1
|
Du B, Wu J, Wang Q, Sun C, Sun G, Zhou J, Zhang L, Xiong Q, Ren X, Lu B. Genome-wide screening of meta-QTL and candidate genes controlling yield and yield-related traits in barley (Hordeum vulgare L.). PLoS One 2024; 19:e0303751. [PMID: 38768114 PMCID: PMC11104655 DOI: 10.1371/journal.pone.0303751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Increasing yield is an important goal of barley breeding. In this study, 54 papers published from 2001-2022 on QTL mapping for yield and yield-related traits in barley were collected, which contained 1080 QTLs mapped to the barley high-density consensus map for QTL meta-analysis. These initial QTLs were integrated into 85 meta-QTLs (MQTL) with a mean confidence interval (CI) of 2.76 cM, which was 7.86-fold narrower than the CI of the initial QTL. Among these 85 MQTLs, 68 MQTLs were validated in GWAS studies, and 25 breeder's MQTLs were screened from them. Seventeen barley orthologs of yield-related genes in rice and maize were identified within the hcMQTL region based on comparative genomics strategy and were presumed to be reliable candidates for controlling yield-related traits. The results of this study provide useful information for molecular marker-assisted breeding and candidate gene mining of yield-related traits in barley.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | | | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Canada
| | - Jie Zhou
- Lu’an Academy of Agricultural Science, Lu’an, China
| | - Lei Zhang
- Lu’an Academy of Agricultural Science, Lu’an, China
| | | | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
2
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
3
|
Hong Y, Zhang M, Zhu J, Zhang Y, Lv C, Guo B, Wang F, Xu R. Genome-wide association studies reveal novel loci for grain size in two-rowed barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:58. [PMID: 38407646 DOI: 10.1007/s00122-024-04562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
KEY MESSAGE SNP-based and InDel-based GWAS on multi-environment data identified genomic regions associated with barley grain size. Barley yield and quality are greatly influenced by grain size. Improving barley grain size in breeding programs requires knowledge of genetic loci and alleles in germplasm resources. In this study, a collection of 334 worldwide two-rowed barley accessions with extensive genetic diversity was evaluated for grain size including grain length (GL), grain width (GW), and thousand-grain weight (TGW) across six independent field trials. Significant differences were observed in genotype and environments for all measured traits. SNP- and InDel-based GWAS were applied to dissect the genetic architecture of grain size with an SLAF-seq strategy. Two approaches using the FarmCPU model revealed 38 significant marker-trait associations (MTAs) with PVE ranging from 0.01% to 20.68%. Among these MTAs, five were on genomic regions where no previously reported QTL for grain size. Superior alleles of TGW-associated SNP233060 and GL-associated InDel11006 exhibited significantly higher levels of phenotype. The significant MTAs could be used in marker-assisted selection breeding.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Zeng Z, Song S, Ma J, Hu D, Xu Y, Hou Y, He C, Tang X, Lan T, Zeng J, Gao X, Chen G. QTL Mapping of Agronomic and Physiological Traits at the Seedling and Maturity Stages under Different Nitrogen Treatments in Barley. Int J Mol Sci 2023; 24:ijms24108736. [PMID: 37240081 DOI: 10.3390/ijms24108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Nitrogen (N) stress seriously constrains barley (Hordeum vulgare L.) production globally by influencing its growth and development. In this study, we used a recombinant inbred line (RIL) population of 121 crosses between the variety Baudin and the wild barley accession CN4027 to detect QTL for 27 traits at the seedling stage in hydroponic culture trials and 12 traits at the maturity stage in field trials both under two N treatments, aiming to uncover favorable alleles for N tolerance in wild barley. In total, eight stable QTL and seven QTL clusters were detected. Among them, the stable QTL Qtgw.sau-2H located in a 0.46 cM interval on the chromosome arm 2HL was a novel QTL specific for low N. Notably, Clusters C4 and C7 contained QTL for traits at both the seedling and maturity stages. In addition, four stable QTLs in Cluster C4 were identified. Furthermore, a gene (HORVU2Hr1G080990.1) related to grain protein in the interval of Qtgw.sau-2H was predicted. Correlation analysis and QTL mapping showed that different N treatments significantly affected agronomic and physiological traits at the seedling and maturity stages. These results provide valuable information for understanding N tolerance as well as breeding and utilizing the loci of interest in barley.
Collapse
Affiliation(s)
- Zhaoyong Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyun Song
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengjun He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Houston K, Learmonth A, Hassan AS, Lahnstein J, Looseley M, Little A, Waugh R, Burton RA, Halpin C. Natural variation in HvAT10 underlies grain cell wall-esterified phenolic acid content in cultivated barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1095862. [PMID: 37235033 PMCID: PMC10206312 DOI: 10.3389/fpls.2023.1095862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/06/2023] [Indexed: 05/28/2023]
Abstract
The phenolic acids, ferulic acid and p-coumaric acid, are components of plant cell walls in grasses, including many of our major food crops. They have important health-promoting properties in grain, and influence the digestibility of biomass for industrial processing and livestock feed. Both phenolic acids are assumed to be critical to cell wall integrity and ferulic acid, at least, is important for cross-linking cell wall components, but the role of p-coumaric acid is unclear. Here we identify alleles of a BAHD p-coumaroyl arabinoxylan transferase, HvAT10, as responsible for the natural variation in cell wall-esterified phenolic acids in whole grain within a cultivated two-row spring barley panel. We show that HvAT10 is rendered non-functional by a premature stop codon mutation in half of the genotypes in our mapping panel. This results in a dramatic reduction in grain cell wall-esterifed p-coumaric acid, a moderate rise in ferulic acid, and a clear increase in the ferulic acid to p-coumaric acid ratio. The mutation is virtually absent in wild and landrace germplasm suggesting an important function for grain arabinoxylan p-coumaroylation pre-domestication that is dispensable in modern agriculture. Intriguingly, we detected detrimental impacts of the mutated locus on grain quality traits where it was associated with smaller grain and poorer malting properties. HvAT10 could be a focus for improving grain quality for malting or phenolic acid content in wholegrain foods.
Collapse
Affiliation(s)
- Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Scotland, United Kingdom
| | - Amy Learmonth
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Scotland, United Kingdom
| | - Ali Saleh Hassan
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Mark Looseley
- Cell and Molecular Sciences, The James Hutton Institute, Scotland, United Kingdom
| | - Alan Little
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Scotland, United Kingdom
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Scotland, United Kingdom
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Scotland, United Kingdom
| |
Collapse
|
6
|
Huang J, Zhang G, Li Y, Lyu M, Zhang H, Zhang N, Chen R. Integrative genomic and transcriptomic analyses of a bud sport mutant 'Jinzao Wuhe' with the phenotype of large berries in grapevines. PeerJ 2023; 11:e14617. [PMID: 36620751 PMCID: PMC9817954 DOI: 10.7717/peerj.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bud sport mutation occurs frequently in fruit plants and acts as an important approach for grapevine improvement and breeding. 'Jinzao Wuhe' is a bud sport of the elite cultivar 'Himord Seedless' with obviously enlarged organs and berries. To date, the molecular mechanisms underlying berry enlargement caused by bud sport in grapevines remain unclear. Methods Whole genome resequencing (WGRS) was performed for two pairs of bud sports and their maternal plants with similar phenotype to identify SNPs, InDels and structural variations (SVs) as well as related genes. Furthermore, transcriptomic sequencing at different developmental stages and weighted gene co-expression network analysis (WGCNA) for 'Jinzao Wuhe' and its maternal plant 'Himord Seedless' were carried out to identify the differentially expressed genes (DEGs), which were subsequently analyzed for Gene Ontology (GO) and function annotation. Results In two pairs of enlarged berry bud sports, a total of 1,334 SNPs, 272 InDels and 74 SVs, corresponding to 1,022 target genes related to symbiotic microorganisms, cell death and other processes were identified. Meanwhile, 1,149 DEGs associated with cell wall modification, stress-response and cell killing might be responsible for the phenotypic variation were also determined. As a result, 42 DEGs between 'Himord Seedless' and 'Jinzao Wuhe' harboring genetic variations were further investigated, including pectin esterase, cellulase A, cytochromes P450 (CYP), UDP-glycosyltransferase (UGT), zinc finger protein, auxin response factor (ARF), NAC transcription factor (TF), protein kinase, etc. These candidate genes offer important clues for a better understanding of developmental regulations of berry enlargement in grapevine. Conclusion Our results provide candidate genes and valuable information for dissecting the underlying mechanisms of berry development and contribute to future improvement of grapevine cultivars.
Collapse
Affiliation(s)
- Jianquan Huang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guan Zhang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yanhao Li
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Horticulture and Gardening, Tianjin Agricultural University, Tianjin, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - He Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Na Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
7
|
Qin D, Liu G, Liu R, Wang C, Xu F, Xu Q, Ling Y, Dong G, Peng Y, Ge S, Guo G, Dong J, Li C. Positional cloning identified HvTUBULIN8 as the candidate gene for round lateral spikelet (RLS) in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:7. [PMID: 36656367 PMCID: PMC9852219 DOI: 10.1007/s00122-023-04272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Map-based cloning, subcellular localization, virus-induced-gene-silencing and transcriptomic analysis reveal HvTUB8 as a candidate gene with pleiotropic effects on barley spike and leaf development via ethylene and chlorophyll metabolism. Barley lateral spikelet morphology and grain shape play key roles in grain physical quality and yield. Several genes and QTLs for these traits have been cloned or fine mapped previously. Here, we report the phenotypic and genotypic analysis of a barley mutant with round lateral spikelet (rls) from cv. Edamai 934. rls had round lateral spikelet, short but round grain, shortened awn, thick glume and dark green leaves. Histocytologic and ultrastructural analysis revealed that the difference of grain shape of rls was caused by change of cell arrangement in glume, and the dark leaf color resulted from enlarged chloroplast. HvTUBULIN8 (HvTUB8) was identified as the candidate gene for rls by combination of RNA-Seq, map-based-cloning, virus-induced-gene-silencing (VIGS) and protein subcellular location. A single G-A substitution at the third exon of HvTUB8 resulted in change of Cysteine 354 to tyrosine. Furthermore, the mutant isoform Hvtub8 could be detected in both nucleus and cytoplasm, whereas the wild-type protein was only in cytoplasm and granular organelles of wheat protoplasts. Being consistent with the rare phenotype, the "A" allele of HvTUB8 was only detected in rls, but not in a worldwide barley germplasm panel with 400 accessions. VIGS confirmed that HvTUB8 was essential to maintain spike integrity. RNA-Seq results suggested that HvTUB8 may control spike morphogenesis via ethylene homeostasis and signaling, and control leaf color through chlorophyll metabolism. Collectively, our results support HvTUB8 as a candidate gene for barley spike and leaf morphology and provide insight of a novel mechanism of it in barley development.
Collapse
Affiliation(s)
- Dandan Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Gang Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Rui Liu
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chunchao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Guoqing Dong
- Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Shuangtao Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
- Key Laboratory for Crop Molecular, Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, 430064, Hubei, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, WA, 6150, Australia.
| |
Collapse
|
8
|
Genome-Wide Association Study Revealed SNP Alleles Associated with Seed Size Traits in African Yam Bean ( Sphenostylis stenocarpa (Hochst ex. A. Rich.) Harms). Genes (Basel) 2022; 13:genes13122350. [PMID: 36553617 PMCID: PMC9777823 DOI: 10.3390/genes13122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Seed size is an important yield and quality-determining trait in higher plants and is also crucial to their evolutionary fitness. In African yam bean (AYB), seed size varies widely among different accessions. However, the genetic basis of such variation has not been adequately documented. A genome-wide marker-trait association study was conducted to identify genomic regions associated with four seed size traits (seed length, seed width, seed thickness, and 100-seed weight) in a panel of 195 AYB accessions. A total of 5416 SNP markers were generated from the diversity array technology sequence (DArTseq) genotype-by-sequencing (GBS)- approach, in which 2491 SNPs were retained after SNP quality control and used for marker-trait association analysis. Significant phenotypic variation was observed for the traits. Broad-sense heritability ranged from 50.0% (seed width) to 66.4% (seed length). The relationships among the traits were positive and significant. Genome-wide association study (GWAS) using the general linear model (GLM) and the mixed linear model (MLM) approaches identified 12 SNP markers significantly associated with seed size traits across the six test environments. The 12 makers explained 6.5-10.8% of the phenotypic variation. Two markers (29420334|F|0-52:C>G-52:C>G and 29420736|F|0-57:G>T-57:G>T) with pleiotropic effects associated with seed width and seed thickness were found. A candidate gene search identified five significant markers (100026424|F|0-37:C>T-37:C>T, 100041049|F|0-42:G>C-42:G>C, 100034480|F|0-31:C>A-31:C>A, 29420365|F|0-55:C>G-55:C>G, and 29420736|F|0-57:G>T-57:G>T) located close to 43 putative genes whose encoding protein products are known to regulate seed size traits. This study revealed significant makers not previously reported for seed size in AYB and could provide useful information for genomic-assisted breeding in AYB.
Collapse
|
9
|
Shrestha A, Cosenza F, van Inghelandt D, Wu PY, Li J, Casale FA, Weisweiler M, Stich B. The double round-robin population unravels the genetic architecture of grain size in barley. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7344-7361. [PMID: 36094852 PMCID: PMC9730814 DOI: 10.1093/jxb/erac369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Grain number, size and weight primarily determine the yield of barley. Although the genes regulating grain number are well studied in barley, the genetic loci and the causal gene for sink capacity are poorly understood. Therefore, the primary objective of our work was to dissect the genetic architecture of grain size and weight in barley. We used a multi-parent population developed from a genetic cross between 23 diverse barley inbreds in a double round-robin design. Seed size-related parameters such as grain length, grain width, grain area and thousand-grain weight were evaluated in the HvDRR population comprising 45 recombinant inbred line sub-populations. We found significant genotypic variation for all seed size characteristics, and observed 84% or higher heritability across four environments. The quantitative trait locus (QTL) detection results indicate that the genetic architecture of grain size is more complex than previously reported. In addition, both cultivars and landraces contributed positive alleles at grain size QTLs. Candidate genes identified using genome-wide variant calling data for all parental inbred lines indicated overlapping and potential novel regulators of grain size in cereals. Furthermore, our results indicated that sink capacity was the primary determinant of grain weight in barley.
Collapse
Affiliation(s)
- Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Delphine van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Biology Department, Heinrich Heine University, Dusseldorf, Germany
| | | |
Collapse
|
10
|
Zhang A, Zhao T, Hu X, Zhou Y, An Y, Pei H, Sun D, Sun G, Li C, Ren X. Identification of QTL underlying the main stem related traits in a doubled haploid barley population. FRONTIERS IN PLANT SCIENCE 2022; 13:1063988. [PMID: 36531346 PMCID: PMC9751491 DOI: 10.3389/fpls.2022.1063988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.
Collapse
Affiliation(s)
- Anyong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ting Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue An
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiyi Pei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
11
|
Hackauf B, Siekmann D, Fromme FJ. Improving Yield and Yield Stability in Winter Rye by Hybrid Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:2666. [PMID: 36235531 PMCID: PMC9571156 DOI: 10.3390/plants11192666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Rye is the only cross-pollinating small-grain cereal. The unique reproduction biology results in an exceptional complexity concerning genetic improvement of rye by breeding. Rye is a close relative of wheat and has a strong adaptation potential that refers to its mating system, making this overlooked cereal readily adjustable to a changing environment. Rye breeding addresses the emerging challenges of food security associated with climate change. The systematic identification, management, and use of its valuable natural diversity became a feasible option in outbreeding rye only following the establishment of hybrid breeding late in the 20th century. In this article, we review the most recent technological advances to improve yield and yield stability in winter rye. Based on recently released reference genome sequences, SMART breeding approaches are described to counterbalance undesired linkage drag effects of major restorer genes on grain yield. We present the development of gibberellin-sensitive semidwarf hybrids as a novel plant breeding innovation based on an approach that is different from current methods of increasing productivity in rye and wheat. Breeding of new rye cultivars with improved performance and resilience is indispensable for a renaissance of this healthy minor cereal as a homogeneous commodity with cultural relevance in Europe that allows for comparatively smooth but substantial complementation of wheat with rye-based diets, supporting the necessary restoration of the balance between human action and nature.
Collapse
Affiliation(s)
- Bernd Hackauf
- Julius Kühn Institute, Institute for Breeding Research on Agricultural Crops, Rudolf-Schick-Platz 3a, 18190 Sanitz, Germany
| | - Dörthe Siekmann
- Hybro Saatzucht GmbH & Co. KG, Langlinger Straße 3, 29565 Wriedel, Germany
| | | |
Collapse
|
12
|
Rajendran NR, Qureshi N, Pourkheirandish M. Genotyping by Sequencing Advancements in Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:931423. [PMID: 36003814 PMCID: PMC9394214 DOI: 10.3389/fpls.2022.931423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Barley is considered an ideal crop to study cereal genetics due to its close relationship with wheat and diploid ancestral genome. It plays a crucial role in reducing risks to global food security posed by climate change. Genetic variations in the traits of interest in crops are vital for their improvement. DNA markers have been widely used to estimate these variations in populations. With the advancements in next-generation sequencing, breeders could access different types of genetic variations within different lines, with single-nucleotide polymorphisms (SNPs) being the most common type. However, genotyping barley with whole genome sequencing (WGS) is challenged by the higher cost and computational demand caused by the large genome size (5.5GB) and a high proportion of repetitive sequences (80%). Genotyping-by-sequencing (GBS) protocols based on restriction enzymes and target enrichment allow a cost-effective SNP discovery by reducing the genome complexity. In general, GBS has opened up new horizons for plant breeding and genetics. Though considered a reliable alternative to WGS, GBS also presents various computational difficulties, but GBS-specific pipelines are designed to overcome these challenges. Moreover, a robust design for GBS can facilitate the imputation to the WGS level of crops with high linkage disequilibrium. The complete exploitation of GBS advancements will pave the way to a better understanding of crop genetics and offer opportunities for the successful improvement of barley and its close relatives.
Collapse
Affiliation(s)
- Nirmal Raj Rajendran
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Naeela Qureshi
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de Mexico, Mexico
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Sci Rep 2022; 12:12444. [PMID: 35858934 PMCID: PMC9300641 DOI: 10.1038/s41598-022-15992-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023] Open
Abstract
Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.
Collapse
|
14
|
Niu Y, Chen T, Zheng Z, Zhao C, Liu C, Jia J, Zhou M. A new major QTL for flag leaf thickness in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2022; 22:305. [PMID: 35751018 PMCID: PMC9229122 DOI: 10.1186/s12870-022-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Carbohydrate accumulation of photosynthetic organs, mainly leaves, are the primary sources of grain yield in cereals. The flag leaf plays a vital role in seed development, which is probably the most neglected morphological characteristic during traditional selection processes. RESULTS In this experiment, four flag leaf morphological traits and seven yield-related traits were investigated in a DH population derived from a cross between a wild barley and an Australian malting barley cultivar. Flag leaf thickness (FLT) showed significantly positive correlations with grain size. Four QTL, located on chromosomes 1H, 2H, 3H, and 5H, respectively, were identified for FLT. Among them, a major QTL was located on chromosome 3H with a LOD value of 18.4 and determined 32% of the phenotypic variation. This QTL showed close links but not pleiotropism to the previously reported semi-dwarf gene sdw1 from the cultivated barley. This QTL was not reported before and the thick leaf allele from the wild barley could provide a useful source for improving grain yield through breeding. CONCLUSIONS Our results also provided valuable evidence that source traits and sink traits in barley are tightly connected and suggest further improvement of barley yield potential with enhanced and balanced source and sink relationships by exploiting potentialities of the wild barley resources. Moreover, this study will provide a novel sight on understanding the evolution and development of leaf morphology in barley and improving barley production by rewilding for lost superior traits during plant evolution.
Collapse
Affiliation(s)
- Yanan Niu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Tianxiao Chen
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, 4067, St Lucia, QLD, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 4067, St Lucia, QLD, Australia
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia.
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China.
| |
Collapse
|
15
|
Hanak T, Madsen CK, Brinch-Pedersen H. Genome Editing-accelerated Re-Domestication (GEaReD) - a new major direction in plant breeding. Biotechnol J 2022; 17:e2100545. [PMID: 35120401 DOI: 10.1002/biot.202100545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The effects of climate change, soil depletion, a growing world population putting pressure on food safety and security are major challenges for agriculture in the 21st century. The breeding success of the green revolution has decelerated and current programs can only offset the yield affecting factors. PURPOSE AND SCOPE New approaches are urgently needed and we propose "Genome Editing-accelerated Re-Domestication" (GEaReD) as a major new direction in plant breeding. By combining the upcoming technologies for phenotyping, omics, and artificial intelligence with the promising new CRISPR-toolkits, this approach is closer than ever. SUMMARY AND CONCLUSION Wild relatives of current crops are often adapted to harsh environments and have a high genetic diversity. Redomestication of wild barley or teosinte could generate new cultivars adapted to environmental changes. De novo domestication of perennial relatives such as Hordeum bulbosum could counter soil depletion and increase soil carbon. Recent research already proved the principle of redomestication in tomato and rice and therefore laid the foundation for GEaReD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tobias Hanak
- Department of Agroecology, Aarhus University, Crop Genetics and Biotechnology Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Claus Krogh Madsen
- Department of Agroecology, Aarhus University, Crop Genetics and Biotechnology Forsøgsvej 1, Slagelse, 4200, Denmark
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Aarhus University, Crop Genetics and Biotechnology Forsøgsvej 1, Slagelse, 4200, Denmark
| |
Collapse
|
16
|
Sayed MA, Allam M, Heck QK, Urbanavičiūtė I, Rutten T, Stuart D, Zakhrabekova S, Börner A, Pillen K, Hansson M, Youssef HM. Analyses of MADS-box Genes Suggest HvMADS56 to Regulate Lateral Spikelet Development in Barley. PLANTS (BASEL, SWITZERLAND) 2021; 10:2825. [PMID: 34961296 PMCID: PMC8703372 DOI: 10.3390/plants10122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
MADS-box transcription factors are crucial regulators of inflorescence and flower development in plants. Therefore, the recent interest in this family has received much attention in plant breeding programs due to their impact on plant development and inflorescence architecture. The aim of this study was to investigate the role of HvMADS-box genes in lateral spikelet development in barley (Hordeum vulgare L.). A set of 30 spike-contrasting barley lines were phenotypically and genotypically investigated under controlled conditions. We detected clear variations in the spike and spikelet development during the developmental stages among the tested lines. The lateral florets in the deficiens and semi-deficiens lines were more reduced than in two-rowed cultivars except cv. Kristina. Interestingly, cv. Kristina, int-h.43 and int-i.39 exhibited the same behavior as def.5, def.6, semi-def.1, semi-def.8 regarding development and showed reduced lateral florets size. In HOR1555, HOR7191 and HOR7041, the lateral florets continued their development, eventually setting seeds. In contrast, lateral florets in two-rowed barley stopped differentiating after the awn primordia stage giving rise to lateral floret sterility. At harvest, the lines tested showed large variation for all central and lateral spikelet-related traits. Phylogenetic analysis showed that more than half of the 108 MADS-box genes identified are highly conserved and are expressed in different barley tissues. Re-sequence analysis of a subset of these genes showed clear polymorphism in either SNPs or in/del. Variation in HvMADS56 correlated with altered lateral spikelet morphology. This suggests that HvMADS56 plays an important role in lateral spikelet development in barley.
Collapse
Affiliation(s)
- Mohammed A. Sayed
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.S.); (T.R.); (A.B.)
- Faculty of Agriculture, Assuit University, Assuit 71526, Egypt;
| | - Mohamed Allam
- Faculty of Agriculture, Assuit University, Assuit 71526, Egypt;
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, snc, 01100 Viterbo, Italy;
| | - Quinn Kalby Heck
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Ieva Urbanavičiūtė
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, snc, 01100 Viterbo, Italy;
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.S.); (T.R.); (A.B.)
| | - David Stuart
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Shakhira Zakhrabekova
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.S.); (T.R.); (A.B.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden; (Q.K.H.); (D.S.); (S.Z.); (M.H.)
| | - Helmy M. Youssef
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
17
|
Abed A, Badea A, Beattie A, Khanal R, Tucker J, Belzile F. A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome 2021; 65:83-94. [PMID: 34870479 DOI: 10.1139/gen-2021-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As genotyping-by-sequencing (GBS) is widely used in barley genetic studies, the translation of the physical position of GBS-derived SNPs into accurate genetic positions has become relevant. The main aim of this study was to develop a high-resolution consensus linkage map based on GBS-derived SNPs. The construction of this integrated map involved 11 bi-parental populations composed of 3743 segregating progenies. We adopted a uniform set of SNP-calling and filtering conditions to identify 50 875 distinct SNPs segregating in at least one population. These SNPs were grouped into 18 580 non-redundant SNPs (bins). The resulting consensus linkage map spanned 1050.1 cM, providing an average density of 17.7 bins and 48.4 SNPs per cM. The consensus map is characterized by the absence of large intervals devoid of marker coverage (significant gaps), the largest interval between bins was only 3.7 cM and the mean distance between adjacent bins was 0.06 cM. This high-resolution linkage map will contribute to several applications in genomic research, such as providing useful information on the recombination landscape for QTLs/genes identified via GWAS or ensuring a uniform distribution of SNPs when developing low-cost genotyping tools offering a limited number of markers.
Collapse
Affiliation(s)
- Amina Abed
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Aaron Beattie
- Barley and Oat Breeding Program Crop Development Centre, University of Saskatchewan, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Raja Khanal
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - James Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
18
|
Borrego-Benjumea A, Carter A, Zhu M, Tucker JR, Zhou M, Badea A. Genome-Wide Association Study of Waterlogging Tolerance in Barley ( Hordeum vulgare L.) Under Controlled Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:711654. [PMID: 34512694 PMCID: PMC8427447 DOI: 10.3389/fpls.2021.711654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 06/01/2023]
Abstract
Waterlogging is one of the main abiotic stresses severely reducing barley grain yield. Barley breeding programs focusing on waterlogging tolerance require an understanding of genetic loci and alleles in the current germplasm. In this study, 247 worldwide spring barley genotypes grown under controlled field conditions were genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant phenotypic variation in each trait, including biomass, spikes per plant, grains per plant, kernel weight per plant, plant height and chlorophyll content, was observed. A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for waterlogging tolerance was conducted. Population structure analysis divided the population into three subgroups. A mixed linkage model using both population structure and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing 51 significant waterlogging-tolerance-associated markers for waterlogging tolerance response, accounting for 5.8-11.5% of the phenotypic variation, with a majority of them localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and eight potential candidate genes mediating responses to abiotic stresses were located at QTL associated with waterlogging tolerance. To our awareness, this is the first GWAS for waterlogging tolerance in a worldwide barley collection under controlled field conditions. The marker-trait associations could be used in the marker-assisted selection of waterlogging tolerance and will facilitate barley breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Min Zhu
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| |
Collapse
|
19
|
Hu Y, Zhang Z. GridFree: a python package of imageanalysis for interactive grain counting and measuring. PLANT PHYSIOLOGY 2021; 186:2239-2252. [PMID: 34618106 PMCID: PMC8331130 DOI: 10.1093/plphys/kiab226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Grain characteristics, including kernel length, kernel width, and thousand kernel weight, are critical component traits for grain yield. Manual measurements and counting are expensive, forming the bottleneck for dissecting these traits' genetic architectures toward ultimate yield improvement. High-throughput phenotyping methods have been developed by analyzing images of kernels. However, segmenting kernels from the image background and noise artifacts or from other kernels positioned in close proximity remain as challenges. In this study, we developed a software package, named GridFree, to overcome these challenges. GridFree uses an unsupervised machine learning approach, K-Means, to segment kernels from the background by using principal component analysis on both raw image channels and their color indices. GridFree incorporates users' experiences as a dynamic criterion to set thresholds for a divide-and-combine strategy that effectively segments adjacent kernels. When adjacent multiple kernels are incorrectly segmented as a single object, they form an outlier on the distribution plot of kernel area, length, and width. GridFree uses the dynamic threshold settings for splitting and merging. In addition to counting, GridFree measures kernel length, width, and area with the option of scaling with a reference object. Evaluations against existing software programs demonstrated that GridFree had the smallest error on counting seeds for multiple crop species. GridFree was implemented in Python with a friendly graphical user interface to allow users to easily visualize the outcomes and make decisions, which ultimately eliminates time-consuming and repetitive manual labor. GridFree is freely available at the GridFree website (https://zzlab.net/GridFree).
Collapse
Affiliation(s)
- Yang Hu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
20
|
Wang J, Wu X, Yue W, Zhao C, Yang J, Zhou M. Identification of QTL for barley grain size. PeerJ 2021; 9:e11287. [PMID: 33986999 PMCID: PMC8088763 DOI: 10.7717/peerj.11287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023] Open
Abstract
Background Barley grain size is one of the key factors determining storage capacity during grain filling. Large, well-filled grains also have a high malt extract potential. Grain size is a complex quantitative trait and can be easily affected by environmental factors thus the identification of genes controlling the trait and the use of molecular markers linked to the genes in breeding program is the most effective way of improving grain size. Methods Grain sizes of 188 doubled-haploid (DH) lines derived from the cross of a Japanese malting barley variety (Naso Nijo) and a Chinese feed barley variety (TX9425) were obtained from three different sites in two consecutive years. The average data were used for identifying QTL for grain size. Results A total of four significant QTL were identified for grain length (GL) and three for grain width (GW). The two major GL QTL are located at similar positions to the QTL for malt extract on 2H and uzu gene on 3H, respectively. However, the GL QTL on 2H is more likely a different one from the malt extract QTL as most of the candidate genes are located outside the fine mapped QTL region for malt extract. The GL QTL on 3H is closely linked with uzu gene but not due to a pleiotropic effect of uzu. The three QTL for grain width on 1H, 2H and 5H, respectively, were located at same position to those for GL.
Collapse
Affiliation(s)
- Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaojian Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenhao Yue
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Jianming Yang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| |
Collapse
|
21
|
Motuzaite Matuzeviciute G, Mir-Makhamad B, Spengler RN. Interpreting Diachronic Size Variation in Prehistoric Central Asian Cereal Grains. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.633634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The morphology of ancient cereal grains in Central Asia has been heavily discussed as an indicator of specific genetic variants, which are often linked to cultural factors or distinct routes of dispersal. In this paper, we present the largest currently existing database of barley (n= 631) and wheat (n= 349) measurements from Central Asia, obtained from two different periods at the Chap site (ca. 3,500 to 1,000 BC), located in the Tien Shan Mountains of Kyrgyzstan at 2,000 masl. The site is situated at the highest elevation ecocline for successful cereal cultivation and is, therefore, highly susceptible to minor climatic fluctuations that could force gradients up or down in the foothills. We contrast the Chap data with measurements from other second and first millennia BC sites in the region. An evident increase in average size over time is likely due to the evolution of larger grains or the introduction of larger variants from elsewhere. Additionally, site- or region-specific variation is noted, and we discuss potential influences for the formation of genetic varieties, including possible pleiotropic linkages and/or developmental responses to external factors, such as environmental fluctuations, climate, irrigation inputs, soil nutrients, pathologies, and seasonality. External factors acting on developmental or acclamatory responses in plants can be either natural or cultural. We argue that the study of long-term changes in grain morphology on the edges of crop-growing ranges can be informative regarding cultural and environmental constraints in the past.
Collapse
|
22
|
Youssef HM, Allam M, Boussora F, Himmelbach A, Milner SG, Mascher M, Schnurbusch T. Dissecting the Genetic Basis of Lateral and Central Spikelet Development and Grain Traits in Intermedium-Spike Barley ( Hordeum vulgare Convar. Intermedium). PLANTS 2020; 9:plants9121655. [PMID: 33256118 PMCID: PMC7760360 DOI: 10.3390/plants9121655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
Barley (Hordeum vulgare L.) is one of the major grain crops worldwide and considered as a model plant for temperate cereals. One of the barley row-type groups, named intermedium-barley, was used in our previous study where we reported that other genetic loci rather than vrs1 and Int-c could play a role in lateral spikelet development and even in setting grains. To continue this work, we used phenotypic and genotypic data of 254 intermedium-spike barley accessions aimed at dissecting the genetic basis of development and grain traits of lateral and central spikelet using genome wide association (GWAS) analysis. After genotypic data filtering, 8,653 single-nucleotide polymorphism (SNPs) were used for GWAS analysis. A total of 169 significant associations were identified and we focused only on the subset of associations that exceeded the p < 10−4 threshold. Thirty-three highly significant marker-trait-associations (MTAs), represented in 28 different SNPs on all seven chromosomes for the central and/or lateral spikelet traits; such as kernel length, width, area, weight, unfilled spikelet and 1000-kernel weight, were detected. Highly significant associated markers were anchored physically using barley genome sequencing to identify candidate genes to either contain the SNPs or the closest gene to the SNP position. The results showed that 12 MTAs were specific for lateral spikelet traits, nine MTAs were specific for central spikelet traits and seven MTAs for both central and lateral traits. All together, the GWAS and candidate gene results support our hypothesis that lateral spikelet development could be regulated by loci different from those regulating central spikelet development.
Collapse
Affiliation(s)
- Helmy M. Youssef
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.); (F.B.); (A.H.); (S.G.M.); (M.M.)
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- Correspondence: (H.M.Y.); (T.S.); Tel.: 49-3455522683 (H.M.Y.)
| | - Mohamed Allam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.); (F.B.); (A.H.); (S.G.M.); (M.M.)
- Faculty of Agriculture, Assuit University, Assuit 71526, Egypt
| | - Faiza Boussora
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.); (F.B.); (A.H.); (S.G.M.); (M.M.)
- Institute of Arid Lands of Medenine, Route du Djorf km 22.5, Médénine 4100, Tunisia
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.); (F.B.); (A.H.); (S.G.M.); (M.M.)
| | - Sara G. Milner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.); (F.B.); (A.H.); (S.G.M.); (M.M.)
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.); (F.B.); (A.H.); (S.G.M.); (M.M.)
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; (M.A.); (F.B.); (A.H.); (S.G.M.); (M.M.)
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- Correspondence: (H.M.Y.); (T.S.); Tel.: 49-3455522683 (H.M.Y.)
| |
Collapse
|
23
|
Watt C, Zhou G, McFawn LA, Li C. Fine mapping qGL2H, a major locus controlling grain length in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2095-2103. [PMID: 32193568 DOI: 10.1007/s00122-00020-03579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/12/2020] [Indexed: 05/23/2023]
Abstract
A major grain length QTL on chromosome 2H was fine mapped to a 140.9 Kb region containing three genes. Increasing yield is an important target for barley breeding programs. One approach to increase yield is by enhancing individual grain weights through the regulation of grain size. Fine mapping major grain size-related quantitative trait loci is necessary for future marker-assisted selection strategies, yet studies of this nature are limited in barley. In the present study, we utilised a doubled haploid population derived from two Australian malt barley varieties, Vlamingh and Buloke, coupled with extensive genotypic and phenotypic data from three independent environments. A major grain length locus identified on chromosome 2H designated qGL2H was fine mapped to a 140.9 Kb interval. qGL2H was able to account for 25.4% of the phenotypic variation for grain length and 10.2% for grain yield. Underlying qGL2H were three high-confidence predicted genes. One of these genes encodes a MYB transcription factor and represents a promising candidate for further genetic research.
Collapse
Affiliation(s)
- Calum Watt
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Lee-Anne McFawn
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia
- Department of Primary Industry and Regional Development, South Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia.
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia.
- Department of Primary Industry and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
24
|
Watt C, Zhou G, McFawn LA, Li C. Fine mapping qGL2H, a major locus controlling grain length in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2095-2103. [PMID: 32193568 PMCID: PMC7311499 DOI: 10.1007/s00122-020-03579-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
A major grain length QTL on chromosome 2H was fine mapped to a 140.9 Kb region containing three genes. Increasing yield is an important target for barley breeding programs. One approach to increase yield is by enhancing individual grain weights through the regulation of grain size. Fine mapping major grain size-related quantitative trait loci is necessary for future marker-assisted selection strategies, yet studies of this nature are limited in barley. In the present study, we utilised a doubled haploid population derived from two Australian malt barley varieties, Vlamingh and Buloke, coupled with extensive genotypic and phenotypic data from three independent environments. A major grain length locus identified on chromosome 2H designated qGL2H was fine mapped to a 140.9 Kb interval. qGL2H was able to account for 25.4% of the phenotypic variation for grain length and 10.2% for grain yield. Underlying qGL2H were three high-confidence predicted genes. One of these genes encodes a MYB transcription factor and represents a promising candidate for further genetic research.
Collapse
Affiliation(s)
- Calum Watt
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Lee-Anne McFawn
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia
- Department of Primary Industry and Regional Development, South Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, Australia.
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia.
- Department of Primary Industry and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
25
|
Watt C, Zhou G, Li C. Harnessing Transcription Factors as Potential Tools to Enhance Grain Size Under Stressful Abiotic Conditions in Cereal Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:1273. [PMID: 33013947 PMCID: PMC7461896 DOI: 10.3389/fpls.2020.01273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/05/2020] [Indexed: 05/07/2023]
Abstract
Predicted climate change is widely cited to significantly reduce yields of the major cereal crop species in a period where demand is rapidly rising due to a growing global population. This requires exhaustive research to develop genetic resources in order to address the expected production deficiencies which will largely be driven by abiotic stress. Modification of multiple genes is an approach that can address the predicted challenges; however, it is time-consuming and costly to modify multiple genes simultaneously. Transcription factors represent a group of proteins regulating multiple genes simultaneously and are therefore promising targets to concurrently improve multiple traits concurrently, such as abiotic stress tolerance and grain size (a contributor to yield). Many studies have identified the complex role that transcription factors of multiple families have contributed toward abiotic stress tolerance or grain size, although research addressing both simultaneously is in its infancy despite its potential significance for cereal crop improvement. Here we discuss the potential role that transcription factors may contribute toward improving cereal crop productivity under adverse environmental conditions and offer research objectives that need to be addressed before the modification of transcription factors becomes routinely used to positively manipulate multiple target traits.
Collapse
|