1
|
Duchoslavová J, Jansa J. Strategies of resource sharing in clonal plants: a conceptual model and an example of contrasting strategies in two closely related species. ANNALS OF BOTANY 2024; 134:887-900. [PMID: 39126662 PMCID: PMC11560365 DOI: 10.1093/aob/mcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS Clonal growth is widespread among herbaceous plants, and helps them to cope with environmental heterogeneity through resource integration via connecting clonal organs. Such integration is considered to balance heterogeneity by translocation of resources from rich to poor patches. However, such an 'equalization' strategy is only one of several possible strategies. Under certain conditions, a strategy emphasizing acropetal movement and exploration of new areas or a strategy of accumulating resources in older ramets may be preferred. The optimal strategy may be determined by environmental conditions, such as resource availability and level of light competition. We aimed to summarize possible translocation strategies in a conceptual analysis and to examine translocation in two species from different habitats. METHODS Resource translocation was compared between two closely related species from different habitats with contrasting productivity. The study examined the bidirectional translocation of carbon and nitrogen in pairs of mother and daughter ramets grown under light heterogeneity (one ramet shaded) at two developmental stages using stable-isotope labelling. KEY RESULTS At the early developmental stage, both species translocated resources towards daughters and the translocation was modified by shading. Later, the species of low-productivity habitats, Fragaria viridis, translocated carbon to shaded ramets (both mother and daughter), according to the 'equalization' strategy. In contrast, the species of high-productivity habitats, Potentilla reptans, did not support shaded mother ramets. Nitrogen translocation remained mainly acropetal in both species. CONCLUSIONS The two studied species exhibited different translocation strategies, which may be linked to the habitat conditions experienced by each species. The results indicate that we need to consider different possible strategies. We emphasize the importance of bidirectional tracing in translocation studies and the need for further studies to investigate the translocation patterns in species from contrasting habitats using a comparative approach.
Collapse
Affiliation(s)
- Jana Duchoslavová
- Department of Botany, Faculty of Science, Charles University, 128 43 Praha 2, Czech Republic
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Praha 4, Czech Republic
| |
Collapse
|
2
|
Chen X, Wang J, Liu W, Zhang Y. Limited life-history plasticity in marginal population of an invasive foundation species: Unraveling the genetic underpinnings and ecological implications. Ecol Evol 2024; 14:e11549. [PMID: 38855313 PMCID: PMC11161825 DOI: 10.1002/ece3.11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Plant's life history can evolve in response to variation in climate spatio-temporally, but numerous multiple-species studies overlook species-specific (especially a foundation species) ecological effects and genetic underpinnings. For a species to successfully invade a region, likely to become a foundation species, life-history variation of invasive plants exerts considerable ecological and evolutionary impacts on invaded ecosystems. We examined how an invasive foundation plant, Spartina alterniflora, varied in its life history along latitudinal gradient using a common gardens experiment. Two common gardens were located at range boundary in tropical zone and main distribution area of S. alterniflora in temperate zone in China. Within each population/garden, we measured the onset time of three successive phenological stages constituting the reproductive phase and a fitness trait. In the low-latitude garden with higher temperature, we found that reproductive phase was advanced and its length prolonged compared to the high-latitude garden. This could possibly due to lower plasticity of maturity time. Additionally, plasticity in the length of the reproductive phase positively related with fitness in the low-latitude garden. Marginal population from tropic had the lowest plasticity and fitness, and the poor capacity to cope with changing environment may result in reduction of this population. These results reflected genetic divergence in life history of S. alterniflora in China. Our study provided a novel view to test the center-periphery hypothesis by integration across a plant's life history and highlighted the significance in considering evolution. Such insights can help us to understand long-term ecological consequences of life-history variation, with implications for plant fitness, species interaction, and ecosystem functions under climate change.
Collapse
Affiliation(s)
- Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| | - Jiayu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| |
Collapse
|
3
|
Li H, Wang Y, Feng J, Guo J, Yang Y, Chu L, Liu L, Liu Z. Unequal carbon and nitrogen translocation between ramets affects sexual reproductive performance of the clonal grass Leymus chinensis under nitrogen addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169326. [PMID: 38104804 DOI: 10.1016/j.scitotenv.2023.169326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Sexual reproduction is crucial for population continuity in clonal plants. The effect of nutrient translocation between ramets on sexual reproduction of clonal plants under nitrogen addition remains unclear. In this study, we focused on clonal fragments of Leymus chinensis reproductive ramets with different number of vegetative ramets connected to tillering nodes. A series of pot experiments was conducted under nitrogen addition, including 13C and 15N bidirectional labelling of vegetative ramets and reproductive ramets at the milk-ripe stage, determination of the 13C and 15N amount translocated, and assessment of the quantitative characteristics, nitrogen and carbon concentrations of reproductive ramets and vegetative ramets. Nitrogen addition promoted the translocation of 13C while inhibiting 15N between vegetative ramets and reproductive ramets. With an increase in the number of connected vegetative ramets, the 13C translocated by reproductive ramets and the 15N translocated by reproductive and vegetative ramets gradually increased. The translocation of 13C and 15N between vegetative and reproductive ramets was bidirectional and unequal. The translocated amount of 13C and 15N from reproductive ramets to vegetative ramets was always higher than that from vegetative ramets to reproductive ramets. Nitrogen addition did not prominently affect the sexual reproductive performance of L. chinensis, whereas the number of connected vegetative ramets both positively and negatively affected sexual reproductive performance. Ramet biomass is an important driver of nutrient acquisition by L. chinensis ramets. We demonstrate for the first time that unequal nutrient translocation between ramets affects sexual reproductive performance in L. chinensis. The findings contribute to an enhanced understanding of the reproductive strategies of clonal plant populations in future environments.
Collapse
Affiliation(s)
- Haiyan Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China.
| | - Yuelin Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Ji Feng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jian Guo
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yunfei Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Lishuang Chu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Lili Liu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhikuo Liu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| |
Collapse
|
4
|
Usui T, Lerner D, Eckert I, Angert AL, Garroway CJ, Hargreaves A, Lancaster LT, Lessard JP, Riva F, Schmidt C, van der Burg K, Marshall KE. The evolution of plasticity at geographic range edges. Trends Ecol Evol 2023; 38:831-842. [PMID: 37183152 DOI: 10.1016/j.tree.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Phenotypic plasticity enables rapid responses to environmental change, and could facilitate range shifts in response to climate change. What drives the evolution of plasticity at range edges, and the capacity of range-edge individuals to be plastic, remain unclear. Here, we propose that accurately predicting when plasticity itself evolves or mediates adaptive evolution at expanding range edges requires integrating knowledge on the demography and evolution of edge populations. Our synthesis shows that: (i) the demography of edge populations can amplify or attenuate responses to selection for plasticity through diverse pathways, and (ii) demographic effects on plasticity are modified by the stability of range edges. Our spatially explicit synthesis for plasticity has the potential to improve predictions for range shifts with climate change.
Collapse
Affiliation(s)
- Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | - David Lerner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Isaac Eckert
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Hargreaves
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | | | - Federico Riva
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Chloé Schmidt
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-, Leipzig, Germany
| | - Karin van der Burg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Katie E Marshall
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Guo J, Li H, Yang Y, Yang X. Clonal dominant grass Leymus chinensis benefits more from physiological integration in sexual reproduction than its main companions in a meadow. FRONTIERS IN PLANT SCIENCE 2023; 14:1205166. [PMID: 37636095 PMCID: PMC10452009 DOI: 10.3389/fpls.2023.1205166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The bioecological characteristics of plants determine their status and role in the community. The advantages of dominant species in the community compared with companion species in terms of physiological and ecological characteristics remain unclear. When both dominant and companion species in grassland plant communities are clonal, these plants are able to share resources within clones (physiological integration). However, it is unclear how the clonal dominant and companion species differ in the effect of their physiological integration on sexual reproduction. We chose Leymus chinensis, the dominant species of the most widespread meadow plant communities in the semiarid and arid regions of northern China, and its main companion species L. secalinus, Calamagrostis ripidula, C. pseudophragmites, and C. epigeios and conducted a series of in situ field experiments in a homogeneous environment, including the determination of the phenotypic characteristics of reproductive ramets with connected (allowing physiological integration) and disconnected (preventing integration) tillering nodes for each species, as well as 15N leaf labeling of ramet pairs at the milk-ripe stage. In the clonal populations of the five grasses, physiological integration between vegetative ramets and reproductive ramets interconnected by tillering nodes significantly increased the leaf, stem, inflorescence and ramet biomasses of reproductive ramets, and relative changes in ramet biomass were greatest in L. chinensis. 15N labeling showed that vegetative ramets supplied nutrients to reproductive ramets through tillering nodes; the amount of translocated 15N per unit of reproductive ramet biomass was highest in L. chinensis. Overall, our results indicate that in the five clonal grasses, physiological integration between functionally different ramets under tillering node connections had a significant positive effect on sexual reproduction, indicating interspecific consistency in the contribution of physiological integration to sexual reproduction between the dominant and companion species, but this positive effect was greater in the dominant species L. chinensis than in the four main companion species. Therefore, differences in the physiological integration ability between the dominant and main companion species, identified for the first time in this study, may explain, at least partly, the dominance of L. chinensis in the community.
Collapse
Affiliation(s)
- Jian Guo
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Haiyan Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Yunfei Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Xuechen Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
6
|
Ran F, Yuan Y, Bai X, Li C, Li J, Chen H. Carbon and nitrogen metabolism affects kentucky bluegrass rhizome expansion. BMC PLANT BIOLOGY 2023; 23:221. [PMID: 37101108 PMCID: PMC10131326 DOI: 10.1186/s12870-023-04230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Rhizome is vital for carbon and nitrogen metabolism of the whole plant. However, the effect of carbon and nitrogen in the rhizome on rhizome expansion remains unclear. RESULTS Three wild Kentucky bluegrass (Poa pratensis L.) germplasms with different rhizome expansion capacity (strong expansion capacity, 'YZ'; medium expansion capacity, 'WY'; and weak expansion capacity, 'AD') were planted in the field and the rhizomes number, tiller number, rhizome dry weight, physiological indicators and enzyme activity associated carbon and nitrogen metabolisms were measured. Liquid chromatography coupled to mass spectrometry (LC-MS) was utilized to analyze the metabolomic of the rhizomes. The results showed that the rhizome and tiller numbers of the YZ were 3.26 and 2.69-fold of that of the AD, respectively. The aboveground dry weight of the YZ was the greatest among all three germplasms. Contents of soluble sugar, starch, sucrose, NO3--N, and free amino acid were significantly higher in rhizomes of the YZ than those of the WY and AD (P < 0.05). The activities of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and sucrose phosphate synthase (SPS) of the YZ were the highest among all three germplasm, with values of 17.73 A·g- 1 h- 1, 5.96 µmol·g- 1 min- 1, and 11.35 mg·g- 1 h- 1, respectively. Metabolomics analyses revealed that a total of 28 differentially expressed metabolites (DEMs) were up-regulated, and 25 DEMs were down-regulated in both comparison groups (AD vs. YZ group and WY vs. YZ group). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that metabolites related to histidine metabolism, tyrosine metabolism, tryptophan metabolism, and phenylalanine metabolism were associated with rhizomes carbon and nitrogen metabolism. CONCLUSIONS Overall, the results suggest that soluble sugar, starch, sucrose, NO3--N, and free amino acid in rhizome are important to and promote rhizome expansion in Kentucky bluegrass, while tryptamine, 3-methylhistidine, 3-indoleacetonitrile, indole, and histamine may be key metabolites in promoting carbon and nitrogen metabolism of rhizome.
Collapse
Affiliation(s)
- Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yajuan Yuan
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoming Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanxia Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hui Chen
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
7
|
Guo J, Richards CL, Holsinger KE, Fox GA, Zhang Z, Zhou C. Genetic structure in patchy populations of a candidate foundation plant: a case study of Leymus chinensis using genetic and clonal diversity. AMERICAN JOURNAL OF BOTANY 2021; 108:2371-2387. [PMID: 34636406 DOI: 10.1002/ajb2.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The distribution of genetic diversity on the landscape has critical ecological and evolutionary implications. This may be especially the case on a local scale for foundation plant species because they create and define ecological communities, contributing disproportionately to ecosystem function. METHODS We examined the distribution of genetic diversity and clones, which we defined first as unique multilocus genotypes (MLG), and then by grouping similar MLGs into multilocus lineages. We used 186 markers from inter-simple sequence repeats (ISSR) across 358 ramets from 13 patches of the foundation grass Leymus chinensis. We examined the relationship between genetic and clonal diversities, their variation with patch size, and the effect of the number of markers used to evaluate genetic diversity and structure in this species. RESULTS Every ramet had a unique MLG. Almost all patches consisted of individuals belonging to a single multilocus lineages. We confirmed this with a clustering algorithm to group related genotypes. The predominance of a single lineage within each patch could be the result of the accumulation of somatic mutations, limited dispersal, some sexual reproduction with partners mainly restricted to the same patch, or a combination of all three. CONCLUSIONS We found strong genetic structure among patches of L. chinensis. Consistent with previous work on the species, the clustering of similar genotypes within patches suggests that clonal reproduction combined with somatic mutation, limited dispersal, and some degree of sexual reproduction among neighbors causes individuals within a patch to be more closely related than among patches.
Collapse
Affiliation(s)
- Jian Guo
- School of Life Science, Liaoning University, Shenyang, 110036, P.R. China
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
- Plant Evolutionary Ecology group, University of Tübingen, Tübingen, D-72076, Germany
| | - Kent E Holsinger
- Department of Ecology and Evolutionary Biology, University of Connecticut, U-3043, Storrs, Connecticut, 06269, USA
| | - Gordon A Fox
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zhuo Zhang
- School of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, P.R. China
| | - Chan Zhou
- School of Life Science, Liaoning University, Shenyang, 110036, P.R. China
| |
Collapse
|
8
|
Distinct responses of frond and root to increasing nutrient availability in a floating clonal plant. PLoS One 2021; 16:e0258253. [PMID: 34634063 PMCID: PMC8504747 DOI: 10.1371/journal.pone.0258253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Current knowledge on responses of aquatic clonal plants to resource availability is largely based on studies manipulating limited resource levels, which may have failed to capture the “big picture” for aquatic clonal plants in response to resource availability. In a greenhouse experiment, we grew the floating clonal plant Spirodela polyrhiza under ten nutrient levels (i.e., 1/64×, 1/32×, 1/16×, 1/8×, 1/4×, 1/2×, 1×, 2×, 4× and 8×full-strength Hoagland solution) and examined their responses in terms of clonal growth, morphology and biomass allocations. The responses of total biomass and number of ramets to nutrient availability were unimodal. A similar pattern was found for frond mass, frond length and frond width, even though area per frond and specific frond area fluctuated greatly in response to nutrient availability. In contrast, the responses of root mass and root length to nutrient availability were U-shaped. Moreover, S. polyrhiza invested more to roots under lower nutrient concentrations. These results suggest that nutrient availability may have distinct influences on roots and fronds of the aquatic clonal plant S. polyrhiza, resulting in a great influence on the whole S. polyrhiza population.
Collapse
|
9
|
Physiological Integration Increases Sexual Reproductive Performance of the Rhizomatous Grass Hierochloe glabra. PLANTS 2020; 9:plants9111608. [PMID: 33228108 PMCID: PMC7699368 DOI: 10.3390/plants9111608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Clonal plants usually reproduce asexually through vegetative propagation and sexually by producing seeds. Physiological integration, the translocation of essential resources between ramets, usually improves vegetative reproduction. However, how physiological integration affects sexual reproduction has been less studied in clonal grasses. Here, we chose Hierochloe glabra, a major early spring forage of the eastern Eurasian steppe, and conducted a series of field experiments, including sampling reproductive ramets connected by tillering nodes to different numbers of vegetative ramets and 15N leaf labeling of ramet pairs at the seed-filling stage. In the natural populations of H. glabra, vegetative ramets were taller, had more and larger leaves, and greater biomass than reproductive ramets. Except for reproductive ramet biomass, sexual reproductive characteristics significantly increased with an increase in the number and biomass of vegetative ramets connected to tillering nodes. 15N labeling showed that vegetative ramets supplied nutrients to reproductive ramets through tillering nodes. Overall, our results indicate that significant differences in morphological characteristics and biomass allocation underlie resources translocation from vegetative ramets towards reproductive ramets. Physiological integration between different functional ramets can increase sexual reproductive performance, which will be beneficial to population persistence in H. glabra.
Collapse
|
10
|
Yang X, Henry HAL, Zhong S, Meng B, Wang C, Gao Y, Sun W. Towards a mechanistic understanding of soil nitrogen availability responses to summer vs. winter drought in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140272. [PMID: 32570067 DOI: 10.1016/j.scitotenv.2020.140272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
More frequent and intense drought events resulting from climate change are anticipated to become important drivers of change for terrestrial ecosystem function by affecting water and nutrient cycles. In semiarid grasslands, the responses of soil nitrogen availability to severe drought and the underlying mechanisms are largely unknown. Moreover, the responses and mechanisms may vary between summer and winter drought. We examined soil nitrogen availability responses to extreme reductions in precipitation over summer and winter using a field experiment in a semiarid grassland located in northeast China, and we explored the mechanisms by examining associated changes in abiotic factors (soil property responses) and biotic factors (plant and soil microbial responses). The results demonstrated that both the summer and winter severe drought treatments significantly reduced plant and microbial biomass, whereas summer drought also changed soil microbial community structure. Summer drought, winter drought and combined summer and winter drought decreased the resistance of soil nitrogen availability by 38.7 ± 11.1%, 43.3 ± 11.4% and 43.8 ± 6.0%, respectively. While both changes in abiotic factors (reduced soil water content and total nitrogen content) and biotic factors (reduced plant and microbial biomass) explained the resistance of soil nitrogen availability to drought over summer, only changes in biotic factors (reduced plant and microbial biomass) explained the legacy effect of winter drought. Our results highlight that severe drought can have important consequences for nitrogen cycling in semiarid grasslands, and that both the effects of summer and winter drought must be accounted for in predicting these responses.
Collapse
Affiliation(s)
- Xuechen Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Bo Meng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Chengliang Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Ying Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, PR China.
| |
Collapse
|
11
|
Liu J, Chen C, Pan Y, Zhang Y, Gao Y. The Intensity of Simulated Grazing Modifies Costs and Benefits of Physiological Integration in a Rhizomatous Clonal Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2724. [PMID: 32326471 PMCID: PMC7215795 DOI: 10.3390/ijerph17082724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/13/2023]
Abstract
Clonal plants in grasslands are special species with physiological integration which can enhance their ability to tolerate herbivory stress especially in heterogeneous environments. However, little is known about how grazing intensity affects the trade-off between the benefits and costs of physiological integration, and the mechanism by which physiological integration improves compensatory growth in response to herbivory stress. We examined the effects of simulated grazing intensity on compensatory growth and physiological integration in a clonal species Leymus chinensis with a greenhouse experiment. This experiment was conducted in a factorial design involving nutrient heterogeneity (high-high, high-low, low-high, low-low), simulated grazing by clipping (0%, 25%, 50% or 75% shoot removal) and rhizome connection (intact versus severed) treatments. Compensatory indexes at 25% and 50% clipping levels were higher than that at 75% clipping level except in low-low nutrient treatments. Physiological integration decreased and increased compensatory indexes when the target-ramets worked as exporter and importer, respectively. Generally, clipping increased both benefits and costs of physiological integration, but its net benefits (benefits minus costs) changed with clipping intensity. Physiological integration optimized compensatory growth at light and moderate clipping intensity, and its net benefits determined the high capacity of compensatory growth. Grassland managements such as grazing or mowing at light and moderate intensity would maximize the profit of physiological integration and improve grassland sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Ying Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; (J.L.); (C.C.); (Y.P.); (Y.Z.)
| |
Collapse
|
12
|
Guo J, Li H, Zhou C, Yang Y. Effects of Flag Leaf and Number of Vegetative Ramets on Sexual Reproductive Performance in the Clonal Grass Leymus chinensis. FRONTIERS IN PLANT SCIENCE 2020; 11:534278. [PMID: 33193474 PMCID: PMC7661390 DOI: 10.3389/fpls.2020.534278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/12/2020] [Indexed: 05/16/2023]
Abstract
Sexual reproduction is vital for population adaptation in clonal plants. The flag leaf is considered to be the primary contributor to sexual reproduction in cereal crops, and there is no unified conclusion on the effect of the number of vegetative ramets on grain yield. However, what effects of the flag leaf and the number of vegetative ramets on sexual reproductive performance of clonal grasses are largely unknown. To test this, under field natural conditions, we grew the rhizomatous grass Leymus chinensis in a homogeneous environment and conducted studies concerning the growth, reproduction and physiology of reproductive ramets in clonal populations. We measured the growth characteristics of different aged leaves, dynamically measured the net photosynthetic rate of different aged leaves and organ biomass, measured the sexual reproductive characteristics of reproductive ramets that had different numbers of connecting vegetative ramets, and performed isotope (15N) labeling of ramet pairs at the seed-filling stage. In L. chinensis clonal populations, from the heading stage, the photosynthetic contribution of the functional leaves to seed production was much greater than that of the flag leaf; the photosynthetic capacity of both the functional leaves and the flag leaf all gradually declined. Vegetative ramets translocated their own resources to the connected reproductive ramets, and a large proportion of translocated resources were allocated to the leaf and stem to sustain life activities; increase in the number of connecting vegetative ramets increased floret number, seed number, seed-setting rate, inflorescence biomass, seed biomass, and reproductive allocation of reproductive ramets, and these parameters significantly and positively correlated with the biomass of connecting vegetative ramets. We conclude that the functional leaf rather than the flag leaf of L. chinensis is the primary contributor to seed production. Reproductive ramets adopt a strategy of growth first and reproduction later to allocate the translocated resources between the organs, but vegetative ramets are very advantageous for sexual reproduction under the tillering node connection form in L. chinensis. Overall, our study implies that vegetative ramets not only play an important role in the spatial expansion but also in the sexual reproduction of clonal plant populations.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Haiyan Li
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- *Correspondence: Haiyan Li,
| | - Chan Zhou
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Yunfei Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- Yunfei Yang,
| |
Collapse
|