1
|
Nidhi, Iqbal N, Khan NA. Polyamines Interaction with Gaseous Signaling Molecules for Resilience Against Drought and Heat Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:273. [PMID: 39861624 PMCID: PMC11768214 DOI: 10.3390/plants14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (H2S), nitric oxide (NO), methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), and ethylene (ET). The functions of PAs and GSM in stress perception, signal transduction, and stress-responsive pathways have been explored. However, there is a lack of detailed, updated information on the interaction of PAs and GSM in the adaptation of drought and heat stress. This review explores the interaction between PAs and GSM for the adaptation to drought and heat stress. It explores their synergistic effects in mitigating the negative impacts of drought and heat stress on plant growth, development, and productivity. Moreover, a comprehensive analysis of physiological, biochemical, and molecular approaches demonstrates that their interaction activates key stress-responsive pathways, enhances antioxidant systems, and modulates gene expression. These combined effects contribute to improved drought and heat tolerance in plants. The information presented in the review provides valuable insights into plant stress resilience strategies and suggests potential measures for developing climate-resilient crops to address the increasing environmental challenges.
Collapse
Affiliation(s)
- Nidhi
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
2
|
Zhou RY, Qu JY, Niu HP, Lai L, Yuan PG, Wang YT, Yang N, Wang XH, Xi ZM, Wang XF. VvATG18a participates in grape resistance to gray mold induced by BR signaling pathway. Int J Biol Macromol 2025; 297:139877. [PMID: 39814277 DOI: 10.1016/j.ijbiomac.2025.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Autophagy plays an important role in responding to necrotrophic pathogens and plant signal hormones. Brassinosteroids (BRs) are a class of natural steroidal phytohormones that effectively regulated the disease resistance responses in grape. However, the molecular mechanism of BR-autophagy networks responsible for activation of host defense against gray mold remained to be elucidated. We reported a novel defense mechanism that BR-regulated autophagy in grape berry against gray mold. Exogenous application of 24-epibrassinolide (eBR) enhanced the grape disease resistance. Meanwhile, the endogenous BR was accumulated and BR signaling pathway was activated in the berries. In addition, transcriptome analysis in eBR-treated grapes infected with gray mold showed that the differentially expressed genes (DEGs) were enriched in the metabolic pathway of BR signaling pathway and autophagy. DNA affinity purification sequencing (Dap-seq), Yeast one-hybrid assay (Y1H) and dual luciferase assays (LUC) verified VvBZR1 bound to the promoter of VvATG18a to induce its gene expression. Overexpressing VvATG18a and VvBZR1 improved the resistance of grapes to gray mold. Overall, this study sheds light on the immune mechanisms underlying the involvement of the autophagy in grape innate immunity, highlighting the pivotal role of VvATG18a in enhancing disease resistance.
Collapse
Affiliation(s)
- Run-Yu Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Yan Qu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui-Ping Niu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Lai
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei-Guo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Yu-Ting Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ni Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xian-Hang Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhu-Mei Xi
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue-Fei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Kalemba EM, Dufour S, Gevaert K, Impens F, Meimoun P. Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes. TREE PHYSIOLOGY 2025; 45:tpaf003. [PMID: 39761348 PMCID: PMC11791354 DOI: 10.1093/treephys/tpaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively. Among the 212 identified metabolites, 44 and 67 differentially abundant metabolites were found at the imbibed and germinated stages, respectively, in both Acer species. Higher levels of amines, growth and defense stimulants, including B vitamins, were found in sycamore. We identified 611 and 447 proteins specific to the imbibed and germinated stages, respectively, in addition to groups of proteins expressed at different levels. Functional analysis of significantly regulated proteins revealed that proteins with catalytic and binding activity were enriched during germination, and proteins possibly implicated in nitrogen metabolism and metabolite interconversion enzymes were the predominant classes. Proteins associated with the control of plant growth regulation and seed defense were observed in both species at both germination stages. Sycamore proteins possibly involved in abscisic acid signal transduction pathway, stress tolerance and alleviation, ion binding and oxygenase activities appeared to accompany germination in sycamore. We identified peptides containing methionine (Met) oxidized to methionine sulfoxide (MetO), and functional analyses of proteins with significantly regulated MetO sites revealed that translation, plant growth and development, and metabolism of nitrogen compounds were the main processes under Met/MetO redox control. We propose that higher levels of storage proteins and amines together with higher levels of B vitamins supported more efficient nitrogen utilization in sycamore, resulting in faster seedling growth. In conclusion, omic signatures identified in sycamore seem to predispose germinated sycamore seeds to better postgerminative growth.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology Polish Academy of Sciences, Parkowa 5, Kórnik 62-035, Poland
| | - Sara Dufour
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- VIB Proteomics Core, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- VIB Proteomics Core, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Patrice Meimoun
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED UMR 8236), Université Paris-Cité, Paris, France
| |
Collapse
|
4
|
Ciacka K, Tyminski M, Gniazdowska A, Krasuska U. Stratification of apple seeds in the context of ROS metabolism. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154407. [PMID: 39706007 DOI: 10.1016/j.jplph.2024.154407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Apple (Malus domestica Borkh.) seeds exhibit deep embryonic dormancy. Uniform germination of isolated apple embryos is observed after 40-day-long cold stratification of the seeds. Stratification treatment modifies the level of reactive oxygen species (ROS), which are regarded as key regulators of seed dormancy. In this study, axes of embryos isolated from seeds stratified for 7, 14, 21, and 40 days differing in dormancy depth were used. After one week of stratification, the increased polyamine oxidase activity enables ROS generation, which is followed by an upregulation of the NADPH oxidase gene expression. Catalase activity increased after 14 days of stratification, suggesting the requirement to maintain ROS concentrations at an optimal level already in the early phase of dormancy removal. When cold stratification was prolonged, accompanied by a significant increase in ROS level, ROS scavenging by catalase was supported by elevated phenolic compounds content. Then, peroxidase activity was also the highest. As ROS-induced phenylalanine (Phe) oxidation leads to the formation of meta-tyrosine (m-Tyr) - a potentially toxic component, the levels of these amino acids were examined. The fluctuation in m-Tyr content indicates the existence of mechanisms in the tissue for the disposal of this compound. Finally, its presence may be mitigated by an increase in Phe levels. Maintaining oxidised RNA at elevated levels from the 14th day of stratification may be crucial for seed dormancy removal, ensuring translation regulation as metabolism resumes. We concluded that dormancy removal of apple seeds by stratification requires a time-dependent sequence of biochemical events reflecting ROS metabolism alterations.
Collapse
Affiliation(s)
- Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Marcin Tyminski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
5
|
Lehrer MA, Govindarajulu R, Smith F, Hawkins JS. Shifts in plant architecture drive species-specific responses to drought in a Sorghum recombinant inbred line population. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:125-133. [PMID: 39476337 DOI: 10.1111/plb.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/25/2024] [Indexed: 12/20/2024]
Abstract
Drought stress severely impedes plant growth, development, and yield. Therefore, it is critical to uncover the genetic mechanisms underlying drought resistance to ensure future food security. To identify the genetic controls of these responses in Sorghum, an agriculturally and economically important grain crop, an interspecific recombinant inbred line (RIL) population was established by crossing a domesticated inbred line of Sorghum bicolor (TX7000) with its wild relative, Sorghum propinquum. This RIL population was evaluated under drought conditions, allowing for the identification of quantitative trait loci (QTL) that contribute to drought resistance. We detected eight QTL in the drought population that explain a significant portion of the observed variation for four traits (height, aboveground biomass, relative water content, and leaf temperature/transpiration). The allelic effects of, and the candidate genes within, these QTL emphasize: (1) the influence of domestication on drought-responsive phenotypes, such as height and aboveground biomass, and (2) how control of water uptake and/or loss can be driven by species-specific plant architecture. Our findings shed light on the interconnected roles of shoot and root responses in drought resistance as it relates to regulation of water uptake and/or loss, while the detected allelic effects demonstrate how maintenance of grain production and yield under drought is a likely result of domestication-derived drought tolerance.
Collapse
Affiliation(s)
- M A Lehrer
- West Virginia University, Morgantown, West Virginia, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - R Govindarajulu
- West Virginia University, Morgantown, West Virginia, USA
- Q2 Solutions | IQVIA Company, Durham, North Carolina, USA
| | - F Smith
- West Virginia University, Morgantown, West Virginia, USA
- Potomac State College of West Virginia University, Keyser, West Virginia, USA
| | - J S Hawkins
- West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Wang Z, Zhang S, Liang J, Chen H, Jiang Z, Hu W, Tang M. Rhizophagus irregularis regulates RiCPSI and RiCARI expression to influence plant drought tolerance. PLANT PHYSIOLOGY 2024; 197:kiae645. [PMID: 39657034 DOI: 10.1093/plphys/kiae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 12/17/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.e. carbamoyl phosphate synthase (RiCPSI), arginase (RiCARI), urease (RiURE), ornithine decarboxylase (RiODC), and glutamate-cysteine ligase (RiGCL). Furthermore, we confirmed that RiCPSI is a carbamoyl phosphate synthase. Silencing RiCARI via host-induced gene silencing inhibited arbuscule formation, suppressed putrescine and glutathione synthesis, and altered arginine metabolism within R. irregularis-plant symbiosis, leading to a substantial reduction in the drought tolerance of M. sativa. Conversely, silencing RiCPSI decreased arginine, putrescine, and glutathione synthesis in R. irregularis but did not adversely affect NH4+ transfer from fungi to the host plant and drought tolerance of M. sativa. Interestingly, overexpressing RiCPSI via our host-induced gene overexpressing system enhanced arginine, putrescine, and glutathione synthesis in R. irregularis, reduced arbuscule abundance, and improved drought tolerance of M. sativa. Our findings demonstrate that under drought stress, the nitrogen transfer from AMF to the host plant was improved. This is accompanied by increased arginine, putrescine, and glutathione synthesis within R. irregularis, driven by the upregulation of RiCPSI and RiCARI expression in mycorrhizal structures within the roots. These molecular adjustments collectively contribute to enhanced drought tolerance in R. irregularis-plant symbiosis.
Collapse
Affiliation(s)
- Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Zhang
- Department of Biological Sciences, East Stroudsburg University of Pennsylvania, East Stroudsburg, PA 18301, USA
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Gil-Martínez A, Galiana-Roselló C, Lázaro-Gómez A, Mulet-Rivero L, González-García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2024:e202400873. [PMID: 39656761 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
- Príncipe Felipe Research Center, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Andrea Lázaro-Gómez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Laura Mulet-Rivero
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
8
|
Yang J, Zhang Z, Li X, Guo L, Li C, Lai J, Han Y, Ye W, Miao Y, Deng M, Cao P, Zhang Y, Ding X, Zhang J, Yang J, Wang S. A gene cluster for polyamine transport and modification improves salt tolerance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1706-1723. [PMID: 39401077 DOI: 10.1111/tpj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a H2O2 transport protein, to maintain H2O2 homeostasis. Polyamine-derived H2O2 linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the H2O2-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.
Collapse
Affiliation(s)
- Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Langchen Guo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yige Han
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Meng Deng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yueran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| |
Collapse
|
9
|
Goldfarb M, Boesel J, Wilczewski‐Shirai K, Reinhart P, Scherger T, Webb C, Newlun M, Rouhier K. Synthesis of β-Alanine From Isoleucine and Propionate Catabolism via Aminotransferases. PLANT DIRECT 2024; 8:e70030. [PMID: 39703930 PMCID: PMC11655180 DOI: 10.1002/pld3.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
In plants, the nonproteinogenic amino acid β-alanine plays a role in response to hypoxia, flooding, drought, heat, and heavy metal stress conditions. It is also a key intermediate in the synthesis of essential molecules including vitamin B5 and coenzyme A (CoA) through the condensation reaction with pantoate. While the syntheses of pantoate, vitamin B5, and CoA appear to be conserved across plants and bacteria, the synthesis of β-alanine is not. Bacteria and fungi use aspartate, whereas plants can use uracil, spermidine, or propionate to synthesize β-alanine. Given that these three precursors can be formed from the metabolism of glutamine, arginine, isoleucine, and valine, the synthesis of β-alanine could be linked to numerous pathways. Studies of valine catabolism in Arabidopsis suggested that some branched-chain amino acids could in fact serve as precursors for the synthesis of β-alanine. Using GC-MS and isotopically labeled isoleucine and propionate, we linked their metabolism to the synthesis of β-alanine via a proposed transamination of malonate semialdehyde. We then identified three aminotransferases that each catalyzed this final reversible transamination reaction. These results affirm our hypothesis that isoleucine metabolism is also linked to the synthesis of β-alanine via the transamination of metabolic intermediates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chloe Webb
- Department of ChemistryKenyon CollegeGambierOhioUSA
| | | | | |
Collapse
|
10
|
Zu H, Zhang J, Bai W, Kuai P, Cheng J, Lu J, Lou Y, Li R. Jasmonate-mediated polyamine oxidase 6 drives herbivore-induced polyamine catabolism in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2000-2013. [PMID: 39432737 DOI: 10.1111/tpj.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Polyamines (PAs) along with their conjugated forms, are important mediators of plant defense mechanisms against both biotic and abiotic stresses. Flavin-containing polyamine oxidases (PAOs) regulate PA levels through terminal oxidation. To date, the role of PAOs in plant-herbivore interaction remains poorly understood. We discovered that infestation by the brown planthopper (BPH) disrupts PA homeostasis within the leaf sheaths of rice plants, which co-occurs with the upregulation of OsPAO6, a tissue-specific inducible, apoplast-localized enzyme that regulates the terminal catabolism of spermidine (Spd) and spermine. Functional analysis using CRISPR-Cas9 genome-edited plants revealed that pao6 mutants accumulated significantly higher levels of Spd and phenylpropanoid-conjugated Spd in response to BPH infestation compared to wild-type controls. In addition, BPH feeding on pao6 mutants led to increased honeydew excretion and plant damage by female adults, consistent with in vitro experiments in which Spd enhanced BPH feeding. Furthermore, OsPAO6 transcription is regulated by jasmonate (JA) signaling, and it is dependent on MYC2, which directly binds to the G-box-like motif in the OsPAO6 promoter. Our findings reveal an important role of OsPAO6 in regulating polyamine catabolism in JA-induced responses triggered by herbivore attacks in rice.
Collapse
Affiliation(s)
- Hongyue Zu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Weiwei Bai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
12
|
Wojtyla Ł, Wleklik K, Borek S, Garnczarska M. Polyamine Seed Priming: A Way to Enhance Stress Tolerance in Plants. Int J Mol Sci 2024; 25:12588. [PMID: 39684300 DOI: 10.3390/ijms252312588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polyamines (PAs), such as putrescine, spermine, and spermidine, are bioactive molecules that play a vital role in plant responses to stresses. Although they are frequently applied to achieve higher levels of stress tolerance in plants, their function in seed biology is still not fully understood. PAs have been described in only a limited number of studies as seed priming agents, but most of the data report only the physiological and biochemical PA effects, and only a few reports concern the molecular mechanisms. In this review, we summarized PA seed priming effects on germination, seedling establishment, and young plant response to abiotic stresses, and tried to draw a general scheme of PA action during early developmental plant stages.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Karolina Wleklik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
13
|
Li C, Huang Q, Sun S, Cheng C, Chen Y, Yu B. Preinoculation with Bradyrhizobium japonicum enhances the salt tolerance of Glycine max seedlings by regulating polyamine metabolism in roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109196. [PMID: 39405999 DOI: 10.1016/j.plaphy.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Rhizobia are common symbiotic microorganisms in the root system of leguminous plants that can usually provide nitrogen to the host through nitrogen fixation. Studies have shown that rhizobium-preinoculated soybean plants usually exhibit improved salt tolerance, but the underlying mechanism is not fully understood. In this paper, transcriptome sequencing (RNA-seq) revealed that preinoculation with rhizobia affected polyamine (PA) metabolism in soybean roots. The assay of PA contents showed that preinoculation with rhizobia significantly increased the putrescine (Put) content in roots and leaves during short-term salt treatment (0-5 d). Long-term salt treatment (5-7 d) resulted in a high Put content and significantly increased Spm and Spd contents, resulting in a rapid increase in the Put/(Spd + Spm) ratio (0-5 d) and subsequent decrease. Moreover, rhizobium preinoculation of soybean plants resulted in increased contents of conjugated and bound PAs under salt stress. Further transcriptome sequencing, PA contents, PA synthase expression and activity analysis revealed that GmADC may be a key gene related to salt tolerance in rhizobium-preinoculated soybean plants, and the GmADC-overexpressing soybean hairy-root composite plants exhibited less ROS damage, lower Cl-/NO3- ratios and Na+/K+ ratios, and stabilized ion homeostasis. Taken together, preinoculation with rhizobia increased the expression level and enzyme activity of arginine decarboxylase (ADC) in soybean roots, increased the content of Put in roots and leaves, and increased the content of conjugated and bound PAs in soybean plants, thereby alleviating the oxidative and ionic injuries of soybean plants and enhancing the salt tolerance.
Collapse
Affiliation(s)
- Chenya Li
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiaoyue Huang
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shile Sun
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cong Cheng
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yutin Chen
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bingjun Yu
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China; College of Life Sciences, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
14
|
Jasso-Robles FI, Aucique-Perez CE, Zeljković SĆ, Saiz-Fernández I, Klimeš P, De Diego N. The loss-of-function of AtNATA2 enhances AtADC2-dependent putrescine biosynthesis and priming, improving growth and salinity tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14603. [PMID: 39489618 DOI: 10.1111/ppl.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Putrescine (Put) is a promising small molecule-based biostimulant to enhance plant growth and resilience, though its mode of action remains unclear. This study investigated the Put priming effect on Arabidopsis mutant lines (Atadc1, Atadc2, Atnata1, and Atnata2) under control conditions and salinity to understand its role in regulating plant growth. The Atadc2 mutant, characterized by reduced endogenous Put levels, showed insensitivity to Put priming without growth enhancement, which was linked to significant imbalances in nitrogen metabolism, including a high Gln/Glu ratio. Contrarily, the Atnata2 mutant exhibited significant growth improvement and upregulated AtADC2 expression, particularly under Put priming, highlighting these genes' involvement in regulating plant development. Put priming enhanced plant growth by inducing the accumulation of specific polyamines (free, acetylated, conjugated, or bound form) and improving light-harvesting efficiency, particularly in the Atnata2 line. Our findings suggest that AtNATA2 may negatively regulate Put synthesis and accumulation via AtADC2 in the chloroplast, impacting light harvesting in photosystem II (PSII). Furthermore, the Atadc2 mutant line exhibited upregulated AtADC1 but reduced AcPut levels, pointing to a cross-regulation among these genes. The regulation by AtNATA2 on AtADC2 and AtADC2 on AtADC1 could be crucial for plant growth and overall stress tolerance by interacting with polyamine catabolism, which shapes the plant metabolic profile under different growth conditions. Understanding the regulatory mechanisms involving crosstalk between AtADC and AtNATA genes in polyamine metabolism and the connection with certain SMBBs like Put can lead to more effective agricultural practices, improving plant growth, nitrogen uptake, and resilience under challenging conditions.
Collapse
Affiliation(s)
| | | | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Iñigo Saiz-Fernández
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Klimeš
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
15
|
Judy KJ, Pinseel E, Downey KM, Lewis JA, Alverson AJ. The Divergent Responses of Salinity Generalists to Hyposaline Stress Provide Insights Into the Colonisation of Freshwaters by Diatoms. Mol Ecol 2024; 33:e17556. [PMID: 39432060 DOI: 10.1111/mec.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Environmental transitions, such as the salinity divide separating marine and fresh waters, shape biodiversity over both shallow and deep timescales, opening up new niches and creating opportunities for accelerated speciation and adaptive radiation. Understanding the genetics of environmental adaptation is central to understanding how organisms colonise and subsequently diversify in new habitats. We used time-resolved transcriptomics to contrast the hyposalinity stress responses of two diatoms. Skeletonema marinoi has deep marine ancestry but has recently invaded brackish waters. Cyclotella cryptica has deep freshwater ancestry and can withstand a much broader salinity range. Skeletonema marinoi is less adept at mitigating even mild salinity stress compared to Cyclotella cryptica, which has distinct mechanisms for rapid mitigation of hyposaline stress and long-term growth in low salinity. We show that the cellular mechanisms underlying low salinity tolerance, which has allowed diversification across freshwater habitats worldwide, includes elements that are both conserved and variable across the diatom lineage. The balance between ancestral and lineage-specific environmental responses in phytoplankton have shaped marine-freshwater transitions on evolutionary timescales and, on contemporary timescales, will affect which lineages survive and adapt to changing ocean conditions.
Collapse
Affiliation(s)
- Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
16
|
Matos TS, da Silva Zandonadi F, Rosini Silva AA, Dias Soares S, de Souza Lima A, Pastore GM, de Melo Porcari A, Sussulini A. Differentiation of Ayahuasca Samples According to Preparation Mode and Botanical Varieties Using Metabolomics. J Psychoactive Drugs 2024:1-10. [PMID: 39470142 DOI: 10.1080/02791072.2024.2420059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
Ayahuasca is a brew traditionally prepared with a mixture of Psychotria viridis leaves and Banisteriopsis caapi vine and has demonstrated therapeutic properties for depression. Knowledge of the brew composition is important to improve the therapeutic potential and decrease side effects if ayahuasca becomes an option for refractory depression treatment. Ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) was applied to analyze 126 ayahuasca samples collected from different ayahuasqueiro groups and geographic origins. We were able to observe a differentiation in the metabolite composition of ayahuasca samples prepared by diverse ayahuasqueiro groups. These samples presented different antioxidant effects based on FRAP and ORAC assays. Exploratory statistical analysis demonstrated a trend of separating the samples according to the religious group. The most important identified compounds for differentiation of the brew prepared by distinct religious groups are glycosylated and/or phenolic compounds. The comparison based on the mode of ayahuasca preparation presented more variability than the comparison based on the botanical variety of B. caapi used. We conclude that ayahuasca samples prepared with "caupuri" or "tucunacá" separately exhibited differences in the analysis of L-glutamate and the metabolism of arginine and proline. This suggests that a possible variation in this pathway could explain the occurrence of swollen stem nodes in "caupuri," one of the B. caapi varieties.
Collapse
Affiliation(s)
- Taynara Simão Matos
- Laboratory of Bioanalytics and Integrated Omics (LaBiomics), Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Flávia da Silva Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBiomics), Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Alex Aparecido Rosini Silva
- MS4 Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Stephanie Dias Soares
- Bioflavors and Bioactive Compounds Laboratory, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Adriana de Souza Lima
- Bioflavors and Bioactive Compounds Laboratory, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Faculty of Tourism and Hospitality, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Andreia de Melo Porcari
- MS4 Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBiomics), Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
17
|
Doneva D, Pál M, Szalai G, Vasileva I, Brankova L, Misheva S, Janda T, Peeva V. Manipulating the light spectrum to increase the biomass production, physiological plasticity and nutritional quality of Eruca sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109218. [PMID: 39461053 DOI: 10.1016/j.plaphy.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
The extensive development in light-emitting diodes (LEDs) in recent years provides an opportunity to positively influence plant growth and biomass accumulation and to optimize biochemical composition and nutritional quality. This study aimed to assess how different light spectra affect the growth, photosynthesis and biochemical properties of Eruca sativa. Therefore two LED lighting modes - red:blue (RB, 1:1) and red:green:blue (RGB, 2:1:2) were compared to the conventional white light fluorescent tubes (WL). Plant biomass, photosynthetic performance, several antioxidants, polyamines and nitrates contents were analyzed across different treatments. The plant growth was affected by the light quality - the presence of green light in the spectrum resulted in smaller plants and leaves, and correspondingly less biomass. RB spectral mode enhanced the total antioxidant and guaiacol peroxidase activity, pigments, flavonoids, polyphenols, ascorbate and polyamines contents. This effect under RB was combined with better leaf development compared to RGB and less nitrate in the leaves among all treatments. The RB light generated modifications in polyamines, which are interrelated with the nitrate content, further induce important metabolite and antioxidant changes. Both RB and RGB enhanced photosynthesis. The afterglow thermoluminescence band varied according to leaves development, being higher in RB and WL as a consequence of their faster growth. The RB light spectrum was found to be the most efficient for promoting the growth, biochemical composition, and overall quality of Eruca sativa compared to RGB and WL. These findings suggest that RB LEDs can be an effective tool for improving crop production in controlled environments.
Collapse
Affiliation(s)
- Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Magda Pál
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Ivanina Vasileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Liliana Brankova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Tibor Janda
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
18
|
Yi Q, Park MJ, Vo KTX, Jeon JS. Polyamines in Plant-Pathogen Interactions: Roles in Defense Mechanisms and Pathogenicity with Applications in Fungicide Development. Int J Mol Sci 2024; 25:10927. [PMID: 39456710 PMCID: PMC11506843 DOI: 10.3390/ijms252010927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Polyamines (PAs), which are aliphatic polycationic compounds with a low molecular weight, are found in all living organisms and play essential roles in plant-pathogen interactions. Putrescine, spermidine, and spermine, the most common PAs in nature, respond to and function differently in plants and pathogens during their interactions. While plants use certain PAs to enhance their immunity, pathogens exploit PAs to facilitate successful invasion. In this review, we compile recent studies on the roles of PAs in plant-pathogen interactions, providing a comprehensive overview of their roles in both plant defense and pathogen pathogenicity. A thorough understanding of the functions of PAs and conjugated PAs highlights their potential applications in fungicide development. The creation of new fungicides and compounds derived from PAs demonstrates their promising potential for further research and innovation in this field.
Collapse
Affiliation(s)
- Qi Yi
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Min-Jeong Park
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
19
|
Gibu K, Mizusawa N, Iijima M, Ohno Y, Yasumoto J, Yasumoto K, Iguchi A. Polyamine impact on physiology of early stages of reef-building corals-insights from rearing experiments and RNA-Seq analysis. Sci Rep 2024; 14:23465. [PMID: 39379401 PMCID: PMC11461621 DOI: 10.1038/s41598-024-72943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Polyamines are involved in various functions related to the cellular-level responses. To assess effects of polyamines on marine organisms, rearing experiments and comprehensive gene expression analyses were conducted on Acropora digitifera and Acropora sp.1, representative reef-building corals along the west-central coast of Okinawa, Japan, to evaluate effects of putrescine. Concentrations of putrescine ≥ 1 mM dissolved tissues of juvenile polyps and increased mortality of planula larvae. RNA-Seq analysis of juvenile polyps exposed to putrescine at the stage before effects became visible revealed dynamic fluctuations in gene expression in the putrescine-treated samples, with increased expression of stress-responsive genes (e.g. NAD-dependent protein deacylase sirtuin-6) and the polyamine transporter Slc18b1-like protein. These results also suggest that putrescine affects expression of genes related to ribosomes and translation. This study provides important insights into roles of polyamines and future directions regarding physiological responses of corals.
Collapse
Affiliation(s)
- Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, 113-0032, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Yoshikazu Ohno
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Yasumoto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagusuku, Okinawa, 903-0213, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory On Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8567, Japan.
| |
Collapse
|
20
|
Kabała K, Janicka M. Relationship between the GABA Pathway and Signaling of Other Regulatory Molecules. Int J Mol Sci 2024; 25:10749. [PMID: 39409078 PMCID: PMC11476557 DOI: 10.3390/ijms251910749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
GABA (gamma-aminobutyric acid) is an amino acid whose numerous regulatory functions have been identified in animal organisms. More and more research indicate that in plants, this molecule is also involved in controlling basic growth and development processes. As recent studies have shown, GABA plays an essential role in triggering plant resistance to unfavorable environmental factors, which is particularly important in the era of changing climate. The main sources of GABA in plant cells are glutamic acid, converted in the GABA shunt pathway, and polyamines subjected to oxidative degradation. The action of GABA is often related to the activity of other messengers, including phytohormones, polyamines, NO, H2O2, or melatonin. GABA can function as an upstream or downstream element in the signaling pathways of other regulators, acting synergistically or antagonistically with them to control cellular processes. Understanding the role of GABA and its interactions with other signaling molecules may be important for developing crop varieties with characteristics that enable adaptation to a changing environment.
Collapse
Affiliation(s)
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
21
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
22
|
Anam S, Hilal B, Fariduddin Q. Polyamines and hydrogen peroxide: Allies in plant resilience against abiotic stress. CHEMOSPHERE 2024; 366:143438. [PMID: 39369751 DOI: 10.1016/j.chemosphere.2024.143438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
The increasing prevalence and severity of abiotic stresses on plants due to climate change is among the crucial issues of decreased crop productivity worldwide. These stresses affect crop productivity and pose a challenge to food security. Polyamines (Pas) and hydrogen peroxide (H₂O₂) could play a vital role to minimize the impact of several abiotic stresses on the plants. Pas are small molecules that regulate various physiological and developmental processes in plants and confer stress tolerance and protection against dehydration and cellular damage. Pas also interact with plant growth regulators and participate in various signaling routes that can mediate stress response. H₂O₂ on the other hand, acts as a signaling agent and plays a pivotal part in controlling crop growth and productivity. It can trigger oxidative damage at high levels but acts as a stress transducer and regulator at low concentrations. H₂O₂ is involved in stress defense mechanisms and the activation of genes involved in conferring tolerance. Therefore, the main focus of this paper is to explore roles of Pas and H₂O₂ in plant responses to various abiotic stress, highlighting their involvement in stress retaliation and signaling routes. Emphasis has been placed on understanding how Pas and H₂O₂ function and interact with other signaling molecules. Also, interaction of Pas and H₂O₂ with calcium ions, abscisic acid and nitrogen has been discussed, along with activation of MAPK cascade. This additive understanding could contribute to adopt strategies to improve crop productivity and enhance plant resilience to environmental challenges.
Collapse
Affiliation(s)
- Sadiya Anam
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bisma Hilal
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
23
|
Man KY, Chan CO, Wan SW, Kwok KWH, Capozzi F, Dong NP, Wong KH, Mok DKW. Untargeted foodomics for authenticating the organic farming of water spinach (Ipomoea aquatica). Food Chem 2024; 453:139545. [PMID: 38772304 DOI: 10.1016/j.foodchem.2024.139545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
This study aimed to conduct a comprehensive analysis of the primary and secondary metabolites of water spinach (Ipomoea aquatica) using hydrophilic interaction liquid chromatography coupled with Orbitrap high-resolution mass spectrometry (HILIC-Orbitrap-HRMS). Certified samples from two cultivars, Green stem water spinach (G) and White stem water spinach (W) cultivated using organic and conventional farming methods, were collected from the Hong Kong market. Multivariate analysis was used to differentiate water spinach of different cultivars and farming methods. We identified 12 metabolites to distinguish between G and W, 26 metabolites to identify G from organic farming and 8 metabolites to identify W from organic farming. Then, two metabolites, isorhamnetin and jasmonic acid, have been proposed to serve as biomarkers for organic farming (in both G and W). Our foodomics findings provide useful tools for improving the crop performance of water spinach under abiotic/biotic stressesand authentication of organic produce.
Collapse
Affiliation(s)
- Ka-Yi Man
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chi-On Chan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Siu-Wai Wan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kevin Wing Hin Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy.
| | - Nai-Ping Dong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China.
| | - Ka-Hing Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Daniel Kam-Wah Mok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Mohammadi M, Nezamdoost D, Khosravi Far F, Zulfiqar F, Eghlima G, Aghamir F. Exogenous putrescine application imparts salt stress-induced oxidative stress tolerance via regulating antioxidant activity, potassium uptake, and abscisic acid to gibberellin ratio in Zinnia flowers. BMC PLANT BIOLOGY 2024; 24:865. [PMID: 39285359 PMCID: PMC11403821 DOI: 10.1186/s12870-024-05560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
This research was conducted to investigate the efficacy of putrescine (PUT) treatment (0, 1, 2, and 4 mM) on improving morphophysiological and biochemical characteristics of Zinnia elegans "State Fair" flowers under salt stress (0, 50, and 100 mM NaCl). The experiment was designed in a factorial setting under completely randomized design with 4 replications. The results showed that by increasing the salt stress intensity, the stress index (SSI) increased while morphological traits such as plant height decreased. PUT treatments effectively recovered the decrease in plant height and flower quality compared to the not-treated plants. Treatment by PUT 2 mM under 50 and 100 mM salt stress levels reduced the SSI by 28 and 35%, respectively, and increased plant height by 20 and 27% compared to untreated plants (PUT 0 mM). 2 mM PUT treatment also had the greatest effect on increasing fresh and dry biomass, number and surface area of leaves, flower diameter, internodal length, leaf relative water content, protein contents, total chlorophyll contents, carotenoids, leaf potassium (K+) content, and K+/Na+ ratio in treated plants compared to untreated control plants. The treatment of 2 mM PUT decreased the electrolyte leakage, leaf sodium (Na+) content, H2O2, malondialdehyde, and proline content. Furthermore, PUT treatments increased the activity of defense-related enzymes including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonium lyase (PAL), and reduced the abscisic acid (ABA) content while increased the level of gibberellin (GA) content compared to untreated samples under all different levels of salinity stress. In this research, enhancing the plant's antioxidant system, increasing K+ absorption, K+/Na+ ratio, and reducing the ABA/GA ratio are likely the most important mechanisms of PUT treatment, which improved growth, and maintained the visual quality of zinnia flowers under salt stress conditions.
Collapse
Affiliation(s)
- Meisam Mohammadi
- Department of Horticulture, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Delaram Nezamdoost
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | | | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatame Aghamir
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
25
|
Orłowska R, Dynkowska WM, Niedziela A, Zebrowski J, Zimny J, Androsiuk P, Bednarek PT. β-glucans, SAM, and GSH fluctuations in barley anther tissue culture conditions affect regenerants' DNA methylation and GPRE. BMC PLANT BIOLOGY 2024; 24:853. [PMID: 39261760 PMCID: PMC11391688 DOI: 10.1186/s12870-024-05572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and β-glucan affect the ability of green plant regeneration efficiency (GPRE). RESULTS The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO4: 0.1; 5; 10 µM) and silver salts (AgNO3: 0; 10; 60 µM), with varying incubation times for the anthers (21, 28, and 35 days). Changes in DNA methylation were estimated using the DArTseqMet molecular marker method, which also detects cytosine methylation. Phenotype variability in β-glucans, SAM and GSH induced by the nutrient treatments was assessed using tentative assignments based on the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The effectiveness of green plant regeneration ranged from 0.1 to 2.91 plants per 100 plated anthers. The level of demethylation ranged from 7.61 to 32.29, while de novo methylation reached values ranging from 6.83 to 32.27. The paper demonstrates that the samples from specific in vitro conditions (trials) formed tight groups linked to the factors contributing to the two main components responsible for 55.05% of the variance (to the first component DNM, DM, to the second component GSH, β-glucans, Cu(II), GPRE). CONCLUSIONS We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Wioletta Monika Dynkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Agnieszka Niedziela
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, Al. Rejtana 16C, Rzeszow, 35-959, Poland
| | - Janusz Zimny
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-719, Poland
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870, Błonie, Poland.
| |
Collapse
|
26
|
Thakur M, Bhatt A, Sharma V, Mathur V. Interplay of heavy metal accumulation, physiological responses, and microbiome dynamics in lichens: insights and future directions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:926. [PMID: 39264410 DOI: 10.1007/s10661-024-13103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Lichens are increasingly recognised as valuable bioindicators for environmental heavy metal pollution due to their sensitivity to spatial and temporal variations in pollution levels and their ability to adapt to diverse and often harsh habitats. This review initially examines the mechanisms of metal absorption in lichens, including particulate entrapment, ion exchange, and intracellular absorption, as well as their physiological responses to abiotic stressors such as heavy metal exposure and desiccation. In the latter part, we compile and synthesise evidence showing that secondary metabolites in lichens are significantly influenced by metal concentrations, with varying impacts across different species. Although extensive research has addressed the broader physiological effects of heavy metal hyperaccumulation in lichens, there remains a significant gap in understanding the direct or indirect influences of heavy metals on the lichen microbiome, possibly mediated by changes in secondary metabolite production. Our review integrates these aspects to propose new research directions aimed at elucidating the mechanisms underlying physiological responses such as resilience and adaptability in lichens. Overall, this review highlights the dynamic interplay between microbiome composition, secondary metabolite variation, and metal accumulation, suggesting that these factors collectively contribute to the physiological responses of lichens in polluted environments.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Botany, South Campus, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula kuan, New Delhi, 110021, India
| | - Amit Bhatt
- Animal Plant Interaction Lab, Department of Zoology, South Campus, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021, India
| | - Vaibhav Sharma
- The Bacterial Ecology and Evolution Lab, Indian Institute of Science, Bengaluru, 560012, India
| | - Vartika Mathur
- Animal Plant Interaction Lab, Department of Zoology, South Campus, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
27
|
Arthur R, Jamwal S, Kumar P. A review on polyamines as promising next-generation neuroprotective and anti-aging therapy. Eur J Pharmacol 2024; 978:176804. [PMID: 38950837 DOI: 10.1016/j.ejphar.2024.176804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Neurodegenerative disorders are diseases characterized by progressive degeneration of neurons and associated structures and are a major global issue growing more widespread as the global population's average age increases. Despite several investigations on their etiology, the specific cause of these disorders remains unknown. However, there are few symptomatic therapies to treat these disorders. Polyamines (PAs) (putrescine, spermidine, and spermine) are being studied for their role in neuroprotection, aging and cognitive impairment. They are ubiquitous polycations which have relatively higher concentrations in the brain and possess pleiotropic biochemical activities, including regulation of gene expression, ion channels, mitochondria Ca2+ transport, autophagy induction, programmed cell death, and many more. Their cellular content is tightly regulated, and substantial evidence indicates that their altered levels and metabolism are strongly implicated in aging, stress, cognitive dysfunction, and neurodegenerative disorders. In addition, dietary polyamine supplementation has been reported to induce anti-aging effects, anti-oxidant effects, and improve locomotor abnormalities, and cognitive dysfunction. Thus, restoring the polyamine level is considered a promising pharmacological strategy to counteract neurodegeneration. This review highlights PAs' physiological role and the molecular mechanism underpinning their proposed neuroprotective effect in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
28
|
Álvarez-Rodríguez S, Senizza B, Araniti F, Lucini L, Lucchini G, Sánchez-Moreiras AM. Evaluating the effects of azelaic acid in the metabolism of Arabidopsis thaliana seedlings through untargeted metabolomics and ionomics approaches. PHYSIOLOGIA PLANTARUM 2024; 176:e14550. [PMID: 39327690 DOI: 10.1111/ppl.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
The present study demonstrates that low concentrations of azelaic acid (AZA) significantly impact the metabolism of Arabidopsis thaliana seedlings, leading to imbalances in numerous minerals and metabolites due to AZA-induced stress. Untargeted metabolomic analyses were conducted on untreated and AZA-treated seedlings at two time points: 7 and 14 days after treatment initiation. The results revealed a general accumulation of sugars (e.g., glucose, mannose, xylose), amino acids (e.g., lysine, GABA, threonine, glutamine), and organic acids (e.g., glutaric acid, shikimic acid, succinic acid) in AZA treated-seedlings, suggesting that AZA triggers stress responses in Arabidopsis. Ionomic analysis revealed that AZA induces phosphorus deficiency, which plants compensate by increasing malate content in the roots. Additionally, AZA treatment induced putrescine accumulation within the root, a metabolic biomarker of potassium deficiency and plant stress. The metabolomic profile showed elevated levels of different specialized metabolites, such as nitrogen- and sulphur-containing compounds, and altered levels of various phytohormones, including jasmonates and brassinosteroids, implicated in plant protection under biotic and/or abiotic stresses. These findings support the hypothesis that AZA's mode of action is associated with an auxin imbalance, suggesting its function as an auxinic herbicide. The observed increases in starch and jasmonates, coupled with the disruptions in potassium homeostasis, are linked to the previously reported alterations in the auxin transport, root architecture and gravitropic root response. Statistical analyses were applied, including Kruskal-Wallis tests for ionomic data, as well as multifactor analysis, Principal Component Analysis, Orthogonal Partial Least Squares-Discriminant Analysis, and enrichment pathway analysis for metabolomic data, ensuring the robustness and validity of these findings.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | - Biancamaria Senizza
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgio Lucchini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| |
Collapse
|
29
|
Ziemmer JK, Dos Reis de Oliveira T, Santa-Catarina C, do Nascimento Vieira L, Goldenberg R, Pacheco de Freitas Fraga H. Plant regeneration capacity in seeds of three species of Miconia (Melastomataceae) may be related to endogenous polyamine profiles. PROTOPLASMA 2024; 261:937-950. [PMID: 38530427 DOI: 10.1007/s00709-024-01945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
In plant tissue culture, differences in endogenous levels of species-specific plant growth regulators (PGRs) may explain differences in regenerative capacity. In the case of polyamines (PAs), their dynamics and distribution may vary between species, genotypes, tissues, and developmental pathways, such as sexual reproduction and apomixis. In this study, for the first time, we aimed to assess the impact of varying endogenous PAs levels in seeds from distinct reproductive modes in Miconia spp. (Melastomataceae), on their in vitro regenerative capacity. We quantified the free PAs endogenous content in seeds of Miconia australis (obligate apomictic), Miconia hyemalis (facultative apomictic), and Miconia sellowiana (sexual) and evaluated their in vitro regenerative potential in WPM culture medium supplemented with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The morphogenic responses were characterized by light microscopy and scanning electron microscopy and discussed regarding the endogenous PAs profiles found. Seeds of M. sellowiana presented approximately eight times more putrescine than M. australis, which was associated with a higher percentage of regenerated calluses (76.67%) than M. australis (5.56%). On the other hand, spermine levels were significantly higher in M. australis. Spermine is indicated as an inhibitor of auxin-carrying gene expression, which may have contributed to its lower regenerative capacity under the tested conditions. These findings provide important insights into in vitro morphogenesis mechanisms in Miconia and highlight the significance of endogenous PA levels in plant regeneration. These discoveries can potentially optimize future regeneration protocols in Miconia, a plant group still underexplored in this area.
Collapse
Affiliation(s)
- Juliana Klostermann Ziemmer
- Programa de Pós-Graduação em Biologia Vegetal, Campinas, Universidade Estadual de Campinas, São Paulo, 13083-862, Brazil.
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | | | - Renato Goldenberg
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, 81531-970, Brazil
| | | |
Collapse
|
30
|
Mohamed MHM, Ali MME, Zewail RMY, Liava V, Petropoulos SA. Response of Purslane Plants Grown under Salinity Stress and Biostimulant Formulations. PLANTS (BASEL, SWITZERLAND) 2024; 13:2431. [PMID: 39273915 PMCID: PMC11397487 DOI: 10.3390/plants13172431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Purslane has been suggested as an alternative crop suitable for human consumption due to its high content of minerals, omega-3 fatty acids, and several health-beneficial compounds. In this study, we aimed to evaluate the effect of salinity stress (tap water (control), 2000, 4000, 6000, 8000, and 10,000 mg L-1), biostimulant application (putrescine and salicylic acid at 200 mg L-1), and the combination of the tested factors (i.e., salinity × biostimulant application) on the growth and chemical composition of purslane plants (Portulaca oleracea L.) over two growing seasons (2022 and 2023). Irrigation with tap water and putrescine application resulted in the highest plant height, weight of aboveground and underground parts, and number of shoots per plant. In contrast, the lowest values of growing parameters were recorded under severe saline stress (10,000 mg L-1), especially for the plants that were not treated with biostimulants. The same trends were observed for macronutrients (N, P, K), total carbohydrates, total chlorophylls, and vitamin C content in leaves. Moreover, nitrate and proline content was higher in plants grown under salinity stress, especially under severe stress (8000-10,000 mg L-1) without biostimulant application. In general, the application of biostimulants mitigated the negative impact of salinity on plant growth and leaf chemical composition, while the effect of putrescine on the tested parameters was more beneficial than that of salicylic acid. In conclusion, this study provides useful information regarding the use of putrescine and salicylic acid as biostimulatory agents with the aim of increasing purslane growth under salinity conditions.
Collapse
Affiliation(s)
- Mostafa H M Mohamed
- Department of Horticulture, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Maha Mohamed Elsayed Ali
- Department of Soil and Water Sciences, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Reda M Y Zewail
- Botany Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt
| | - Vasiliki Liava
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Spyridon A Petropoulos
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| |
Collapse
|
31
|
Li S, Liu Y, Kang Y, Liu W, Wang W, Wang Z, Xia X, Chen X, Wang C, He X. Spermidine Improves Freezing Tolerance by Regulating H 2O 2 in Brassica napus L. Antioxidants (Basel) 2024; 13:1032. [PMID: 39334691 PMCID: PMC11428980 DOI: 10.3390/antiox13091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Low temperature is a common abiotic stress that causes significant damage to crop production. Polyamines (PAs) are a class of aliphatic amine compounds that serve as regulatory molecules involved in plant growth, development, and response to abiotic and biotic stresses. In this study, we found that the exogenous application of two concentrations of spermidine (Spd) significantly enhanced the freezing tolerance of three differently matured rapeseed (Brassica napus L.) varieties, as manifested by higher survival rates, lower freezing injury indexes, and reduced H2O2 content. RNA-seq and qRT-PCR analyses showed that Spd enhanced the freezing tolerance of rapeseed by regulating genes related to the PA metabolic pathway and antioxidant mechanism, and generally inhibited the expression of genes related to the JA signaling pathway. This study provides a reference basis for understanding the functionality and molecular mechanisms of polyamines in the response of rapeseed to freezing stress.
Collapse
Affiliation(s)
- Shun Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yu Kang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Wei Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Weiping Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyan Xia
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chen Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xin He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
32
|
Islam SNU, Kouser S, Hassan P, Asgher M, Shah AA, Khan NA. Gamma-aminobutyric acid interactions with phytohormones and its role in modulating abiotic and biotic stress in plants. STRESS BIOLOGY 2024; 4:36. [PMID: 39158750 PMCID: PMC11333426 DOI: 10.1007/s44154-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Kouser
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Parveena Hassan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| | - Ali Asghar Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
33
|
Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, Moura SM, Oliveira AC, Morgante CV, Qi Y, Fatima Grossi-de-Sa M. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res 2024:S2090-1232(24)00367-9. [PMID: 39163906 DOI: 10.1016/j.jare.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
Collapse
Affiliation(s)
- Nayara Sabrina Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabiano T P K Távora
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Stéfanie M Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Embrapa Semi-Arid, Petrolina, PE, Brazil
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, MS, Brazil.
| |
Collapse
|
34
|
Permana BH, Krobthong S, Yingchutrakul Y, Thiravetyan P, Treesubsuntorn C. Sansevieria trifasciata's specific metabolite improves tolerance and efficiency for particulate matter and volatile organic compound removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124199. [PMID: 38788990 DOI: 10.1016/j.envpol.2024.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOCs), but the ability is affected by plant health. Lately, the priming technique was a simple approach to studying improving plant tolerance against abiotic stress by specific metabolites that accumulated, known as "memory", but the mechanism underlying this mechanism and how long this "memory" was retained in the plant was a lack of study. Sansevieria trifasciata was primed for one week for PM and VOC stress to improve plant efficiency on PM and VOC. After that, the plant was recovered for two- or five-weeks, then re-exposed to the same stress with similar PM and VOC concentrations from cigarette smoke. Primed S. trifasciata showed improved removal of PMs entirely within 2 h and VOC within 24 h. The primed plant can maintain a malondialdehyde (MDA) level and retain the "memory" for two weeks. Metabolomics analysis showed that an ornithine-related compound was accumulated as a responsive metabolite under exposure to PM and VOC stress. Exogenous ornithine can maintain plant efficiency and prevent stress by increasing proline and antioxidant enzymes. This study is the first to demonstrate plant "memory" mechanisms under PM and VOC stress.
Collapse
Affiliation(s)
- Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Pathum Thani, 12120, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
35
|
Kang Y, Li CZ, Ullah A, Zhang Q, Yu XZ. The Accumulation of Abscisic Acid Increases the Innate Pool of Soluble Phenolics through Polyamine Metabolism in Rice Seedlings under Hexavalent Chromium Stress. TOXICS 2024; 12:577. [PMID: 39195679 PMCID: PMC11359078 DOI: 10.3390/toxics12080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Potential toxic element (PTE) pollution has emerged as a significant environmental and social concern in global agriculture. Chromium (Cr) occurs in different oxidation states naturally, among them Cr(VI), which is highly toxic. This study carried out biochemical and molecular tests to elucidate the accumulation of total soluble phenolics (TSPs) in rice plants exposed to Cr(VI) at 2.0, 8.0, and 16.0 mg Cr/L, emphasizing the interaction between polyamines (PAs) and abscisic acid (ABA). The results revealed significant Cr accumulation in different tissues of rice plants, which hindered their growth. Cr(VI) exposure increased the ABA concentration, with higher levels detected in the shoots than in the roots. The TSP concentration in rice tissues showed a positive relationship with the supplied concentrations of Cr(VI). The measured PAs, including spermine (Spm), putrescine (Put), and spermidine (Spd), exhibited varied responses to Cr(VI) stress, with only Spm concentration increasing with Cr(VI) concentrations. Real-time qRT-PCR showed PAs and ABA synthesis-associated genes such as OsADC1, OsAIH, OsCPA1, and OsCPA4 were significantly up-regulated in shoot of rice plants treated with Cr(VI). These genes are associated with the second pathway of Put synthesis, originating from Arg. Almost all genes activated in the Met pathway were significantly up-regulated as well. Moreover, the genes involved in the interconversion among the three species of PAs exhibited completely different responses to Cr(VI) exposure. Overall, the biochemical analysis and gene expression data indicate that the interaction between ABA and Spm is likely to enhance the TSP levels in rice plants subjected to Cr(VI) toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China; (Y.K.); (C.-Z.L.); (A.U.); (Q.Z.)
| |
Collapse
|
36
|
Burke R, Nicotra D, Phelan J, Downey F, McCabe PF, Kacprzyk J. Spermine and spermidine inhibit or induce programmed cell death in Arabidopsis thaliana in vitro and in vivo in a dose-dependent manner. FEBS J 2024; 291:3665-3685. [PMID: 38808914 DOI: 10.1111/febs.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Daniele Nicotra
- School of Biology and Environmental Science, University College Dublin, Ireland
- Department of Agriculture, Food and Environment, University of Catania, Italy
| | - Jim Phelan
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Frances Downey
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
37
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
38
|
Zhou T, Zhang L, Wu P, Feng Y, Hua Y. Salicylic Acid Is Involved in the Growth Inhibition Caused by Excessive Ammonium in Oilseed Rape ( Brassica napus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14419-14432. [PMID: 38869198 DOI: 10.1021/acs.jafc.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rapeseed (Brassica napus L.) is extremely sensitive to excessive NH4+ toxicity. There remains incomplete knowledge of the causal factors behind the growth suppression in NH4+-nourished plants, with limited studies conducted specifically on field crop plants. In this study, we found that NH4+ toxicity significantly increased salicylic acid (SA) accumulation by accelerating the conversion of SA precursors. Moreover, exogenous SA application significantly aggravated NH4+ toxicity symptoms in the rapeseed shoots. Genome-wide differential transcriptomic analysis showed that NH4+ toxicity increased the expression of genes involved in the biosynthesis, transport, signaling transduction, and conversion of SA. SA treatment significantly increased shoot NH4+ concentrations by reducing the activities of glutamine synthase and glutamate synthase in NH4+-treated rapeseed plants. The application of an SA biosynthesis inhibitor, ABT, alleviated NH4+ toxicity symptoms. Furthermore, SA induced putrescine (Put) accumulation, resulting in an elevated ratio of Put to [spermidine (Spd) + spermine (Spm)] in the NH4+-treated plants, while the opposite was true for ABT. The application of exogenous Put and its biosynthesis inhibitor DFMA induced opposite effects on NH4+ toxicity in rapeseed shoots. These results indicated that the increased endogenous SA contributed noticeably to the toxicity caused by the sole NH4+-N supply in rapeseed shoots. This study provided fresh perspectives on the mechanism underlying excessive NH4+-induced toxicity and the corresponding alleviating strategies in plants.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Lu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Pengjia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Yingna Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| |
Collapse
|
39
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Kovács GP, Tóth Z. Emerging Trends in Non-Protein Amino Acids as Potential Priming Agents: Implications for Stress Management Strategies and Unveiling Their Regulatory Functions. Int J Mol Sci 2024; 25:6203. [PMID: 38892391 PMCID: PMC11172521 DOI: 10.3390/ijms25116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Plants endure the repercussions of environmental stress. As the advancement of global climate change continues, it is increasingly crucial to protect against abiotic and biotic stress effects. Some naturally occurring plant compounds can be used effectively to protect the plants. By externally applying priming compounds, plants can be prompted to trigger their defensive mechanisms, resulting in improved immune system effectiveness. This review article examines the possibilities of utilizing exogenous alpha-, beta-, and gamma-aminobutyric acid (AABA, BABA, and GABA), which are non-protein amino acids (NPAAs) that are produced naturally in plants during instances of stress. The article additionally presents a concise overview of the studies' discoveries on this topic, assesses the particular fields in which they might be implemented, and proposes new avenues for future investigation.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| |
Collapse
|
40
|
Tian J, Zhang F, Zhang G, Li X, Wen C, Li H. A long noncoding RNA functions in pumpkin fruit development through S-adenosyl-L-methionine synthetase. PLANT PHYSIOLOGY 2024; 195:940-957. [PMID: 38417836 PMCID: PMC11142375 DOI: 10.1093/plphys/kiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in various biological processes. However, the regulatory roles of lncRNAs underlying fruit development have not been extensively studied. The pumpkin (Cucurbita spp.) is a preferred model for understanding the molecular mechanisms regulating fruit development because of its variable shape and size and large inferior ovary. Here, we performed strand-specific transcriptome sequencing on pumpkin (Cucurbita maxima "Rimu") fruits at 6 developmental stages and identified 5,425 reliably expressed lncRNAs. Among the 332 lncRNAs that were differentially expressed during fruit development, the lncRNA MSTRG.44863.1 was identified as a negative regulator of pumpkin fruit development. MSTRG.44863.1 showed a relatively high expression level and an obvious period-specific expression pattern. Transient overexpression and silencing of MSTRG.44863.1 significantly increased and decreased the content of 1-aminocyclopropane carboxylic acid (a precursor of ethylene) and ethylene production, respectively. RNA pull-down and microscale thermophoresis assays further revealed that MSTRG.44863.1 can interact with S-adenosyl-L-methionine synthetase (SAMS), an enzyme in the ethylene synthesis pathway. Considering that ethylene negatively regulates fruit development, these results indicate that MSTRG.44863.1 plays an important role in the regulation of pumpkin fruit development, possibly through interacting with SAMS and affecting ethylene synthesis. Overall, our findings provide a rich resource for further study of fruit-related lncRNAs while offering insights into the regulation of fruit development in plants.
Collapse
Affiliation(s)
- Jiaxing Tian
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoyu Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaojie Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haizhen Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
41
|
Rahman A, Kulik E, Majláth I, Khan I, Janda T, Pál M. Different reactions of wheat, maize, and rice plants to putrescine treatment. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:807-822. [PMID: 38846465 PMCID: PMC11150351 DOI: 10.1007/s12298-024-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Polyamines play an important role in growth and differentiation by regulating numerous physiological and biochemical processes at the cellular level. In addition to their roborative effect, their essential role in plant stress responses has been also reported. However, the positive effect may depend on the fine-tuning of polyamine metabolism, which influences the production of free radicals and/or signalling molecules. In the present study, 0.3 mM hydroponic putrescine treatment was tested in wheat, maize, and rice in order to reveal differences in their answers and highlight the relation of these with polyamine metabolism. In the case of wheat, the chlorophyll content and the actual quantum yield increased after putrescine treatment, and no remarkable changes were detected in the stress markers, polyamine contents, or polyamine metabolism-related gene expression. Although, in maize, the actual quantum yield decreased, and the root hydrogen peroxide content increased, no other negative effect was observed after putrescine treatment due to activation of polyamine oxidases at enzyme and gene expression levels. The results also demonstrated that after putrescine treatment, rice with a higher initial polyamine content, the balance of polyamine metabolism was disrupted and a significant amount of putrescine was accumulated, accompanied by a detrimental decrease in the level of higher polyamines. These initial differences and the putrescine-induced shift in polyamine metabolism together with the terminal catabolism or back-conversion-induced release of a substantial quantity of hydrogen peroxide could contribute to oxidative stress observed in rice.
Collapse
Affiliation(s)
- Altafur Rahman
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | | | - Imre Majláth
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Imran Khan
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Magda Pál
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| |
Collapse
|
42
|
Hunziker S, Nazarova T, Kather M, Hartmann M, Brunner I, Schaub M, Rigling A, Hug C, Schönbeck L, Bose AK, Kammerer B, Gessler A. The metabolic fingerprint of Scots pine-root and needle metabolites show different patterns in dying trees. TREE PHYSIOLOGY 2024; 44:tpae036. [PMID: 38526975 PMCID: PMC11056600 DOI: 10.1093/treephys/tpae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia. So far, changes in metabolic pathways and metabolite profiles in needles and roots on the trajectory toward mortality are unknown, although they could contribute to a better understanding of the mortality mechanisms. Therefore, we linked long-term observations of canopy defoliation and tree mortality with the characterization of the primary metabolite profile in needles and fine roots of Scots pines from a forest site in the Swiss Rhone valley. Our results show that Scots pines are able to maintain metabolic homeostasis in needles over a wide range of canopy defoliation levels. However, there is a metabolic tipping point at around 80-85% needle loss. Above this threshold, many stress-related metabolites (particularly osmoprotectants, defense compounds and antioxidants) increase in the needles, whereas they decrease in the fine roots. If this defoliation tipping point is exceeded, the trees are very likely to die within a few years. The different patterns between needles and roots indicate that mainly belowground carbon starvation impairs key functions for tree survival and suggest that this is an important factor explaining the increasing mortality of Scots pines.
Collapse
Affiliation(s)
- Stefan Hunziker
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Tatiana Nazarova
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Michel Kather
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg 79014, Germany
| | - Martin Hartmann
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| | - Christian Hug
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
| | - Leonie Schönbeck
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Botany and Plant Sciences, University of California, Riverside, CA 9252, USA
| | - Arun K Bose
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg 79014, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
43
|
Cao L, Wang G, Ye X, Li F, Wang S, Li H, Wang P, Wang J. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi ( Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment. Int J Mol Sci 2024; 25:3965. [PMID: 38612774 PMCID: PMC11012067 DOI: 10.3390/ijms25073965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.
Collapse
Affiliation(s)
- Ludan Cao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Guo Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Xiuxu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Fang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Shujun Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Huanling Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
| | - Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Jiabao Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (G.W.); (F.L.); (S.W.); (H.L.)
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| |
Collapse
|
44
|
Cao P, Yang J, Xia L, Zhang Z, Wu Z, Hao Y, Liu P, Wang C, Li C, Yang J, Lai J, Li X, Deng M, Wang S. Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato. MOLECULAR PLANT 2024; 17:579-597. [PMID: 38327054 DOI: 10.1016/j.molp.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.
Collapse
Affiliation(s)
- Peng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China
| | - Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| | - Linghao Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zeyong Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Yingchen Hao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Penghui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jie Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jun Lai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Xianggui Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Meng Deng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| |
Collapse
|
45
|
Pilgrim J. Comparative genomics of a novel Erwinia species associated with the Highland midge ( Culicoides impunctatus). Microb Genom 2024; 10. [PMID: 38630610 DOI: 10.1099/mgen.0.001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Makihara Y, Maeda B, Akiyoshi R, Tanaka D, Murakami K. Functionalized Polyamine Synthesis with Photoredox Catalysis. Chemistry 2024; 30:e202304374. [PMID: 38267374 DOI: 10.1002/chem.202304374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Polyamines, such as putrescine and spermidine, are pivotal in various biological processes across living organisms. Despite their significance, structurally modified polyamines offer a less-explored avenue for discovering bioactive compounds. The limitation is attributed to the synthetic difficulty of accessing functionalized polyamines. In this study, we accomplished photoredox-catalyzed functionalization of polyamines to diversify their structure. The rapid functionalization allows attaching fluorophores to the target polyamine, facilitating the development of molecular probes for advancing chemical biology studies.
Collapse
Affiliation(s)
- Yuta Makihara
- Department of Chemistry, School of Science, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo, 669-1330, Japan
| | - Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo, 669-1330, Japan
| | - Ryohei Akiyoshi
- Department of Chemistry, School of Science, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo, 669-1330, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo, 669-1330, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo, 669-1330, Japan
- JST-PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
47
|
Manhone PR, Lopes JC, Alexandre RS, Lima PAM, Lopes SO, Mengarda LHG, Mello T. Plant growth regulators and mobilization of reserves in imbibition phases of yellow passion fruit. BRAZ J BIOL 2024; 84:e273999. [PMID: 38451628 DOI: 10.1590/1519-6984.273999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/16/2024] [Indexed: 03/08/2024] Open
Abstract
The production of seedlings of the passion fruit tree, usually, is sexual, and the seeds are not uniform in the seedling emergence, and soaking treatments of seeds can provide faster and more uniform germination. It was aimed to study the action of plant growth regulators and the mobilization of reserves in the stages of soaking of yellow passion fruit seeds. The seeds were soaked for five hours in solutions containing plant growth regulators, in a completely randomized design, in a factorial 8 x 4, with four replications. The first factor corresponds to eight plant growth regulators: T1 - distilled water (control); T2 - 6-benzylaminepurine 500 mg L-1; T3 - 4-(3-indolyl) butyric acid 500 mg L-1; T4 - gibberellic acid 500 mg L-1; T5 - spermine 250 mg L-1; T6 - spermine 750 mg L-1; T7 - spermidine 750 mg L-1; T8 - spermidine 1250 mg L-1; and the second factor, to the four soaking times: zero, four, 72 and 120 hours, corresponding, respectively, to the dry seed, and to phases I, II, and III of the imbibition curve. It was evaluated the biochemical composition of seeds (lipids, soluble sugars and starch). The seeds showed accumulation of lipids in phase III; the content of soluble sugars increased in phase I and decreased in phase II. The starch content increased until the phase II and decreased in phase III. Starch is the main reserve in the seeds and the main source of energy used in phase III; soaking the seeds in polyamines generates an accumulation of lipids in the seeds and soaking in plant growth regulators increases the burning of starch.
Collapse
Affiliation(s)
- P R Manhone
- Universidade Federal do Espírito Santo - UFES, Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Alegre, ES, Brasil
| | - J C Lopes
- Universidade Federal do Espírito Santo - UFES, Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Alegre, ES, Brasil
| | - R S Alexandre
- Universidade Federal do Espírito Santo - UFES, Centro de Ciências Agrárias e Engenharias, Departamento de Ciências Florestais e da Madeira, Jerônimo Monteiro, ES, Brasil
| | - P A M Lima
- Universidade Federal do Espírito Santo - UFES, Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Alegre, ES, Brasil
| | - S O Lopes
- Universidade Federal do Espírito Santo - UFES, Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Alegre, ES, Brasil
| | - L H G Mengarda
- Universidade Federal do Espírito Santo - UFES, Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Alegre, ES, Brasil
| | - T Mello
- Universidade Federal do Espírito Santo - UFES, Centro de Ciências Agrárias e Engenharias, Departamento de Ciências Florestais e da Madeira, Jerônimo Monteiro, ES, Brasil
| |
Collapse
|
48
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
49
|
Nouraei S, Mia MS, Liu H, Turner NC, Khan JM, Yan G. Proteomic analysis of near-isogenic lines reveals key biomarkers on wheat chromosome 4B conferring drought tolerance. THE PLANT GENOME 2024; 17:e20343. [PMID: 37199103 DOI: 10.1002/tpg2.20343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Drought is a major constraint for wheat production that is receiving increased attention due to global climate change. This study conducted isobaric tags for relative and absolute quantitation proteomic analysis on near-isogenic lines to shed light on the underlying mechanism of qDSI.4B.1 quantitative trait loci (QTL) on the short arm of chromosome 4B conferring drought tolerance in wheat. Comparing tolerant with susceptible isolines, 41 differentially expressed proteins were identified to be responsible for drought tolerance with a p-value of < 0.05 and fold change >1.3 or <0.7. These proteins were mainly enriched in hydrogen peroxide metabolic activity, reactive oxygen species metabolic activity, photosynthetic activity, intracellular protein transport, cellular macromolecule localization, and response to oxidative stress. Prediction of protein interactions and pathways analysis revealed the interaction between transcription, translation, protein export, photosynthesis, and carbohydrate metabolism as the most important pathways responsible for drought tolerance. The five proteins, including 30S ribosomal protein S15, SRP54 domain-containing protein, auxin-repressed protein, serine hydroxymethyltransferase, and an uncharacterized protein with encoding genes on 4BS, were suggested as candidate proteins responsible for drought tolerance in qDSI.4B.1 QTL. The gene coding SRP54 protein was also one of the differentially expressed genes in our previous transcriptomic study.
Collapse
Affiliation(s)
- Sina Nouraei
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Md Sultan Mia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Neil C Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Javed M Khan
- Proteomics International, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
50
|
Deng H, Hou Q, Wen Z, Yu R, Cao X, Shang C, Cai X, Qiao G. Chinese cherry CpMYB44-CpSPDS2 module regulates spermidine content and florescence in tobacco. PHYSIOLOGIA PLANTARUM 2024; 176:e14300. [PMID: 38629194 DOI: 10.1111/ppl.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
The flower bud differentiation plays a crucial role in cherry yield and quality. In a preliminary study, we revealed the promotion of spermidine (Spd) in bud differentiation and quality. However, the molecular mechanism underlying Spd regulating cherry bud differentiation remains unclear. To address this research gap, we cloned CpSPDS2, a gene that encodes Spd synthase and is highly expressed in whole flowers and pistils of the Chinese cherry (cv. 'Manaohong'). Furthermore, an overexpression vector with this gene was constructed to transform tobacco plants. The findings demonstrated that transgenic lines exhibited higher Spd content, an earlier flowering time by 6 d, and more lateral buds and flowers than wild-type lines. Additionally, yeast one-hybrid assays and two-luciferase experiments confirmed that the R2R3-MYB transcription factor (CpMYB44) directly binds to and activates the CpSPDS2 promoter transcription. It is indicated that CpMYB44 promotes Spd accumulation via regulating CpSPDS2 expression, thus accelerating the flower growth. This research provides a basis for resolving the molecular mechanism of CpSPDS2 involved in cherry bud differentiation.
Collapse
Affiliation(s)
- Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Xuejiao Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Chunqiong Shang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agricultural Bioengineering, Institute of Agro-bioengineering /College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|