sink strength of the fruits were assessed. The results indicated that the δ13C value and 13C distribution rate of the fruit increased first and then decreased with the increase in the fruit development period, being higher from 120 to 135 DAF. The leaves appeared to moderately senesce in an attempt to maintain high photosynthesis during 120-135 DAF, which promoted the outward transport of photoassimilates. The single fruit weight and longitudinal and transverse diameter of the fruit increased rapidly during 120-150 DAF, which increased the sink zone for the unloading of photoassimilates in the fruit. The activity of sorbitol dehydrogenase (SDH) and amylase (AM), the content of indole-3-acetic acid (IAA), the gibberellin (GA3) and abscisic acid (ABA) in the fruit flesh, and the gene expression levels of MdSOT1, MdSOT2, MdSOT3, MdSUT1, and MdSUT4 in the fruit stalk tissue were higher during 120-135 DAF. At this point, the difference in the sorbitol content between the fruit stalk and fruit flesh was also at the highest level of the entire year. These factors together increased the sink activity of the fruit, thus improving the photoassimilate transport efficiency to the fruit.
Collapse
Affiliation(s)
- Jianchuan Sha
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Fen Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinxiang Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhanling Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
11
|
Li T, Sun J, Yang H, Liu J, Xia J, Shao P. Effects of shell sand burial on seedling emergence, growth and stoichiometry of Periploca sepium Bunge. BMC PLANT BIOLOGY 2020; 20:112. [PMID: 32164525 PMCID: PMC7069190 DOI: 10.1186/s12870-020-2319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sand burial plays an irreplaceable and unique role in the growth and distribution of vegetation on the Shell Dike Island in the Yellow River Delta. There are still some unknown on the effects of sand burial on the morphology, biomass, and especially the stoichiometry of Periploca sepium, as well as the relationship between these factors. RESULTS Shell sand burial depth had a significant influence on seedling emergence, growth, and biomass of P. sepium. Shallow sand burial shortened the emergence time and improved the emergence rate, morphological and biomass of P. sepium compared to deep burial and the control. Burial depth significantly affected the nitrogen (N) and phosphorus (P) contents of the leaves. With deep burial, the carbon/nitrogen (C/N) and carbon/phosphorus (C/P) ratios decreased firstly and then increased with depth, while the nitrogen/phosphorus ratio (N/P) presented the contrary trend. Correlation analysis showed that the stoichiometry of N/P was positively correlated to morphology and biomass of P. sepium at different burial depths. Structural equation model analysis revealed that N was the largest contributor to P. sepium biomass. CONCLUSIONS Optimal burial depth is beneficial to the seedling emergence, growth and nutritional accumulation of P. sepium. Stoichiometry has an important influence on the morphological formation and biomass accumulation.
Collapse
Affiliation(s)
- Tian Li
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, China.
| | - Jingkuan Sun
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, China.
| | - Hongjun Yang
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, China
| | - Jingtao Liu
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, China
| | - Jiangbao Xia
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, China
| | - Pengshuai Shao
- Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, China
| |
Collapse
|
12
|
Tantray AY, Bashir SS, Ahmad A. Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:83-94. [PMID: 32158122 PMCID: PMC7036394 DOI: 10.1007/s12298-019-00721-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/04/2019] [Accepted: 10/10/2019] [Indexed: 05/26/2023]
Abstract
Nitrogen (N) is the basis of plant growth and development and, is considered as one of the priming agents to elevate a range of stresses. Plants use solar radiations through photosynthesis, which amasses the assimilatory components of crop yield to meet the global demand for food. Nitrogen is the main regulator in the allocation of photosynthetic apparatus which changes of the photosynthesis (Pn) and quantum yield (Fv/Fm) of the plant. In the present study, dynamics of the photosynthetic establishment, N-dependent relation with chlorophyll fluorescence attributes and Rubisco efficacy was evaluated in low-N tolerant (cv. CR Dhan 311) and low-N sensitive (cv. Rasi) rice cultivars under low-N and optimum-N conditions. There was a decrease in the stored leaf N under low-N condition, resulting in the decreased Pn and Fv/Fm efficiency of the plants through depletion in the activity and content of Rubisco. The Pn and Fv/Fm followed the parallel trend of leaf N content during low-N condition along with depletion of intercellular CO2 concentration and overall conductance under low-N condition. Photosynthetic saturation curve cleared abrupt decrease of effective quantum yield in the low-N sensitive rice cultivar than the low-N tolerant rice. Also, the rapid light curve highlighted the unacclimated regulation of photochemical and non-photochemical quenching in the low-N condition. The low-N sensitive rice cultivar triumphed non-photochemical quenching, whereas the low-N tolerant rice cultivar rose gradually during the light curve. Our study suggested that the quantum yield is the key limitation for photosynthesis in low-N condition. Regulation of Rubisco, photochemical and non-photochemical quenching may help plants to grow under low-N level.
Collapse
Affiliation(s)
- Aadil Yousuf Tantray
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | | | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
13
|
Vanlerberghe GC, Dahal K, Chadee A. Does the stromal concentration of P i control chloroplast ATP synthase protein amount in contrasting growth environments? PLANT SIGNALING & BEHAVIOR 2019; 14:1675473. [PMID: 31583956 PMCID: PMC6866698 DOI: 10.1080/15592324.2019.1675473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 05/16/2023]
Abstract
Changes in the growth environment can generate imbalances in chloroplast photosynthetic metabolism. Under water deficit, stomatal closure limits CO2 availability such that the production of ATP and NADPH by the thylakoid membrane-localized electron transport chain may not match the consumption of these energy intermediates by the stroma-localized Calvin-Benson cycle, thus challenging energy balance. Alternatively, in an elevated CO2 atmosphere, carbon fixation by the Calvin-Benson cycle may outpace the activity of downstream carbohydrate-utilizing processes, thus challenging carbon balance. Our previous studies have shown that, in both of the above scenarios, a mitochondrial alternative oxidase contributes to maintaining energy or carbon balance, highlighting the importance of photosynthesis-respiration interactions in optimizing photosynthesis in different growth environments. In these previous studies, we observed aberrant amounts of chloroplast ATP synthase protein across the different transgenic plant lines and growth conditions, compared to wild-type. Based on these observations, we develop here the hypothesis that an important determinant of chloroplast ATP synthase protein amount is the stromal concentration of inorganic phosphate. ATP synthase is a master regulator of photosynthesis. Coarse control of ATP synthase protein amount by the stromal inorganic phosphate status could provide a means to coordinate the electron transport and carbon fixation reactions of photosynthesis.
Collapse
Affiliation(s)
- Greg C. Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Avesh Chadee
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|