1
|
Arrones A, Manrique S, Gomis-Cebolla J, Baraja-Fonseca V, Plazas M, Prohens J, Portis E, Barchi L, Giuliano G, Gramazio P, Vilanova S. Irregular green netting of eggplant fruit peel: a domestication trait controlled by SmGLK2 with potential for fruit colour diversification. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7066-7078. [PMID: 39171373 PMCID: PMC11630072 DOI: 10.1093/jxb/erae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
The distribution of chlorophylls in eggplant (Solanum melongena) peel exhibits either a uniform pattern or an irregular green netting pattern. The latter, manifested as a gradient of dark green netting that is intensified in the proximal part of the fruit on a pale green background, is common in wild relatives and some eggplant landraces. Despite the selection of uniform chlorophylls during domestication, the netting pattern contributes to a greater diversity of fruit colours. Here, we used over 2300 individuals from different populations, including a multi-parent advanced generation inter-cross population for candidate genomic region identification, an F2 population for bulked segregant analysis by sequencing, and advanced backcrosses for edges-to-core fine-mapping, to identify SmGLK2 gene as responsible for the irregular netting in eggplant fruits. We also analysed the gene sequence of 178 S. melongena accessions and 22 wild relative species for tracing the evolutionary changes that the gene has undergone during domestication. Three different mutations were identified leading to the absence of netting. The main causative indel induces a premature stop codon disrupting the protein conformation and function, which was confirmed by western blot analysis and confocal microscopy observations. SmGLK2 has a major role in regulating chlorophyll biosynthesis in eggplant fruit peel.
Collapse
Affiliation(s)
- Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Silvia Manrique
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Joaquin Gomis-Cebolla
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Virginia Baraja-Fonseca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
2
|
Satterlee JW, Alonso D, Gramazio P, Jenike KM, He J, Arrones A, Villanueva G, Plazas M, Ramakrishnan S, Benoit M, Gentile I, Hendelman A, Shohat H, Fitzgerald B, Robitaille GM, Green Y, Swartwood K, Passalacqua MJ, Gagnon E, Hilgenhof R, Huggins TD, Eizenga GC, Gur A, Rutten T, Stein N, Yao S, Poncet A, Bellot C, Frary A, Knapp S, Bendahmane M, Särkinen T, Gillis J, Van Eck J, Schatz MC, Eshed Y, Prohens J, Vilanova S, Lippman ZB. Convergent evolution of plant prickles by repeated gene co-option over deep time. Science 2024; 385:eado1663. [PMID: 39088611 DOI: 10.1126/science.ado1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/06/2024] [Indexed: 08/03/2024]
Abstract
An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.
Collapse
Affiliation(s)
- James W Satterlee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Katharine M Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias Benoit
- French National Institute for Agriculture, Food, and Environment, Laboratory of Plant-Microbe Interactions, Toulouse, France
| | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hagai Shohat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Blaine Fitzgerald
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina M Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yumi Green
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Michael J Passalacqua
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Trevis D Huggins
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Georgia C Eizenga
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Amit Gur
- Cucurbits Section, Department of Vegetable Sciences, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Crop Plant Genetics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Shengrui Yao
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
- Sustainable Agriculture Sciences Center, New Mexico State University, Alcalde, NM, USA
| | - Adrien Poncet
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | - Clement Bellot
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Mohammed Bendahmane
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | | | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
3
|
Omondi EO, Lin CY, Huang SM, Liao CA, Lin YP, Oliva R, van Zonneveld M. Landscape genomics reveals genetic signals of environmental adaptation of African wild eggplants. Ecol Evol 2024; 14:e11662. [PMID: 38983700 PMCID: PMC11232056 DOI: 10.1002/ece3.11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Crop wild relatives (CWR) provide a valuable resource for improving crops. They possess desirable traits that confer resilience to various environmental stresses. To fully utilize crop wild relatives in breeding and conservation programs, it is important to understand the genetic basis of their adaptation. Landscape genomics associates environments with genomic variation and allows for examining the genetic basis of adaptation. Our study examined the differences in allele frequency of 15,416 single nucleotide polymorphisms (SNPs) generated through genotyping by sequencing approach among 153 accessions of 15 wild eggplant relatives and two cultivated species from Africa, the principal hotspot of these wild relatives. We also explored the correlation between these variations and the bioclimatic and soil conditions at their collection sites, providing a comprehensive understanding of the genetic signals of environmental adaptation in African wild eggplant. Redundancy analysis (RDA) results showed that the environmental variation explained 6% while the geographical distances among the collection sites explained 15% of the genomic variation in the eggplant wild relative populations when controlling for population structure. Our findings indicate that even though environmental factors are not the main driver of selection in eggplant wild relatives, it is influential in shaping the genomic variation over time. The selected environmental variables and candidate SNPs effectively revealed grouping patterns according to the environmental characteristics of sampling sites. Using four genotype-environment association methods, we detected 396 candidate SNPs (2.5% of the initial SNPs) associated with eight environmental factors. Some of these SNPs signal genes involved in pathways that help adapt to environmental stresses such as drought, heat, cold, salinity, pests, and diseases. These candidate SNPs will be useful for marker-assisted improvement and characterizing the germplasm of this crop for developing climate-resilient eggplant varieties. The study provides a model for applying landscape genomics to other crops' wild relatives.
Collapse
Affiliation(s)
- Emmanuel O Omondi
- Genetic Resources and Seed Unit World Vegetable Center Tainan Taiwan
| | - Chen-Yu Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | | | - Cheng-An Liao
- Department of Horticulture National Taiwan University Taipei Taiwan
| | - Ya-Ping Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | - Ricardo Oliva
- Plant Pathology World Vegetable Center Tainan Taiwan
| | | |
Collapse
|
4
|
Arrones A, Antar O, Pereira-Dias L, Solana A, Ferrante P, Aprea G, Plazas M, Prohens J, Díez MJ, Giuliano G, Gramazio P, Vilanova S. A novel tomato interspecific ( Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium) MAGIC population facilitates trait association and candidate gene discovery in untapped exotic germplasm. HORTICULTURE RESEARCH 2024; 11:uhae154. [PMID: 39005998 PMCID: PMC11246243 DOI: 10.1093/hr/uhae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
We developed a novel eight-way tomato multiparental advanced generation intercross (MAGIC) population to improve the accessibility of tomato relatives genetic resources to geneticists and breeders. The interspecific tomato MAGIC population (ToMAGIC) was obtained by intercrossing four accessions each of Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium, which are the weedy relative and the ancestor of cultivated tomato, respectively. The eight exotic ToMAGIC founders were selected based on a representation of the genetic diversity and geographical distribution of the two taxa. The resulting MAGIC population comprises 354 lines, which were genotyped using a new 12k tomato single primer enrichment technology panel and yielded 6488 high-quality single-nucleotide polymorphism (SNPs). The genotyping data revealed a high degree of homozygosity, an absence of genetic structure, and a balanced representation of the founder genomes. To evaluate the potential of the ToMAGIC population, a proof of concept was conducted by phenotyping it for fruit size, plant pigmentation, leaf morphology, and earliness. Genome-wide association studies identified strong associations for the studied traits, pinpointing both previously identified and novel candidate genes near or within the linkage disequilibrium blocks. Domesticated alleles for fruit size were recessive and were found, at low frequencies, in wild/ancestral populations. Our findings demonstrate that the newly developed ToMAGIC population is a valuable resource for genetic research in tomato, offering significant potential for identifying new genes that govern key traits in tomato. ToMAGIC lines displaying a pyramiding of traits of interest could have direct applicability for integration into breeding pipelines providing untapped variation for tomato breeding.
Collapse
Affiliation(s)
- Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Oussama Antar
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Andrea Solana
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Giuseppe Aprea
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
5
|
Flores-Saavedra M, Plazas M, Gramazio P, Vicente O, Vilanova S, Prohens J. Growth and antioxidant responses to water stress in eggplant MAGIC population parents, F 1 hybrids and a subset of recombinant inbred lines. BMC PLANT BIOLOGY 2024; 24:560. [PMID: 38877388 PMCID: PMC11179202 DOI: 10.1186/s12870-024-05235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The generation of new eggplant (Solanum melongena L.) cultivars with drought tolerance is a main challenge in the current context of climate change. In this study, the eight parents (seven of S. melongena and one of the wild relative S. incanum L.) of the first eggplant MAGIC (Multiparent Advanced Generation Intercrossing) population, together with four F1 hybrids amongst them, five S5 MAGIC recombinant inbred lines selected for their genetic diversity, and one commercial hybrid were evaluated in young plant stage under water stress conditions (30% field capacity; FC) and control conditions (100% FC). After a 21-day treatment period, growth and biomass traits, photosynthetic pigments, oxidative stress markers, antioxidant compounds, and proline content were evaluated. RESULTS Significant effects (p < 0.05) were observed for genotype, water treatments and their interaction in most of the traits analyzed. The eight MAGIC population parental genotypes displayed a wide variation in their responses to water stress, with some of them exhibiting enhanced root development and reduced foliar biomass. The commercial hybrid had greater aerial growth compared to root growth. The four F1 hybrids among MAGIC parents differed in their performance, with some having significant positive or negative heterosis in several traits. The subset of five MAGIC lines displayed a wide diversity in their response to water stress. CONCLUSION The results show that a large diversity for tolerance to drought is available among the eggplant MAGIC materials, which can contribute to developing drought-tolerant eggplant cultivars.
Collapse
Affiliation(s)
- Martín Flores-Saavedra
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain.
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Oscar Vicente
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| |
Collapse
|
6
|
Prakash NR, Kumar K, Muthusamy V, Zunjare RU, Hossain F. Unique genetic architecture of prolificacy in 'Sikkim Primitive' maize unraveled through whole-genome resequencing-based DNA polymorphism. PLANT CELL REPORTS 2024; 43:134. [PMID: 38702564 DOI: 10.1007/s00299-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
KEY MESSAGE 'Sikkim Primitive' maize landrace, unique for prolificacy (7-9 ears per plant) possesses unique genomic architecture in branching and inflorescence-related gene(s), and locus Zm00001eb365210 encoding glycosyltransferases was identified as the putative candidate gene underlying QTL (qProl-SP-8.05) for prolificacy. The genotype possesses immense usage in breeding high-yielding baby-corn genotypes. 'Sikkim Primitive' is a native landrace of North Eastern Himalayas, and is characterized by having 7-9 ears per plant compared to 1-2 ears in normal maize. Though 'Sikkim Primitive' was identified in the 1960s, it has not been characterized at a whole-genome scale. Here, we sequenced the entire genome of an inbred (MGUSP101) derived from 'Sikkim Primitive' along with three non-prolific (HKI1128, UMI1200, and HKI1105) and three prolific (CM150Q, CM151Q and HKI323) inbreds. A total of 942,417 SNPs, 24,160 insertions, and 27,600 deletions were identified in 'Sikkim Primitive'. The gene-specific functional mutations in 'Sikkim Primitive' were classified as 10,847 missense (54.36%), 402 non-sense (2.015%), and 8,705 silent (43.625%) mutations. The number of transitions and transversions specific to 'Sikkim Primitive' were 666,021 and 279,950, respectively. Among all base changes, (G to A) was the most frequent (215,772), while (C to G) was the rarest (22,520). Polygalacturonate 4-α-galacturonosyltransferase enzyme involved in pectin biosynthesis, cell-wall organization, nucleotide sugar, and amino-sugar metabolism was found to have unique alleles in 'Sikkim Primitive'. The analysis further revealed the Zm00001eb365210 gene encoding glycosyltransferases as the putative candidate underlying QTL (qProl-SP-8.05) for prolificacy in 'Sikkim Primitive'. High-impact nucleotide variations were found in ramosa3 (Zm00001eb327910) and zeaxanthin epoxidase1 (Zm00001eb081460) genes having a role in branching and inflorescence development in 'Sikkim Primitive'. The information generated unraveled the genetic architecture and identified key genes/alleles unique to the 'Sikkim Primitive' genome. This is the first report of whole-genome characterization of the 'Sikkim Primitive' landrace unique for its high prolificacy.
Collapse
Affiliation(s)
- Nitish Ranjan Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India.
| |
Collapse
|
7
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
8
|
Vinay ND, Singh K, Ellur RK, Chinnusamy V, Jaiswal S, Iquebal MA, Munshi AD, Matsumura H, Boopalakrishnan G, Jat GS, Kole C, Gaikwad AB, Kumar D, Dey SS, Behera TK. High-quality Momordica balsamina genome elucidates its potential use in improving stress resilience and therapeutic properties of bitter gourd. FRONTIERS IN PLANT SCIENCE 2024; 14:1258042. [PMID: 38333042 PMCID: PMC10851156 DOI: 10.3389/fpls.2023.1258042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
Introduction Momordica balsamina is the closest wild species that can be crossed with an important fruit vegetable crop, Momordica charantia, has immense medicinal value, and placed under II subclass of primary gene pool of bitter gourd. M. balsamina is tolerant to major biotic and abiotic stresses. Genome characterization of Momordica balsamina as a wild relative of bitter gourd will contribute to the knowledge of the gene pool available for improvement in bitter gourd. There is potential to transfer gene/s related to biotic resistance and medicinal importance from M. balsamina to M. charantia to produce high-quality, better yielding and stress tolerant bitter gourd genotypes. Methods The present study provides the first and high-quality chromosome-level genome assembly of M. balsamina with size 384.90 Mb and N50 30.96 Mb using sequence data from 10x Genomics, Nanopore, and Hi-C platforms. Results A total of 6,32,098 transposons elements; 2,15,379 simple sequence repeats; 5,67,483 transcription factor binding sites; 3,376 noncoding RNA genes; and 41,652 protein-coding genes were identified, and 4,347 disease resistance, 67 heat stress-related, 05 carotenoid-related, 15 salt stress-related, 229 cucurbitacin-related, 19 terpenes-related, 37 antioxidant activity, and 06 sex determination-related genes were characterized. Conclusion Genome sequencing of M. balsamina will facilitate interspecific introgression of desirable traits. This information is cataloged in the form of webgenomic resource available at http://webtom.cabgrid.res.in/mbger/. Our finding of comparative genome analysis will be useful to get insights into the patterns and processes associated with genome evolution and to uncover functional regions of cucurbit genomes.
Collapse
Affiliation(s)
- N. D. Vinay
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Kalpana Singh
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ranjith Kumar Ellur
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anilabha Das Munshi
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | | | - G. Boopalakrishnan
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Gograj Singh Jat
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ambika Baladev Gaikwad
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Barchi L, Aprea G, Rabanus-Wallace MT, Toppino L, Alonso D, Portis E, Lanteri S, Gaccione L, Omondi E, van Zonneveld M, Schafleitner R, Ferrante P, Börner A, Stein N, Díez MJ, Lefebvre V, Salinier J, Boyaci HF, Finkers R, Brouwer M, Bovy AG, Rotino GL, Prohens J, Giuliano G. Analysis of >3400 worldwide eggplant accessions reveals two independent domestication events and multiple migration-diversification routes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1667-1680. [PMID: 37682777 DOI: 10.1111/tpj.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Eggplant (Solanum melongena) is an important Solanaceous crop, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. Its domestication centers and migration and diversification routes are still a matter of debate. We report the largest georeferenced and genotyped collection to this date for eggplant and its wild relatives, consisting of 3499 accessions from seven worldwide genebanks, originating from 105 countries in five continents. The combination of genotypic and passport data points to the existence of at least two main centers of domestication, in Southeast Asia and the Indian subcontinent, with limited genetic exchange between them. The wild and weedy eggplant ancestor S. insanum shows admixture with domesticated S. melongena, similar to what was described for other fruit-bearing Solanaceous crops such as tomato and pepper and their wild ancestors. After domestication, migration and admixture of eggplant populations from different regions have been less conspicuous with respect to tomato and pepper, thus better preserving 'local' phenotypic characteristics. The data allowed the identification of misclassified and putatively duplicated accessions, facilitating genebank management. All the genetic, phenotypic, and passport data have been deposited in the Open Access G2P-SOL database, and constitute an invaluable resource for understanding the domestication, migration and diversification of this cosmopolitan vegetable.
Collapse
Affiliation(s)
- Lorenzo Barchi
- DISAFA - Plant Genetics, University of Turin, Grugliasco, Torino, 10095, Italy
| | - Giuseppe Aprea
- ENEA, Casaccia Res Ctr, Via Anguillarese 301, Rome, 00123, Italy
| | - M Timothy Rabanus-Wallace
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Seeland, OT Gatersleben, 06466, Germany
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | - Laura Toppino
- CREA, Research Centre for Genomics and Bioinformatics, Via Paullese 28, Montanaso Lombardo, LO 26836, Italy
| | - David Alonso
- Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Ezio Portis
- DISAFA - Plant Genetics, University of Turin, Grugliasco, Torino, 10095, Italy
| | - Sergio Lanteri
- DISAFA - Plant Genetics, University of Turin, Grugliasco, Torino, 10095, Italy
| | - Luciana Gaccione
- DISAFA - Plant Genetics, University of Turin, Grugliasco, Torino, 10095, Italy
| | | | | | | | - Paola Ferrante
- ENEA, Casaccia Res Ctr, Via Anguillarese 301, Rome, 00123, Italy
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Seeland, OT Gatersleben, 06466, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Seeland, OT Gatersleben, 06466, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University, Von Siebold Str. 8, Göttingen, 37075, Germany
| | - Maria José Díez
- Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | | | - Jérémy Salinier
- INRAE, GAFL, Montfavet, F-84140, France
- CIRAD La Réunion et Mayotte, UMR PVBMT Saint-Pierre, La Réunion, France
| | - Hatice Filiz Boyaci
- Department of Horticulture, Faculty of Agriculture, University of Recep Tayyip Erdogan, Rize, Turkey
| | - Richard Finkers
- Wageningen University & Research WUR, Wageningen, The Netherlands
- GenNovation B.V., Wageningen, The Netherlands
| | - Matthijs Brouwer
- Wageningen University & Research WUR, Wageningen, The Netherlands
| | - Arnaud G Bovy
- Wageningen University & Research WUR, Wageningen, The Netherlands
| | - Giuseppe Leonardo Rotino
- CREA, Research Centre for Genomics and Bioinformatics, Via Paullese 28, Montanaso Lombardo, LO 26836, Italy
| | - Jaime Prohens
- Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | | |
Collapse
|
10
|
Gramazio P, Alonso D, Arrones A, Villanueva G, Plazas M, Toppino L, Barchi L, Portis E, Ferrante P, Lanteri S, Rotino GL, Giuliano G, Vilanova S, Prohens J. Conventional and new genetic resources for an eggplant breeding revolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6285-6305. [PMID: 37419672 DOI: 10.1093/jxb/erad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.
Collapse
Affiliation(s)
- Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
11
|
Subramaniam R, Kumar VS. Allele mining, amplicon sequencing and computational prediction of Solanum melongena L. FT/TFL1 gene homologs uncovers putative variants associated to seed dormancy and germination. PLoS One 2023; 18:e0285119. [PMID: 37134080 PMCID: PMC10156061 DOI: 10.1371/journal.pone.0285119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023] Open
Abstract
The FT/TFL1 gene homolog family plays a crucial role in the regulation of floral induction, seed dormancy and germination in angiosperms. Despite its importance, the FT/TFL1 gene homologs in eggplant (Solanum melongena L.) have not been characterized to date. In this study, we performed a genome-wide identification of FT/TFL1 genes in eggplant using in silico genome mining. The presence of these genes was validated in four economically important eggplant cultivars (Surya, EP-47 Annamalai, Pant Samrat and Arka Nidhi) through Pacbio RSII amplicon sequencing. Our results revealed the presence of 12 FT/TFL1 gene homologs in eggplant, with evidence of diversification among FT-like genes suggesting their possible adaptations towards various environmental stimuli. The amplicon sequencing also revealed the presence of two alleles for certain genes (SmCEN-1, SmCEN-2, SmMFT-1 and SmMFT-2) of which SmMFT-2 was associated with seed dormancy and germination. This association was further supported by the observation that seed dormancy is rarely reported in domesticated eggplant cultivars, but is commonly observed in wild species. A survey of the genetic regions in domesticated cultivars and a related wild species, S. incanum, showed that the alternative allele of S. incanum was present in some members of the Pant Samrat cultivar, but was absent in most other cultivars. This difference could contribute to the differences in seed traits between wild and domesticated eggplants.
Collapse
Affiliation(s)
- Ranjita Subramaniam
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
12
|
Arrones A, Mangino G, Alonso D, Plazas M, Prohens J, Portis E, Barchi L, Giuliano G, Vilanova S, Gramazio P. Mutations in the SmAPRR2 transcription factor suppressing chlorophyll pigmentation in the eggplant fruit peel are key drivers of a diversified colour palette. FRONTIERS IN PLANT SCIENCE 2022; 13:1025951. [PMID: 36388476 PMCID: PMC9647125 DOI: 10.3389/fpls.2022.1025951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
Understanding the mechanisms by which chlorophylls are synthesized in the eggplant (Solanum melongena) fruit peel is of great relevance for eggplant breeding. A multi-parent advanced generation inter-cross (MAGIC) population and a germplasm collection have been screened for green pigmentation in the fruit peel and used to identify candidate genes for this trait. A genome-wide association study (GWAS) performed with 420 MAGIC individuals revealed a major association on chromosome 8 close to a gene similar to APRR2. Two variants in SmAPRR2, predicted as having a high impact effect, were associated with the absence of fruit chlorophyll pigmentation in the MAGIC population, and a large deletion of 5.27 kb was found in two reference genomes of accessions without chlorophyll in the fruit peel. The validation of the candidate gene SmAPRR2 was performed by its sequencing in a set of MAGIC individuals and through its de novo assembly in 277 accessions from the G2P-SOL eggplant core collection. Two additional mutations in SmAPRR2 associated with the lack of chlorophyll were identified in the core collection set. The phylogenetic analysis of APRR2 reveals orthology within Solanaceae and suggests that specialization of APRR2-like genes occurred independently in Cucurbitaceae and Solanaceae. A strong geographical differentiation was observed in the frequency of predominant mutations in SmAPRR2, resulting in a lack of fruit chlorophyll pigmentation and suggesting that this phenotype may have arisen and been selected independently several times. This study represents the first identification of a major gene for fruit chlorophyll pigmentation in the eggplant fruit.
Collapse
Affiliation(s)
- Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
13
|
Marquez‐Molins J, Hernandez‐Azurdia AG, Urrutia‐Perez M, Pallas V, Gomez G. A circular RNA vector for targeted plant gene silencing based on an asymptomatic viroid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:284-293. [PMID: 35916236 PMCID: PMC9804161 DOI: 10.1111/tpj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Gene silencing for functional studies in plants has been largely facilitated by manipulating viral genomes with inserts from host genes to trigger virus-induced gene silencing (VIGS) against the corresponding mRNAs. However, viral genomes encode multiple proteins and can disrupt plant homeostasis by interfering with endogenous cell mechanisms. To try to circumvent this functional limitation, we have developed a silencing method based on the minimal autonomously-infectious nucleic acids currently known: viroids, which lack proven coding capability. The genome of Eggplant latent viroid, an asymptomatic viroid, was manipulated with insertions ranging between 21 and 42 nucleotides. Our results show that, although larger insertions might be tolerated, the maintenance of the secondary structure appears to be critical for viroid genome stability. Remarkably, these modified ELVd molecules are able to induce systemic infection promoting the silencing of target genes in eggplant. Inspired by the design of artificial microRNAs, we have developed a simple and standardized procedure to generate stable insertions into the ELVd genome capable of silencing a specific target gene. Analogously to VIGS, we have termed our approach viroid-induced gene silencing, and demonstrate that it is a promising tool for dissecting gene functions in eggplant.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Andrea Gabriela Hernandez‐Azurdia
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - María Urrutia‐Perez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| |
Collapse
|
14
|
Aubriot X, Knapp S. A revision of the "spiny solanums" of Tropical Asia ( Solanum, the Leptostemonum Clade, Solanaceae). PHYTOKEYS 2022; 198:1-270. [PMID: 36760991 PMCID: PMC9849010 DOI: 10.3897/phytokeys.198.79514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/20/2022] [Indexed: 06/18/2023]
Abstract
The Leptostemonum Clade, or the "spiny solanums", is the most species-rich monophyletic clade of the large cosmopolitan genus Solanum (Solanaceae) and represents almost half the species diversity of the genus. Species diversity in the clade is highest in the Americas, but significant clusters of endemic taxa occur in the Eastern Hemisphere. We present here a taxonomic revision of the 51 species of spiny solanums occurring in tropical Asia (excluding the island of New Guinea, and the lowlands of Nepal and Bhutan). Three species are described as new: Solanumkachinense X.Aubriot & S.Knapp, sp. nov. from northern Myanmar, S.peikuoense S.S.Ying, sp. nov. from Taiwan, and S.sulawesi X.Aubriot & S.Knapp, sp. nov. from northern Sulawesi, Indonesia. Of the spiny solanums occurring in the region, 38 are native and 13 are introduced from the Americas or Africa, either as adventive weeds or as cultivated plants. Phylogenetic resolution amongst these taxa is still a work in progress, so we have chosen to treat these taxa in a geographical context to aid with identification and further taxon discovery. For the native species we provide complete nomenclatural details for all recognised species and their synonyms, complete descriptions, distributions including maps, common names and uses, and preliminary conservation assessments. For the introduced taxa that have been treated in detail elsewhere we provide details of types, synonyms based on tropical Asian material, general distributions, and common names for the region. We provide lecto- or neotypifications for 67 names; 63 for native and 4 for introduced taxa. All taxa are discussed and compared to similar species; keys are provided for all taxa. We illustrate all native species with herbarium and field photographs and introduced species with field photographs only. All specimens examined for this treatment are included in Suppl. materials 1-3 as searchable files.
Collapse
Affiliation(s)
- Xavier Aubriot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, FranceThe Natural History MuseumLondonUnited Kingdom
- The Natural History Museum, Cromwell Road, London SW7 5BD, UKUniversité Paris-SaclayParisFrance
| | - Sandra Knapp
- The Natural History Museum, Cromwell Road, London SW7 5BD, UKUniversité Paris-SaclayParisFrance
| |
Collapse
|
15
|
Whole-genome resequencing of Sorghum bicolor and S. bicolor × S. halepense lines provides new insights for improving plant agroecological characteristics. Sci Rep 2022; 12:5556. [PMID: 35365708 PMCID: PMC8976056 DOI: 10.1038/s41598-022-09433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Sorghum (Sorghum bicolor L. (Moench)) is the world's fifth economically most important cereal and is a staple particularly in the semi-arid tropics of Africa and Asia. Genetic gains in this crop can benefit from wild relatives such as Sorghum halepense. Genome sequences including those from this wild species can boost the study of genome-wide and intraspecific variation for dissecting the genetic basis and improving important traits in sorghum. The whole-genome resequencing carried out in this work on a panel of 172 populations of S. bicolor and S. bicolor × S. halepense (SbxSh) advanced lines generated a total of 567,046,841 SNPs, 91,825,474 indels, 1,532,171 SVs, and 4,973,961 CNVs. Clearly, SbxSh accumulated more variants and mutations with powerful effects on genetic differentiation. A total of 5,548 genes private to SbxSh mapped to biological process GO enrichment terms; 34 of these genes mapped to root system development (GO: 0022622). Two of the root specific genes i.e., ROOT PRIMORDIUM DEFECTIVE 1 (RPD1; GeneID: 8054879) and RETARDED ROOT GROWTH (RRG, GeneID: 8072111), were found to exert direct effect on root growth and development. This is the first report on whole-genome resequencing of a sorghum panel that includes S. halepense genome. Mining the private variants and genes of this wild species can provide insights capable of boosting sorghum genetic improvement, particularly the perenniality trait that is compliant with agroecological practices, sustainable agriculture, and climate change resilience.
Collapse
|
16
|
Mangino G, Arrones A, Plazas M, Pook T, Prohens J, Gramazio P, Vilanova S. Newly Developed MAGIC Population Allows Identification of Strong Associations and Candidate Genes for Anthocyanin Pigmentation in Eggplant. FRONTIERS IN PLANT SCIENCE 2022; 13:847789. [PMID: 35330873 PMCID: PMC8940277 DOI: 10.3389/fpls.2022.847789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 05/17/2023]
Abstract
Multi-parent advanced generation inter-cross (MAGIC) populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3 Magic EGGplant InCanum, S3MEGGIC; 8-way), constituted by the 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanin presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-insensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence single-nucleotide polymorphisms (SNPs) confirmed a low residual heterozygosity (6.87%), a lack of genetic structure in the S3MEGGIC population, and no differentiation among subpopulations carrying a cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of the founder genomes, suggesting a cryptic selection in favour or against specific parental genomes. Genome-wide association study (GWAS) analysis for PA, FA, and PUC detected strong associations with two myeloblastosis (MYB) genes similar to MYB113 involved in the anthocyanin biosynthesis pathway, and with a COP1 gene which encodes for a photo-regulatory protein and may be responsible for the PUC trait. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1 compared with the tomato genome. Parental genotypes for the three genes were in agreement with the identification of the candidate genes performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.
Collapse
Affiliation(s)
- Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Torsten Pook
- Animal Breeding and Genetics Group, Department of Animal Sciences, Center for Integrated Breeding Research, University of Göttingen, Göttingin, Germany
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
17
|
Mekbib Y, Tesfaye K, Dong X, Saina JK, Hu GW, Wang QF. Whole-genome resequencing of Coffea arabica L. (Rubiaceae) genotypes identify SNP and unravels distinct groups showing a strong geographical pattern. BMC PLANT BIOLOGY 2022; 22:69. [PMID: 35164709 PMCID: PMC8842891 DOI: 10.1186/s12870-022-03449-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 06/04/2023]
Abstract
BACKGROUND Coffea arabica L. is an economically important agricultural crop and the most popular beverage worldwide. As a perennial crop with recalcitrant seed, conservation of the genetic resources of coffee can be achieved through the complementary approach of in-situ and ex-situ field genebank. In Ethiopia, a large collection of C. arabica L. germplasm is preserved in field gene banks. Here, we report the whole-genome resequencing of 90 accessions from Choche germplasm bank representing garden and forest-based coffee production systems using Illumina sequencing technology. RESULTS The genome sequencing generated 6.41 billion paired-end reads, with a mean of 71.19 million reads per sample. More than 93% of the clean reads were mapped onto the C. arabica L. reference genome. A total of 11.08 million variants were identified, among which 9.74 million (87.9%) were SNPs (Single nucleotide polymorphisms) and 1.34 million (12.1%) were InDels. In all accessions, genomic variants were unevenly distributed across the coffee genome. The phylogenetic analysis using the SNP markers displayed distinct groups. CONCLUSIONS Resequencing of the coffee accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs discovered in this study might contribute to the variation in important pathways of genes for important agronomic traits such as caffeine content, yield, disease, and pest in coffee. Moreover, the genome resequencing data and the genetic markers identified from 90 accessions provide insight into the genetic variation of the coffee germplasm and facilitate a broad range of genetic studies.
Collapse
Affiliation(s)
- Yeshitila Mekbib
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Ethiopian Biodiversity Institute, P.O. Box 30726, Addis Ababa, Ethiopia
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa, Ethiopia
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Josphat K Saina
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
18
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
19
|
Abstract
Eggplant is one of the most important vegetable crops known for its nutritive benefits due to the abundance of various bioactive compounds, which include proteins, vitamins, minerals, carbohydrates, phenolics, and dry matter content. In addition, eggplant has significant pharmaceutical properties that have been recently recognized. Eggplant produces secondary metabolites, including glycoalkaloids, antioxidant compounds, and vitamins, which appear to be the major source of its health benefits. It has been reported that there is a considerable correlation between the regular use of phytochemicals and the defense against diseases. Therefore, researchers must analyze the biochemical composition of eggplants to obtain more information about their nutritional quality and health benefits. In this review, an attempt is made to explain the qualitative and quantitative aspects of different biochemicals present in eggplant, in addition to their beneficial health effects.
Collapse
|
20
|
Barchi L, Rabanus‐Wallace MT, Prohens J, Toppino L, Padmarasu S, Portis E, Rotino GL, Stein N, Lanteri S, Giuliano G. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:579-596. [PMID: 33964091 PMCID: PMC8453987 DOI: 10.1111/tpj.15313] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/20/2023]
Abstract
Eggplant (Solanum melongena L.) is an important horticultural crop and one of the most widely grown vegetables from the Solanaceae family. It was domesticated from a wild, prickly progenitor carrying small, round, non-anthocyanic fruits. We obtained a novel, highly contiguous genome assembly of the eggplant '67/3' reference line, by Hi-C retrofitting of a previously released short read- and optical mapping-based assembly. The sizes of the 12 chromosomes and the fraction of anchored genes in the improved assembly were comparable to those of a chromosome-level assembly. We resequenced 23 accessions of S. melongena representative of the worldwide phenotypic, geographic, and genetic diversity of the species, and one each from the closely related species Solanum insanum and Solanum incanum. The eggplant pan-genome contained approximately 51.5 additional megabases and 816 additional genes compared with the reference genome, while the pan-plastome showed little genetic variation. We identified 53 selective sweeps related to fruit color, prickliness, and fruit shape in the nuclear genome, highlighting selection leading to the emergence of present-day S. melongena cultivars from its wild ancestors. Candidate genes underlying the selective sweeps included a MYBL1 repressor and CHALCONE ISOMERASE (for fruit color), homologs of Arabidopsis GLABRA1 and GLABROUS INFLORESCENCE STEMS2 (for prickliness), and orthologs of tomato FW2.2, OVATE, LOCULE NUMBER/WUSCHEL, SUPPRESSOR OF OVATE, and CELL SIZE REGULATOR (for fruit size/shape), further suggesting that selection for the latter trait relied on a common set of orthologous genes in tomato and eggplant.
Collapse
Affiliation(s)
- Lorenzo Barchi
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | | - Jaime Prohens
- COMAVUniversitat Politècnica de ValènciaCamino de Vera 14Valencia46022Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
| | - Ezio Portis
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
- Department of Crop SciencesCenter for Integrated Breeding Research (CiBreed)Georg‐August‐UniversityVon Siebold Str. 8Göttingen37075Germany
| | - Sergio Lanteri
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | |
Collapse
|
21
|
Monroe JG, McKay JK, Weigel D, Flood PJ. The population genomics of adaptive loss of function. Heredity (Edinb) 2021; 126:383-395. [PMID: 33574599 PMCID: PMC7878030 DOI: 10.1038/s41437-021-00403-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/23/2022] Open
Abstract
Discoveries of adaptive gene knockouts and widespread losses of complete genes have in recent years led to a major rethink of the early view that loss-of-function alleles are almost always deleterious. Today, surveys of population genomic diversity are revealing extensive loss-of-function and gene content variation, yet the adaptive significance of much of this variation remains unknown. Here we examine the evolutionary dynamics of adaptive loss of function through the lens of population genomics and consider the challenges and opportunities of studying adaptive loss-of-function alleles using population genetics models. We discuss how the theoretically expected existence of allelic heterogeneity, defined as multiple functionally analogous mutations at the same locus, has proven consistent with empirical evidence and why this impedes both the detection of selection and causal relationships with phenotypes. We then review technical progress towards new functionally explicit population genomic tools and genotype-phenotype methods to overcome these limitations. More broadly, we discuss how the challenges of studying adaptive loss of function highlight the value of classifying genomic variation in a way consistent with the functional concept of an allele from classical population genetics.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA.
| | - John K McKay
- College of Agriculture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Breeding, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
22
|
Gramazio P, Jaén-Molina R, Vilanova S, Prohens J, Marrero Á, Caujapé-Castells J, Anderson GJ. Fostering Conservation via an Integrated Use of Conventional Approaches and High-Throughput SPET Genotyping: A Case Study Using the Endangered Canarian Endemics Solanum lidii and S. vespertilio (Solanaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:757. [PMID: 32754166 PMCID: PMC7381301 DOI: 10.3389/fpls.2020.00757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/12/2020] [Indexed: 05/29/2023]
Abstract
Islands provide unique opportunities to integrated research approaches to study evolution and conservation because boundaries are circumscribed, geological ages are often precise, and many taxa are greatly imperiled. We combined morphological and hybridization studies with high-throughput genotyping platforms to streamline relationships in the endangered monophyletic and highly diverse lineage of Solanum in the Canarian archipelago, where three endemic taxa are currently recognized. Inter-taxa hybridizations were performed, and morphological expression was assessed with a common-garden approach. Using the eggplant Single Primer Enrichment Technology (SPET) platform with 5,093 probes, 74 individuals of three endemic taxa (Solanum lidii, S. vespertilio subsp. vespertilio, and S. vespertilio subsp. doramae) were sampled for SNPs. While morphological and breeding studies showed clear distinctions and some continuous variation, inter-taxon hybrids were fertile and heterotic for vigor traits. SPET genotyping revealed 1,421 high-quality SNPs and supported four, not three, distinct taxonomic entities associated with post-emergence geological, ecological and geographic factors of the islands. Given the lack of barriers to hybridization among all the taxa and their molecular differences, great care must be taken in population management. Conservation strategies must take account of the sexual and breeding systems and genotypic distribution among populations to successfully conserve and restore threatened/endangered island taxa, as exemplified by Solanum on the Canary Islands.
Collapse
Affiliation(s)
- Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Ruth Jaén-Molina
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Águedo Marrero
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juli Caujapé-Castells
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gregory J. Anderson
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
23
|
Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introgression lines (ILs) of eggplant (Solanum melongena) represent a resource of high value for breeding and the genetic analysis of important traits. We have conducted a phenotypic evaluation in two environments (open field and screenhouse) of 16 ILs from the first set of eggplant ILs developed so far. Each of the ILs carries a single marker-defined chromosomal segment from the wild eggplant relative S. incanum (accession MM577) in the genetic background of S. melongena (accession AN-S-26). Seventeen agronomic traits were scored to test the performance of ILs compared to the recurrent parent and of identifying QTLs for the investigated traits. Significant morphological differences were found between parents, and the hybrid was heterotic for vigour-related traits. Despite the presence of large introgressed fragments from a wild exotic parent, individual ILs did not display differences with respect to the recipient parent for most traits, although significant genotype × environment interaction (G × E ) was detected for most traits. Heritability values for the agronomic traits were generally low to moderate. A total of ten stable QTLs scattered across seven chromosomes was detected. For five QTLs, the S. incanum introgression was associated with higher mean values for plant- and flower-related traits, including vigour prickliness and stigma length. For one flower- and four fruit-related-trait QTLs, including flower peduncle and fruit pedicel lengths and fruit weight, the S. incanum introgression was associated with lower mean values for fruit-related traits. Evidence of synteny to other previously reported in eggplant populations was found for three of the fruit-related QTLs. The other seven stable QTLs are new, demonstrating that eggplant ILs are of great interest for eggplant breeding under different environments.
Collapse
|