1
|
Moreno-Pérez A, Martínez-Ferri E, van den Berg N, Pliego C. Effects of Exogenous Application of Methyl Jasmonate and Salicylic Acid on the Physiological and Molecular Response of 'Dusa' Avocado to Rosellinia necatrix. PLANT DISEASE 2024; 108:2111-2121. [PMID: 38530233 DOI: 10.1094/pdis-11-23-2316-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Methyl jasmonate (MeJA) and salicylic acid (SA) are important in mediating plant responses to abiotic and biotic stresses. MeJA and SA can act as elicitors by triggering plant defense responses similar to those induced by pathogens and may even provide long-term protection against them. Thus, exogenous application of MeJA and SA could protect susceptible avocado plants against white root rot (WRR) disease caused by the necrotrophic fungus Rosellinia necatrix, one of the main diseases affecting avocado orchards. This work evaluates the effects of MeJA or SA on the physiological and molecular response of susceptible 'Dusa' avocado rootstock and their ability to provide some protection against WRR. The application of MeJA and SA in avocado increased photoprotective mechanisms (nonphotochemical chlorophyll fluorescence quenching) and upregulated the glutathione S-transferase, suggesting the triggering of mechanisms closely related to oxidative stress relief and reactive oxygen species scavenging. In contrast to SA, MeJA's effects were more pronounced at the morphoanatomical level, including functional traits such as high leaf mass area, high stomatal density, and high root/shoot ratio, closely related to strategies to cope with water scarcity and WRR disease. Moreover, MeJA upregulated a greater number of defense-related genes than SA, including a glu protease inhibitor, a key gene in avocado defense against R. necatrix. The overall effects of MeJA increased 'Dusa' avocado tolerance to R. necatrix by inducing a primed state that delayed WRR disease symptoms. These findings point toward the use of MeJA application as an environmentally friendly strategy to mitigate the impact of this disease on susceptible avocado orchards.
Collapse
Affiliation(s)
- Ana Moreno-Pérez
- Department of Genomics and Biotechnology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
- Department of Crop Ecophysiology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
- Program of Advanced Biotechnology, Faculty of Science, Campus de Teatinos s/n, University of Málaga, 29071 Churriana, Málaga, Spain
| | - Elsa Martínez-Ferri
- Department of Crop Ecophysiology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0002 Pretoria, South Africa
| | - Clara Pliego
- Department of Genomics and Biotechnology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain
| |
Collapse
|
2
|
Sharma P, Rathee S, Ahmad M, Siddiqui MH, Alamri S, Kaur S, Kohli RK, Singh HP, Batish DR. Leaf functional traits and resource use strategies facilitate the spread of invasive plant Parthenium hysterophorus across an elevational gradient in western Himalayas. BMC PLANT BIOLOGY 2024; 24:234. [PMID: 38561674 PMCID: PMC10985864 DOI: 10.1186/s12870-024-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Ravinder K Kohli
- Amity University, Sector 82A, IT City, International Airport Road, Mohali, 140 306, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
3
|
Everingham SE, Offord CA, Sabot MEB, Moles AT. Leaf morphological traits show greater responses to changes in climate than leaf physiological traits and gas exchange variables. Ecol Evol 2024; 14:e10941. [PMID: 38510539 PMCID: PMC10951557 DOI: 10.1002/ece3.10941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 03/22/2024] Open
Abstract
Adaptation to changing conditions is one of the strategies plants may use to survive in the face of climate change. We aimed to determine whether plants' leaf morphological and physiological traits/gas exchange variables have changed in response to recent, anthropogenic climate change. We grew seedlings from resurrected historic seeds from ex-situ seed banks and paired modern seeds in a common-garden experiment. Species pairs were collected from regions that had undergone differing levels of climate change using an emerging framework-Climate Contrast Resurrection Ecology, allowing us to hypothesise that regions with greater changes in climate (including temperature, precipitation, climate variability and climatic extremes) would be greater trait responses in leaf morphology and physiology over time. Our study found that in regions where there were greater changes in climate, there were greater changes in average leaf area, leaf margin complexity, leaf thickness and leaf intrinsic water use efficiency. Changes in leaf roundness, photosynthetic rate, stomatal density and the leaf economic strategy of our species were not correlated with changes in climate. Our results show that leaves do have the ability to respond to changes in climate, however, there are greater inherited responses in morphological leaf traits than in physiological traits/variables and greater responses to extreme measures of climate than gradual changes in climatic means. It is vital for accurate predictions of species' responses to impending climate change to ensure that future climate change ecology studies utilise knowledge about the difference in both leaf trait and gas exchange responses and the climate variables that they respond to.
Collapse
Affiliation(s)
- Susan E. Everingham
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSWSydneyNew South WalesAustralia
- The Australian Institute of Botanical Science, The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden Mount AnnanMount AnnanNew South WalesAustralia
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Catherine A. Offord
- The Australian Institute of Botanical Science, The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden Mount AnnanMount AnnanNew South WalesAustralia
| | - Manon E. B. Sabot
- Climate Change Research CentreUNSWSydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Climate ExtremesUNSWSydneyNew South WalesAustralia
| | - Angela T. Moles
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSWSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Gong H, Yang M, Wang C, Tian C. Leaf phenotypic variation and its response to environmental factors in natural populations of Eucommia ulmoides. BMC PLANT BIOLOGY 2023; 23:562. [PMID: 37964219 PMCID: PMC10647038 DOI: 10.1186/s12870-023-04583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Eucommia ulmoides leaves have high medicinal and economic value as a dual-purpose substance for medicine and food. Employing leaves from 13 natural populations of Eucommia ulmoides as research objects, this study reveals the variation patterns of intra-specific and inter-specific trait variation and explores the response of leaf characteristics to geographical and climatic changes, aiming to provide a scientific basis for the efficient utilization of leaf resources and the breeding of superior varieties. RESULTS Descriptive statistical analysis and nested analysis of variance showed significant differences in 11 leaf traits of Eucommia ulmoides inter-populations and intra-populations, with an average coefficient of variation of 17.45%. The coefficient of variation for average leaf phenotypic traits is 20.77%, and the leaf phenotypic variation is mainly from the variation intra-populations. Principal component analysis reveals that the cumulative contribution rate of the top three principal components which mainly contributed to the phenotypic variation of Eucommia ulmoides leaves reached 74.98%, which could be sorted into size traits (34.57%), color traits (25.82%) and shape traits (14.58%). In addition, correlation analysis expresses there is a specific co-variation pattern among leaf traits, with a strong connection between shape, size, and color traits. Geographic and climatic distances are significantly correlated, and mantel test and correlation analysis indicate that leaf traits of Eucommia ulmoides are mainly influenced by altitude. With the increase of altitude, the leaves become smaller. Partial correlation analysis shows that after controlling climate factors, the correlation between some characters and geographical factors disappears significantly. Temperature and precipitation have a great influence on the variation of leaf phenotypic traits, and the larger the leaves are in areas with high temperature and heavy rainfall. CONCLUSIONS These findings contribute to a further understanding of the leaf morphological characteristics of Eucommia ulmoides and the extent to which the environment influences leaf trait variation. They can provide a scientific basis for the protection and application of Eucommia ulmoides leaf resources in the future.
Collapse
Affiliation(s)
- Huimin Gong
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Min Yang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Chaochun Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China
| | - Chunlian Tian
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China.
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China.
| |
Collapse
|
5
|
Byambadorj SO, Hernandez JO, Lkhagvasuren S, Erma G, Sharavdorj K, Park BB, Nyam-Osor B. Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types. PeerJ 2023; 11:e16107. [PMID: 37790615 PMCID: PMC10544310 DOI: 10.7717/peerj.16107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Background The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. Consequently, we conducted a study to examine how the fast-growing tree species Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) respond morpho-physiologically to varying watering regimes and types of fertilizers, aiming to better understand their specific water and nutrient requirements. Methods We used two-year-old nursery-growth seedlings (N = 512) of P. sibirica and U. pumila with initial root collar diameter (RCD) and the height of 0.51 ± 0.02 mm and 68 ± 2.94 cm and 0.33 ± 0.01 mm and 51 ± 1.14 cm, respectively. The leaf area (LA), specific leaf area (SLA), chlorophyll concentration, stomatal conductance (gs), chlorophyll fluorescence, and predawn and midday leaf water potential were measured across treatments. Four different irrigation regimes and two different fertilizer types were applied: no irrigation (control, 0 L h-1), 2 L h-1 = 0.25 mm m-2, 4 L h-1 = 0.5 mm m-2, 8 L h-1 = 1.0 mm m-2 and 120 g and 500 g tree-1 of NPK and compost (COMP). Twelve plots (600 m2) were established in the study site for each species and treatments. Results During the first growing season (2021), the LA of P. sibirica was larger in the 4-8 L h-1 without fertilizer, but it was smaller in the 4 L h-1+ COMP during the second growing season (2022). The 2 L h-1 without fertilizer and 2 L h-1 + NPK had larger LA compared with the control (CONT) for the first and second growing seasons, respectively, for U. pumila. P. sibirica seedlings at 4 L h-1 without fertilizer had the highest SLA for 2021 and at 2 L h-1 + NPK for 2022, whereas CONT and 4 L h-1 had the highest SLA than the other treatments for 2021 and 2022 growing seasons, respectively, for U. pumila. The chlorophyll concentration of P. sibirica seedlings in the first year was generally higher in CONT, while the 2 L h-1 without any fertilizer yielded a significantly higher chlorophyll concentration of U. pumila. Chlorophyll fluorescence parameters (PIABS and Fm) were generally lower in CONT with/without NPK or COMP for both species. The CONT with NPK/COMP generally had a higher gs compared with the other treatments in both experimental periods for U. pumila, whereas CONT and 2 L h-1+ NPK-treated P. sibirica seedlings had a significantly greater gs during the first year and second year, respectively. The predawn and midday leaf water potentials of both species were generally the lowest in CONT, followed by 2 L h-1+ NPK/COMP during the first growing season, but a different pattern was observed during the second growing season. Overall, the morpho-physiological traits of the two species were affected by watering and fertilizer treatments, and the magnitude of the effects varied depending on growing season, amount of irrigation, and fertilizer type, and their interactions.
Collapse
Affiliation(s)
- Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Jonathan Ogayon Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños, Philippines
| | - Sarangua Lkhagvasuren
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ge Erma
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Khulan Sharavdorj
- Crop Ecology Laboratory, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| |
Collapse
|
6
|
Mallick S, Molleman F, Yguel B, Bailey R, Müller J, Jean F, Prinzing A. Ectophagous folivores do not profit from rich resources on phylogenetically isolated trees. Oecologia 2023; 201:1-18. [PMID: 36165922 DOI: 10.1007/s00442-022-05260-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2022] [Indexed: 01/07/2023]
Abstract
Resource use by consumers across patches is often proportional to the quantity or quality of the resource within these patches. In folivores, such proportional use of resources is likely to be more efficient when plants are spatially proximate, such as trees forming a forest canopy. However, resources provided by forest-trees are often not used proportionally. We hypothesised that proportional use of resources is reduced when host trees are isolated among phylogenetically distant neighbours that mask olfactory and visual search cues, and reduce folivore movement between trees. Such phylogenetically distant neighbourhoods might sort out species that are specialists, poor dispersers, or have poor access to information about leaf quality. We studied individual oaks, their leaf size and quality, their folivory and abundance of folivores (mostly Lepidopteran ectophages, gallers and miners), and parasitism of folivores. We found that leaf consumption by ectophages hardly increased with increasing leaf size when host trees were phylogenetically isolated. We found a similar effect on host use by parasitoids in 1 year. In contrast, we found no consistent effects in other folivore guilds. Relative abundances of specialists and species with wingless females declined with phylogenetic isolation. However, resource use within each of these groups was inconsistently affected by phylogenetic isolation. We suggest that phylogenetic isolation prevents ectophages from effectively choosing trees with abundant resources, and also sorts out species likely to recruit in situ on their host tree. Trees in phylogenetically distant neighbourhoods may be selected for larger leaves and greater reliance on induced defences.
Collapse
Affiliation(s)
- Soumen Mallick
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France.
| | - Freerk Molleman
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, A. Mickiewicz University, Ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Benjamin Yguel
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France.,Centre d'Ecologie et des Sciences de la Conservation (CESCO-UMR 7204), Sorbonne Universités-MNHN-CNRS-UPMC, CP51, 55-61rue Buffon, 75005, Paris, France
| | - Richard Bailey
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France.,Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Lodz, Poland
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany.,Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Frédéric Jean
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Andreas Prinzing
- Centre National de la Recherche Scientifique, Université de Rennes 1, Research Unit UMR 6553, Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| |
Collapse
|
7
|
Wang C, Brunner I, Wang J, Guo W, Geng Z, Yang X, Chen Z, Han S, Li MH. The Right-Skewed Distribution of Fine-Root Size in Three Temperate Forests in Northeastern China. FRONTIERS IN PLANT SCIENCE 2022; 12:772463. [PMID: 35069627 PMCID: PMC8777189 DOI: 10.3389/fpls.2021.772463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Trees can build fine-root systems with high variation in root size (e.g., fine-root diameter) and root number (e.g., branching pattern) to optimize belowground resource acquisition in forest ecosystems. Compared with leaves, which are visible above ground, information about the distribution and inequality of fine-root size and about key associations between fine-root size and number is still limited. We collected 27,573 first-order fine-roots growing out of 3,848 second-order fine-roots, covering 51 tree species in three temperate forests (Changbai Mountain, CBS; Xianrendong, XRD; and Maoershan, MES) in Northeastern China. We investigated the distribution and inequality of fine-root length, diameter and area (fine-root size), and their trade-off with fine-root branching intensity and ratio (fine-root number). Our results showed a strong right-skewed distribution in first-order fine-root size across various tree species. Unimodal frequency distributions were observed in all three of the sampled forests for first-order fine-root length and area and in CBS and XRD for first-order fine-root diameter, whereas a marked bimodal frequency distribution of first-order fine-root diameter appeared in MES. Moreover, XRD had the highest and MES had the lowest inequality values (Gini coefficients) in first-order fine-root diameter. First-order fine-root size showed a consistently linear decline with increasing root number. Our findings suggest a common right-skewed distribution with unimodality or bimodality of fine-root size and a generalized trade-off between fine-root size and number across the temperate tree species. Our results will greatly improve our thorough understanding of the belowground resource acquisition strategies of temperate trees and forests.
Collapse
Affiliation(s)
- Cunguo Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Ivano Brunner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Junni Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wei Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhenzhen Geng
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiuyun Yang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Zhijie Chen
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shijie Han
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Mai-He Li
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
8
|
Ayalew T, Yoseph T, Högy P, Cadisch G. Leaf growth, gas exchange and assimilation performance of cowpea varieties in response to Bradyrhizobium inoculation. Heliyon 2022; 8:e08746. [PMID: 35106387 PMCID: PMC8789522 DOI: 10.1016/j.heliyon.2022.e08746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Supplying nitrogen to crops through selecting high N fixing legumes and effective inoculant is one of the key strategies to improve crop productivity. However, studies related to the effect of Bradyrhizobial inoculation on leaf growth, its functioning in relation to photosynthesis, and transpiration efficiency (WUE) of cowpea [Vigna unguiculata (L.) Walp] varieties in the tropics were inadequate. A two-year field experiment was conducted at three sites to evaluate the effect of inoculation on leaf growth, gas exchanges and photosynthetic efficiency of cowpea varieties. The study treatments were composed of four varieties, Keti (IT99K-1122), TVU, Black eye bean, and White wonderer trailing and three levels of inoculation (non-inoculated or inoculated with Bradyrhizobium strains CP-24 or CP-37). Gas exchange was measured on live plants at 67–77 days after sowing, between 8:00 to 11:00 a.m. and 14:00 to 16:00 p.m. Leaf growth parameters (leaf number and leaf area) were measured by destructive sampling, and the yield data was determined by harvesting plants in the three central rows at physiological maturity. Variety TVU performed best in terms of leaf number, photosynthesis rate, and WUE. Whereas, Black eye bean revealed superior performances for leaf area, leaf area index, and stomatal conductance compared with the rest two varieties. The effect of inoculation was significant with 14.0, 23.8, 13.7, and 11.0% advantage in leaf area, leaf area index, net photosynthesis, and WUE, respectively. Moreover, the performance of cowpea of the 2018 cropping season showed a relative advantage over 2019 in terms of leaf number, leaf area, leaf area index, net photosynthesis, and stomatal conductance. Therefore, inoculating cowpea varieties with effective Bradyrhizobium strain can be a viable alternative to enhance growth, gas exchange, photosynthetic efficiency, and grain yield.
Collapse
|
9
|
Patterns of leaf morphological variation in Quercus frainetto Ten. growing on different soil types in Serbia. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220405018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Leaf morphology is at a certain level defined by the ways in which plants adapt to different habitats, especially in large trees. In this study, morphological variations in leaf size and shape of the Hungarian oak (Quercus frainetto Ten.) growing on different soil types (lithic leptosol, vertisol, cambisol) were investigated in the central part of Serbia (Sumadija). The information on soil type was obtained using a digitalized soil map of the Republic of Serbia, while leaf traits were characterized by geometric morphometric methods. Landmark analysis and leaf measurements showed significant differences among the analyzed groups, with individuals growing on nutrient-poor, shallow soils having smaller leaves with greater lobation. The observed differences suggest that the levels of soil productivity influence variations in leaf patterns. More studies on a larger sample size and along a broader spatial scale are needed to fully understand the differences in the patterns of leaf morphological variation in Q. frainetto.
Collapse
|
10
|
Hernandez JO, An JY, Combalicer MS, Chun JP, Oh SK, Park BB. Morpho-Anatomical Traits and Soluble Sugar Concentration Largely Explain the Responses of Three Deciduous Tree Species to Progressive Water Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:738301. [PMID: 34950160 PMCID: PMC8688917 DOI: 10.3389/fpls.2021.738301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
A better understanding of plant drought responses is essential to improve plant water use efficiency, productivity, and resilience to ever-changing climatic conditions. Here, we investigated the growth, morpho-anatomical, physiological, and biochemical responses of Quercus acutissima Carruth., Quercus serrata Murray, and Betula schmidtii Regel to progressive water-stress. Seedlings were subjected to well-watered (WW) and water-stressed (WS) conditions while regularly monitoring the soil volumetric water content, stem diameter (SD), height, biomass, stomatal conductance (gs), intercellular CO2 concentration (Ci), and leaf relative water content (RWC). We also investigated the variation in stomatal pore (SP) area, specific leaf area (SLA), root xylem vessel diameter (VD), and total soluble sugar (TSS) concentration between treatments. After 2 months, WS significantly suppressed SD growth of Q. acutissima and B. schmidtii but had no impact on Q. serrata. Total biomass significantly declined at WS-treated seedlings in all species. WS resulted in a smaller SLA than WW in all species. The SP of WS-treated seedlings of Q. acutissima and B. schmidtii significantly decreased, whereas it increased significantly with time in Q. serrata. Larger vessels (i.e., >100 to ≤ 130) were more frequent at WS for Q. acutissima and B. schmidtii, whereas smaller vessels (i.e., >40 to ≤ 90) were more frequent at WS than at WW for Q. serrata after 8 weeks. Tylosis was more frequent at WS than WW for Q. serrata and B. schmidtii at eighth week. WS seedlings showed lower gs, Ci, and RWC compared with WW-treated ones in Q. acutissima and B. schmidtii. TSS concentration was also higher at WS-treated seedlings in two Quercus species. Overall, principal component analysis (PCA) showed that SLA and SP are associated with WS seedlings of Q. serrata and B. schmidtii and the tylosis frequency, TSS, and VD are associated with WS seedlings of Q. acutissima. Therefore, water-stressed plants from all species responded positively to water stress with increasing experimental duration and stress intensity, and that is largely explained by morpho-anatomical traits and soluble sugar concentration. The present study should enhance our understanding of drought-induced tree growth and short-term tree-seedling responses to drought.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños, Philippines
| | - Ji Young An
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
- Institute of Agricultural Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Marilyn S. Combalicer
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños, Philippines
| | - Jong-Pil Chun
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
11
|
Abeysinghe SK, Greer DH, Rogiers SY. Interaction effects of temperature and light on shoot architecture, growth dynamics and gas exchange of young Vitis vinifera cv. Shiraz vines in controlled environment conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:54-67. [PMID: 34794544 DOI: 10.1071/fp21271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
To examine the interactive effect of temperature and photon flux density (PFD) on growth dynamics and gas exchange of young Vitis vinifera L. cv. Shiraz vines, a controlled environment study was conducted by exposing vines to two different temperatures combined with either high or low PFD. Shoot growth was accelerated and the phyllochron of Shiraz leaves was hastened in the low temperature (25/12°C)×low PFD condition (350μmolm-2s-1). In early emerging leaves, leaf area was responsive to temperature whereas in later emerging leaves it was dependent on light intensity. The high temperature (32/20°C)×high PFD (700μmolm-2s-1) treatment delayed internode extension of early emerging internodes. However, low temperature×high PFD increased leaf gas exchange across the different growth stages. The net shoot carbon balance was greater for the low temperature×high PFD treatment. Dry matter accumulation was also greater in early emerging internodes irrespective of treatment. These results on young Shiraz vines indicate that 25°C is favourable to 32°C, and some growth characteristics are accelerated at low PFD while others favour higher PFD.
Collapse
Affiliation(s)
- Subhashini K Abeysinghe
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Dennis H Greer
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Suzy Y Rogiers
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
12
|
Li X, Song X, Zhao J, Lu H, Qian C, Zhao X. Shifts and plasticity of plant leaf mass per area and leaf size among slope aspects in a subalpine meadow. Ecol Evol 2021; 11:14042-14055. [PMID: 34707838 PMCID: PMC8525184 DOI: 10.1002/ece3.8113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
The composition of vegetation on a slope frequently changes substantially owing to the different micro-environments of various slope aspects. To understand how the slope aspect affects the vegetation changes, we examined the variations in leaf mass per area (LMA) and leaf size (LS) within and among populations for 66 species from 14 plots with a variety of slope aspects in a subalpine meadow. LMA is a leaf economic trait that is tightly correlated with plant physiological traits, while the LS shows a tight correlation with leaf temperature, indicating the strategy of plants to self-adjust in different thermal and hydraulic conditions. In this study, we compared the two leaf traits between slope aspects and between functional types and explored their correlation with soil variables and heat load. Our results showed that high-LMA, small-leaved species were favored in south-facing slopes, while the reverse was true in north-facing areas. In detail, small dense-leaved graminoids dominated the south slopes, while large thin-leaved forbs dominated the north slopes. Soil moisture and the availability of soil P were the two most important soil factors that related to both LMA and LS, and heat load also contributed substantially. Moreover, we disentangled the relative importance of intraspecific trait variation and species turnover in the trait variation among plots and found that the intraspecific variation contributed 98% and 56% to LMA and LS variation among communities, respectively, implying a large contribution of intraspecific trait plasticity. These results indicate that LMA and LS are two essential leaf traits that affect the adaptation or acclimation of plants underlying the vegetation composition changes in different slope aspects in the subalpine meadow.
Collapse
Affiliation(s)
- Xin’e Li
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Xiaoyu Song
- Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Jun Zhao
- Department of life sciencesLvliang UniversityLvliangChina
| | - Haifeng Lu
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Cheng Qian
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Xin Zhao
- Division of Grassland ScienceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| |
Collapse
|
13
|
Formisano L, Ciriello M, Cirillo V, Pannico A, El-Nakhel C, Cristofano F, Duri LG, Giordano M, Rouphael Y, De Pascale S. Divergent Leaf Morpho-Physiological and Anatomical Adaptations of Four Lettuce Cultivars in Response to Different Greenhouse Irradiance Levels in Early Summer Season. PLANTS 2021; 10:plants10061179. [PMID: 34207907 PMCID: PMC8226882 DOI: 10.3390/plants10061179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Lettuce (Lactuca sativa L.) is a winter-spring leafy vegetable, but the high demand for fresh products available year-round requires off-season production. However, the warm climate of the Mediterranean areas can impair the summer production of lettuce, thus requiring the adoption of genotypes tolerant to high irradiance as well as useful agronomic strategies like shading net installations. The aim of our research was to assess the leaf morpho-physiological and anatomical changes, in addition to productive responses, of four lettuce cultivars (‘Ballerina’, ‘Maravilla De Verano Canasta’, ‘Opalix’, and ‘Integral’) grown under shading and non-shading conditions to unveil the adaptive mechanisms of this crop in response to sub-optimal microclimate (high irradiance and temperature) in a protected environment. Growth and yield parameters, leaf gas exchanges, chlorophyll fluorescence and morpho-anatomical leaf traits (i.e., leaf mass area, stomatal density and epidermal cell density) were determined. Under shading conditions, the fresh yields of the cultivars ‘Ballerina’, ‘Opalix’ (‘Oak leaf’) and ‘Integral’ (‘Romaine’) increased by 16.0%, 26.9% and 13.2% respectively, compared to non-shading conditions while both abaxial and adaxial stomatal density decreased. In contrast, ‘Canasta’ under non-shading conditions increased fresh yield, dry biomass and instantaneous water use efficiency by 9.6%, 18.0% and 15.7%, respectively, while reduced abaxial stomatal density by 30.4%, compared to shading conditions. Regardless of cultivar, the unshaded treatment increased the leaf mass area by 19.5%. Even though high light intensity and high temperature are critical limiting factors for summer lettuce cultivation in a protected environment, ‘Canasta’ showed the most effective adaptive mechanisms and had the best production performance under sub-optimal microclimatic conditions. However, greenhouse coverage with a white shading net (49% screening) proved to be a suitable agricultural practice that ensured an adequate microclimate for the off-season growth of more sensitive cultivars ‘Ballerina’, ‘Oak leaf’ and ‘Romaine’.
Collapse
|
14
|
Kang X, Li Y, Zhou J, Zhang S, Li C, Wang J, Liu W, Qi W. Response of Leaf Traits of Eastern Qinghai-Tibetan Broad-Leaved Woody Plants to Climatic Factors. FRONTIERS IN PLANT SCIENCE 2021; 12:679726. [PMID: 34394139 PMCID: PMC8363248 DOI: 10.3389/fpls.2021.679726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 05/02/2023]
Abstract
Plant ecologists have long been interested in quantifying how leaf traits vary with climate factors, but there is a paucity of knowledge on these relationships given a large number of the relevant leaf traits and climate factors to be considered. We examined the responses of 11 leaf traits (including leaf morphology, stomatal structure and chemical properties) to eight common climate factors for 340 eastern Qinghai-Tibetan woody species. We showed temperature as the strongest predictor of leaf size and shape, stomatal size and form, and leaf nitrogen and phosphorus concentrations, implying the important role of local heat quantity in determining the variation in the cell- or organ-level leaf morphology and leaf biochemical properties. The effects of moisture-related climate factors (including precipitation and humidity) on leaf growth were mainly through variability in leaf traits (e.g., specific leaf area and stomatal density) related to plant water-use physiological processes. In contrast, sunshine hours affected mainly cell- and organ-level leaf size and shape, with plants developing small/narrow leaves and stomata to decrease leaf damage and water loss under prolonged solar radiation. Moreover, two sets of significant leaf trait-climate relationships, i.e., the leaf/stomata size traits co-varying with temperature, and the water use-related leaf traits co-varying with precipitation, were obtained when analyzing multi-trait relationships, suggesting these traits as good indicators of climate gradients. Our findings contributed evidence to enhance understanding of the regional patterns in leaf trait variation and its environmental determinants.
Collapse
Affiliation(s)
- Xiaomei Kang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanan Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jieyang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shiting Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chenxi Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juhong Wang
- College of Life Science and Food Technology, Hanshan Normal University, Chaozhou, China
| | - Wei Liu
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Qi
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Wei Qi,
| |
Collapse
|
15
|
Fan X, Yan X, Qian C, Bachir DG, Yin X, Sun P, Ma XF. Leaf size variations in a dominant desert shrub, Reaumuria soongarica, adapted to heterogeneous environments. Ecol Evol 2020; 10:10076-10094. [PMID: 33005365 PMCID: PMC7520190 DOI: 10.1002/ece3.6668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/07/2022] Open
Abstract
The climate in arid Central Asia (ACA) has changed rapidly in recent decades, but the ecological consequences of this are far from clear. To predict the impacts of climate change on ecosystem functioning, greater attention should be given to the relationships between leaf functional traits and environmental heterogeneity. As a dominant constructive shrub widely distributed in ACA, Reaumuria soongarica provided us with an ideal model to understand how leaf functional traits of desert ecosystems responded to the heterogeneous environments of ACA. Here, to determine the influences of genetic and ecological factors, we characterized species-wide variations in leaf traits among 30 wild populations of R. soongarica and 16 populations grown in a common garden. We found that the leaf length, width, and leaf length to width ratio (L/W) of the northern lineage were significantly larger than those of other genetic lineages, and principal component analysis based on the in situ environmental factors distinguished the northern lineage from the other lineages studied. With increasing latitude, leaf length, width, and L/W in the wild populations increased significantly. Leaf length and L/W were negatively correlated with altitude, and first increased and then decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). Stepwise regression analyses further indicated that leaf length variation was mainly affected by latitude. However, leaf width was uncorrelated with altitude, MAT, or MAP. The common garden trial showed that leaf width variation among the eastern populations was caused by both local adaptation and phenotypic plasticity. Our findings suggest that R. soongarica preferentially changes leaf length to adjust leaf size to cope with environmental change. We also reveal phenotypic evidence for ecological speciation of R. soongarica. These results will help us better understand and predict the consequences of climate change for desert ecosystem functioning.
Collapse
Affiliation(s)
- Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Xia Yan
- School of Life Sciences Nantong University Nantong China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Daoura Goudia Bachir
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Peipei Sun
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province Department of Ecology and Agriculture Research Northwest Institute of Eco-Environment and Resources Chinese Academy of Sciences Lanzhou China
| |
Collapse
|