1
|
Kim S, Kim TH. Identification of the Novel Small Compound Stress Response Regulators 1 and 2 That Affect Plant Abiotic Stress Signaling. Biomolecules 2024; 14:1177. [PMID: 39334943 PMCID: PMC11429841 DOI: 10.3390/biom14091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, limit plant growth and development, reducing crop yields. Therefore, a more comprehensive understanding of the signaling mechanisms and responses of plants to changing environmental conditions is crucial for improving sustainable agricultural productivity. Chemical screening was conducted to find novel small compounds that act as regulators of the abiotic stress signaling pathway using the ABA-inducible transgenic reporter line. Small molecules called stress response regulators (SRRs) were isolated by screening a synthetic library composed of 14,400 small compounds, affecting phenotypes such as seed germination, root growth, and gene expression in response to multiple abiotic stresses. Seeds pretreated with SRR compounds positively affected the germination rate and radicle emergence of Arabidopsis and tomato plants under abiotic stress conditions. The SRR-priming treatment enhanced the transcriptional responses of abiotic stress-responsive genes in response to subsequent salt stress. The isolation of the novel molecules SRR1 and SRR2 will provide a tool to elucidate the complex molecular networks underlying the plant stress-tolerant responses.
Collapse
Affiliation(s)
- Seojung Kim
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea;
| | - Tae-Houn Kim
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea;
- Department of Biotechnology, Duksung Women’s University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Huang H, Wang X, Li J, Gao Y, Yang Y, Wang R, Zhou Z, Wang P, Zhang Y. Trends and Directions in Oats Research under Drought and Salt Stresses: A Bibliometric Analysis (1993-2023). PLANTS (BASEL, SWITZERLAND) 2024; 13:1902. [PMID: 39065428 PMCID: PMC11279746 DOI: 10.3390/plants13141902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
With global climate change leading to increasing intensity and frequency of droughts, as well as the growing problem of soil salinization, these factors significantly affect crop growth, yield, and resilience to adversity. Oats are a cereal widely grown in temperate regions and are rich in nutritive value; however, the scientific literature on the response of oat to drought and salt stress has not yet been analyzed in detail. This study comprehensively analyzed the response of oat to drought stress and salt stress using data from the Web of Science core database and bibliometric methods with R (version4.3.1), VOSviewer (version 1.6.19), and Citespace (version6.3.1.0) software. The number of publications shows an increasing trend in drought stress and salt stress in oat over the past 30 years. In the field of drought-stress research, China, the United States, and Canada lead in terms of literature publication, with the most academic achievements being from China Agricultural University and Canadian Agricultural Food University. The journal with the highest number of published papers is Field Crops Research. Oat research primarily focuses on growth, yield, physiological and biochemical responses, and strategies for improving drought resistance. Screening of drought-tolerant genotypes and transformation of drought-tolerant genes may be key directions for future oat drought research. In the field of salt-stress research, contributions from China, the United States, and India stand out, with the Chinese Academy of Agricultural Sciences and Inner Mongolia Agricultural University producing the most significant research results. The largest number of published articles has been found in the Physiologia Plantarum journal. Current oat salt-stress research primarily covers growth, physiological and biochemical responses, and salt-tolerance mechanisms. It is expected that future oat salt research will focus more on physiological and biochemical responses, as well as gene-editing techniques. Despite achievements under single-stress conditions, combined drought and salt-stress effects on oat remain understudied, necessitating future research on their interaction at various biological levels. The purpose of this study is to provide potential theoretical directions for oat research on drought and salt stress.
Collapse
Affiliation(s)
- Haiyan Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (X.W.); (J.L.); (Y.Y.); (R.W.); (Z.Z.)
| | - Xiangtao Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (X.W.); (J.L.); (Y.Y.); (R.W.); (Z.Z.)
| | - Junqin Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (X.W.); (J.L.); (Y.Y.); (R.W.); (Z.Z.)
| | - Yang Gao
- School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Yuting Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (X.W.); (J.L.); (Y.Y.); (R.W.); (Z.Z.)
| | - Rui Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (X.W.); (J.L.); (Y.Y.); (R.W.); (Z.Z.)
| | - Zijun Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (X.W.); (J.L.); (Y.Y.); (R.W.); (Z.Z.)
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.H.); (X.W.); (J.L.); (Y.Y.); (R.W.); (Z.Z.)
| | - Yujun Zhang
- Guizhou Provincial Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| |
Collapse
|
3
|
Liu J, Shui J, Xu C, Cai X, Wang Q, Wang X. Temporal phenotypic variation of spinach root traits and its relation to shoot performance. Sci Rep 2024; 14:3233. [PMID: 38332007 PMCID: PMC10853530 DOI: 10.1038/s41598-024-53798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
The root system is important for the growth and development of spinach. To reveal the temporal variability of the spinach root system, root traits of 40 spinach accessions were measured at three imaging times (20, 30, and 43 days after transplanting) in this study using a non-destructive and non-invasive root analysis system. Results showed that five root traits were reliably measured by this system (RootViz FS), and two of which were highly correlated with manually measured traits. Root traits had higher variations than shoot traits among spinach accessions, and the trait of mean growth rate of total root length had the largest coefficients of variation across the three imaging times. During the early stage, only tap root length was weakly correlated with shoot traits (plant height, leaf width, and object area (equivalent to plant surface area)), whereas in the third imaging, root fresh weight, total root length, and root area were strongly correlated with shoot biomass-related traits. Five root traits (total root length, tap root length, total root area, root tissue density, and maximal root width) showed high variations with coefficients of variation values (CV ≥ 0.3, except maximal root width) and high heritability (H2 > 0.6) among the three stages. The 40 spinach accessions were classified into five subgroups with different growth dynamics of the primary and lateral roots by cluster analysis. Our results demonstrated the potential of in-situ phenotyping to assess dynamic root growth in spinach and provide new perspectives for biomass breeding based on root system ideotypes.
Collapse
Affiliation(s)
- Ji Liu
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiapeng Shui
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chenxi Xu
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Quanhua Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoli Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
4
|
Wen G, Ma BL, Shi Y, Liu K, Chen W. Selection of oat (Avena sativa L.) drought-tolerant genotypes based on multiple yield-associated traits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4380-4391. [PMID: 36788129 DOI: 10.1002/jsfa.12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Most plant breeding and agricultural practices are based on selecting genotypes for yield. However, this is inadequate to screen crop varieties for specific attributes, such as drought tolerance. In this study, we quantified the response of oat (Avena sativa L.) plant physiological and morphological traits to drought stress and selected some key traits to establish a genotype by yield*trait (GYT)-based method for ranking 30 oat genotypes. The effectiveness of this method was also evaluated under drought conditions. RESULTS Water-deficit treatment significantly reduced leaf chlorophyll, root morphological traits, groat yield and associated components, such as mean grain weight. We observed that the genotypes 'JUSTICE' and 'BOLINA' had the smallest and largest yield loss, respectively, after exposure to drought stress, but showed opposite trends in the biomass allocation of roots and grains. This indicated that drought tolerance was highly dependent on the distribution of photoassimilates. Our results also illustrated that the GYT method is a trade-off approach and more effective in selecting oat ideotypes under drought conditions than the yield-related index method because it combines yield, yield stability, and related agronomic traits in the calculation process. CONCLUSION Drought-tolerant genotypes had more biomass allocated to roots and grains with higher chlorophyll content and better root structure, e.g. longer root lengths than drought-sensitive lines. By integrating yield and yield-related traits, the GYT approach is more practical than traditional single-trait selection methods when assessing drought tolerance. © 2023 His Majesty the King in Right of Canada. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.
Collapse
Affiliation(s)
- Guoqi Wen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Bao-Luo Ma
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Kui Liu
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| |
Collapse
|
5
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. Phenotypic and Genotypic Diversity of Roots Response to Salt in Durum Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:412. [PMID: 36679125 PMCID: PMC9865824 DOI: 10.3390/plants12020412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Soil salinity is a serious threat to food production now and in the near future. In this study, the root system of six durum wheat genotypes, including one highly salt-tolerant (J. Khetifa) used as a check genotype, was evaluated, by a high-throughput phenotyping system, under control and salt conditions at the seedling stage. Genotyping was performed using 11 SSR markers closely linked with genome regions associated with root traits. Based on phenotypic cluster analysis, genotypes were grouped differently under control and salt conditions. Under control conditions, genotypes were clustered mainly due to a root angle, while under salt stress, genotypes were grouped according to their capacity to maintain higher roots length, volume, and surface area, as J. Khetifa, Sebatel, and Azeghar. SSR analysis identified a total of 42 alleles, with an average of about three alleles per marker. Moreover, quite a high number of Private alleles in total, 18 were obtained. The UPGMA phenogram of the Nei (1972) genetic distance clusters for 11 SSR markers and all phenotypic data under control conditions discriminate genotypes almost into the same groups. The study revealed as the combination of high-throughput systems for phenotyping with SSR markers for genotyping it's a useful tool to provide important data for the selection of suitable parental lines for salt-tolerance breeding. Nevertheless, the narrow root angle, which is an important trait in drought tolerance, is not a good indicator of salt tolerance. Instated for salt tolerance is more important the amount of roots.
Collapse
Affiliation(s)
| | | | - Mario A. Pagnotta
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
6
|
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:342-358. [PMID: 34863007 PMCID: PMC9300012 DOI: 10.1111/tpj.15619] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Miki Fujita
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
| | - Fuminori Takahashi
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Department of Biological Science and TechnologyGraduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijyuku, Katsushika‐kuTokyo125‐8585Japan
| | - Kazuko Yamaguchi‐Shinozaki
- Laboratory of Plant Molecular PhysiologyGraduate School of Agricultural and Life SciencesThe University of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
- Research Institute for Agricultural and Life SciencesTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Biotechonology CenterNational Chung Hsing University (NCHU)Taichung402Taiwan
| |
Collapse
|
7
|
Root Trait Variation in Lentil (Lens culinaris Medikus) Germplasm under Drought Stress. PLANTS 2021; 10:plants10112410. [PMID: 34834773 PMCID: PMC8621538 DOI: 10.3390/plants10112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Drought is the most critical environmental factor across the continents affecting food security. Roots are the prime organs for water and nutrient uptake. Fine tuning between water uptake, efficient use and loss determines the genotypic response to water limitations. Targeted breeding for root system architecture needs to be explored to improve water use efficiency in legumes. Hence, the present study was designed to explore root system architecture in lentil germplasm in response to drought. A set of 119 lentil (Lens culinaris Medik.) genotypes was screened in controlled conditions to assess the variability in root traits in relation to drought tolerance at seedling stage. We reported significant variation for different root traits in lentil germplasm. Total root length, surface area, root volume and root diameter were correlated to the survival and growth under drought. Among the studied genotypes, the stress tolerance index varied 0.19–1.0 for survival and 0.09–0.90 for biomass. Based on seedling survival and biomass under control and drought conditions, 11 drought tolerant genotypes were identified, which may be investigated further at a physiological and molecular level for the identification of the genes involved in drought tolerance. Identified lines may also be utilised in a lentil breeding program.
Collapse
|
8
|
Delfin EF, Drobnitch ST, Comas LH. Plant strategies for maximizing growth during water stress and subsequent recovery in Solanum melongena L. (eggplant). PLoS One 2021; 16:e0256342. [PMID: 34469437 PMCID: PMC8409672 DOI: 10.1371/journal.pone.0256342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Climate change is projected to increase the incidence of severe drought in many regions, potentially requiring selection for different traits in crop species to maintain productivity under water stress. In this study, we identified a suite of hydraulic traits associated with high productivity under water stress in four genotypes of S. melongena L. We also assessed the potential for recovery of this suite of traits from drought stress after re-watering. We observed that two genotypes, PHL 4841 and PHL 2778, quickly grew into large plants with smaller, thicker leaves and increasingly poor hydraulic status (a water-spender strategy), whereas PHL 2789 and Mara maintained safer water status and larger leaves but sacrificed large gains in biomass (a water-saver strategy). The best performing genotype under water stress, PHL 2778, additionally showed a significant increase in root biomass allocation relative to other genotypes. Biomass traits of all genotypes were negatively impacted by water deficit and remained impaired after a week of recovery; however, physiological traits such as electron transport capacity of photosystem II, and proportional allocation to root biomass and fine root length, and leaf area recovered after one week, indicating a strong capacity for eggplant to rebound from short-term deficits via recovery of physiological activity and allocation to resource acquiring tissues. These traits should be considered in selection and breeding of eggplant hybrids for future agricultural outlooks.
Collapse
Affiliation(s)
- Evelyn F. Delfin
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines at Los Baños, Laguna, Philippines
- * E-mail:
| | - Sarah Tepler Drobnitch
- Soil and Crop Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Louise H. Comas
- United States Department of Agriculture, Agricultural Research Service, Fort Collins, Colorado, United States of America
| |
Collapse
|
9
|
Identification of Markers for Root Traits Related to Drought Tolerance Using Traditional Rice Germplasm. Mol Biotechnol 2021; 63:1280-1292. [PMID: 34398447 DOI: 10.1007/s12033-021-00380-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
Drought is one of the important constraints affecting rice productivity worldwide. The vigorous shoot and deep root system help to improve drought resistance. In present era, genome-wide association study (GWAS) is the preferred method for mapping of QTLs for complex traits such as root and drought tolerance traits. In the present study, 114 rice genotypes were evaluated for various root and shoot traits under water stress conditions. All genotypes showed a significant amount of variation for various root and shoot traits. Correlation analysis revealed that high dry shoot weight and fresh shoot weight is associated with root length, root volume, fresh root weight and dry root weight. A total of 11 significant marker-trait associations were detected for various root, shoot and drought tolerance traits with the coefficient of determination (R2) ranging from 18.99 to 53.41%. Marker RM252 and RM212 showed association with three root traits which suggests their scope for improvement of root system. In the present study, a novel QTL was detected for root length associated with RM127, explaining 19.30% of variation. The marker alleles with increasing phenotypic effects for root and drought-tolerant traits can be exploited for improvement of root and drought tolerance traits using marker-assisted selection.
Collapse
|
10
|
Colom SM, Baucom RS. Below-ground competition favors character convergence but not character displacement in root traits. THE NEW PHYTOLOGIST 2021; 229:3195-3207. [PMID: 33220075 DOI: 10.1111/nph.17100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Character displacement can play a major role in species ecology and evolution; however, research testing whether character displacement can influence the evolution of root traits in plant systems remains scarce in the literature. Here we investigated the potential that character displacement may influence the evolution of root traits using two closely related morning glory species, Ipomoea purpurea and Ipomoea hederacea. We performed a field experiment where we grew the common morning glory, I. purpurea, in the presence and absence of competition from I. hederacea and examined the potential that the process of character displacement could influence the evolution of root traits. We found maternal line variation in root phenotypes and evidence that below-ground competition acts as an agent of selection on these traits. Our test of character displacement, however, showed evidence of character convergence on our measure of root architecture rather than displacement. These results suggest that plants may be constrained by their local environments to express a phenotype that enhances fitness. Therefore, the conditions of the competitive environment experienced by a plant may influence the potential for character convergence or displacement to influence the evolution of root traits.
Collapse
Affiliation(s)
- Sara M Colom
- University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| | - Regina S Baucom
- University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Formation of Annual Ring Eccentricity in Coarse Roots within the Root Cage of Pinus ponderosa Growing on Slopes. PLANTS 2020; 9:plants9020181. [PMID: 32024307 PMCID: PMC7076429 DOI: 10.3390/plants9020181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
The coarse roots of Pinus ponderosa included in the cage are the ones most involved in tree stability. This study explored the variations in traits, such as volume, cross-sectional area, and radius length of cage roots, and used those data to develop a mathematical model to better understand the type of forces occurring for each shallow lateral root segment belonging to different quadrants of the three-dimensional (3D) root system architecture. The pattern and intensity of these forces were modelled along the root segment from the branching point to the cage edge. Data of root cage volume in the upper 30 cm of soil showed a higher value in the downslope and windward quadrant while, at a deeper soil depth (>30 cm), we found higher values in both upslope and leeward quadrants. The analysis of radius length and the cross-sectional area of the shallow lateral roots revealed the presence of a considerable degree of eccentricity of the annual rings at the branching point and at the cage edge. This eccentricity is due to the formation of compression wood, and the eccentricity changes from the top portion at the branching point to the bottom portion at the cage edge, which we hypothesize may be a response to the variation in mechanical forces occurring in the various zones of the cage. This hypothesis is supported by a mathematical model that shows how the pattern and intensity of different types of mechanical forces are present within the various quadrants of the same root system from the taproot to the cage edge.
Collapse
|