1
|
Sheng H, Bouwmeester HJ, Munnik T. Phosphate promotes Arabidopsis root skewing and circumnutation through reorganisation of the microtubule cytoskeleton. THE NEW PHYTOLOGIST 2024; 244:2311-2325. [PMID: 39360424 PMCID: PMC11579438 DOI: 10.1111/nph.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Phosphate (Pi) plays a key role in plant growth and development. Hence, plants display a range of adaptations to acquire it, including changes in root system architecture (RSA). Whether Pi triggers directional root growth is unknown. We investigated whether Arabidopsis roots sense Pi and grow towards it, that is whether they exhibit phosphotropism. While roots did exhibit a clear Pi-specific directional growth response, it was, however, always to the left, independent of the direction of the Pi gradient. We discovered that increasing concentrations of KH2PO4, trigger a dose-dependent skewing response, in both primary and lateral roots. This phenomenon is Pi-specific - other nutrients do not trigger this - and involves the reorganisation of the microtubule cytoskeleton in epidermal cells of the root elongation zone. Higher Pi levels promote left-handed cell file rotation that results in right-handed, clockwise, root growth and leftward skewing as a result of the helical movement of roots (circumnutation). Our results shed new light on the role of Pi in root growth, and may provide novel insights for crop breeding to optimise RSA and P-use efficiency.
Collapse
Affiliation(s)
- Hui Sheng
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Teun Munnik
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| |
Collapse
|
2
|
Zhou M, Ferl RJ, Paul AL. Light has a principal role in the Arabidopsis transcriptomic response to the spaceflight environment. NPJ Microgravity 2024; 10:82. [PMID: 39107298 PMCID: PMC11303767 DOI: 10.1038/s41526-024-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The Characterizing Arabidopsis Root Attractions (CARA) spaceflight experiment provides comparative transcriptome analyses of plants grown in both light and dark conditions within the same spaceflight. CARA compared three genotypes of Arabidopsis grown in ambient light and in the dark on board the International Space Station (ISS); Col-0, Ws, and phyD, a phytochrome D mutant in the Col-0 background. In all genotypes, leaves responded to spaceflight with a higher number of differentially expressed genes (DEGs) than root tips, and each genotype displayed distinct light / dark transcriptomic patterns that were unique to the spaceflight environment. The Col-0 leaves exhibited a substantial dichotomy, with ten-times as many spaceflight DEGs exhibited in light-grown plants versus dark-grown plants. Although the total number of DEGs in phyD leaves is not very different from Col-0, phyD altered the manner in which light-grown leaves respond to spaceflight, and many genes associated with the physiological adaptation of Col-0 to spaceflight were not represented. This result is in contrast to root tips, where a previous CARA study showed that phyD substantially reduced the number of DEGs. There were few DEGs, but a series of space-altered gene categories, common to genotypes and lighting conditions. This commonality indicates that key spaceflight genes are associated with signal transduction for light, defense, and oxidative stress responses. However, these key signaling pathways enriched from DEGs showed opposite regulatory direction in response to spaceflight under light and dark conditions, suggesting a complex interaction between light as a signal, and light-signaling genes in acclimation to spaceflight.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA
| | - Robert J Ferl
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA.
- UF Research, University of Florida, 1523 Union Rd, Grinter Hall, Gainesville, FL, 32611, USA.
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA.
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Shahbazi M, Rutter LA, Barker R. Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight. PLANT MOLECULAR BIOLOGY 2024; 114:79. [PMID: 38935184 DOI: 10.1007/s11103-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Lindsay A Rutter
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Diao X, Haveman N, Califar B, Dong X, Prentice B, Paul AL, Ferl RJ. Spaceflight impacts xyloglucan oligosaccharide abundance in Arabidopsis thaliana root cell walls. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:110-118. [PMID: 38670637 DOI: 10.1016/j.lssr.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 04/28/2024]
Abstract
Over the course of more than a decade, space biology investigations have consistently indicated that cell wall remodeling occurs in a variety of spaceflight-grown plants. Here, we describe a mass spectrometric method to study the fundamental composition of xyloglucan, the most abundant hemicellulose in dicot cell walls, in space-grown plants. Four representative Arabidopsis root samples, from a previously conducted spaceflight experiment - Advanced Plant EXperiment - 04 (APEX-04), were used to investigate changes in xyloglucan oligosaccharides abundances in spaceflight-grown plants compared to ground controls. In situ localized enzymatic digestions and surface sampling mass spectrometry analysis provided spatial resolution of the changes in xyloglucan oligosaccharides abundances. Overall, the results showed that oligosaccharide XXLG/XLXG and XXFG branching patterns were more abundant in the lateral roots of spaceflight-grown plants, while XXXG, XLFG, and XLFG/XLFG were more abundant in the lateral roots of ground control plants. In the primary roots, XXFG had a higher abundance in ground controls than in spaceflight plants. This methodology of analyzing the basic components of the cell wall in this paper highlights two important findings. First, that are differences in the composition of xyloglucan oligosaccharides in spaceflight root cell walls compared to ground controls and, second, most of these differences are observed in the lateral roots. Thus, the methodology described in this paper provides insights into spaceflight cell wall modifications for future investigations.
Collapse
Affiliation(s)
- Xizheng Diao
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Natasha Haveman
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA
| | - Brandon Califar
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA
| | - Xiaoru Dong
- Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL, 32603, USA
| | - Boone Prentice
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL, USA.
| | - Robert J Ferl
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA; University of Florida Office of Research, University of Florida, 207 Grinter Hall, Gainesville, FL, USA.
| |
Collapse
|
5
|
Bowlby B. Extraterrestrial agriculture: plant cultivation in space. Biotechniques 2024; 76:169-173. [PMID: 38602376 DOI: 10.2144/btn-2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
[Formula: see text] Researchers are using various techniques and technologies to study how plants grow in extraterrestrial conditions with the hopes of sustaining longer missions for exploring deep space as well as being able to one day cultivate crops on other planets.
Collapse
Affiliation(s)
- Beatrice Bowlby
- Expert Publishing Science Ltd, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|
6
|
Zhou M, Riva A, Gauthier MPL, Kladde MP, Ferl RJ, Paul AL. Single-molecule long-read methylation profiling reveals regional DNA methylation regulated by Elongator Complex Subunit 2 in Arabidopsis roots experiencing spaceflight. Biol Direct 2024; 19:33. [PMID: 38689301 PMCID: PMC11059628 DOI: 10.1186/s13062-024-00476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The Advanced Plant Experiment-04 - Epigenetic Expression (APEX-04-EpEx) experiment onboard the International Space Station examined the spaceflight-altered cytosine methylation in two genetic lines of Arabidopsis thaliana, wild-type Col-0 and the mutant elp2-5, which is deficient in an epigenetic regulator Elongator Complex Subunit 2 (ELP2). Whole-genome bisulfite sequencing (WGBS) revealed distinct spaceflight associated methylation differences, presenting the need to explore specific space-altered methylation at single-molecule resolution to associate specific changes over large regions of spaceflight related genes. To date, tools of multiplexed targeted DNA methylation sequencing remain limited for plant genomes. RESULTS To provide methylation data at single-molecule resolution, Flap-enabled next-generation capture (FENGC), a novel targeted multiplexed DNA capture and enrichment technique allowing cleavage at any specified sites, was applied to survey spaceflight-altered DNA methylation in genic regions of interest. The FENGC capture panel contained 108 targets ranging from 509 to 704 nt within the promoter or gene body regions of gene targets derived from spaceflight whole-genome data sets. In addition to genes with significant changes in expression and average methylation levels between spaceflight and ground control, targets with space-altered distributions of the proportion of methylated cytosines per molecule were identified. Moreover, trends of co-methylation of different cytosine contexts were exhibited in the same DNA molecules. We further identified significant DNA methylation changes in three previously biological process-unknown genes, and loss-of-function mutants of two of these genes (named as EMO1 and EMO2 for ELP2-regulated Methylation in Orbit 1 and 2) showed enhanced root growth rate. CONCLUSIONS FENGC simplifies and reduces the cost of multiplexed, targeted, single-molecule profiling of methylation in plants, providing additional resolution along each DNA molecule that is not seen in population-based short-read data such as WGBS. This case study has revealed spaceflight-altered regional modification of cytosine methylation occurring within single DNA molecules of cell subpopulations, which were not identified by WGBS. The single-molecule survey by FENGC can lead to identification of novel functional genes. The newly identified EMO1 and EMO2 are root growth regulators which may be epigenetically involved in plant adaptation to spaceflight.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, 32610, Gainesville, FL, USA
| | - Marie-Pierre L Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida, 2033 Mowry Rd, 32610, Gainesville, FL, USA
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, University of Florida, 2033 Mowry Rd, 32610, Gainesville, FL, USA
| | - Robert J Ferl
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA.
- UF Research, University of Florida, 1523 Union Rd, Grinter Hall, 32611, Gainesville, FL, USA.
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA.
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, 32610, Gainesville, FL, USA.
| |
Collapse
|
7
|
Yemets A, Shadrina R, Blume R, Plokhovska S, Blume Y. Autophagy formation, microtubule disorientation, and alteration of ATG8 and tubulin gene expression under simulated microgravity in Arabidopsis thaliana. NPJ Microgravity 2024; 10:31. [PMID: 38499552 PMCID: PMC10948825 DOI: 10.1038/s41526-024-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Autophagy plays an important role in plant growth and development, pathogen invasion and modulates plant response and adaptation to various abiotic stress stimuli. The biogenesis and trafficking of autophagosomes involve microtubules (MTs) as important actors in the autophagic process. However, initiation of autophagy in plants under microgravity has not been previously studied. Here we demonstrate how simulated microgravity induces autophagy development involving microtubular reorganization during period of autophagosome formation. It was shown that induction of autophagy with maximal autophagosome formation in root cells of Arabidopsis thaliana is observed after 6 days of clinostating, along with MT disorganization, which leads to visible changes in root morphology. Gradual decrease of autophagosome number was indicated on 9th and 12th days of the experiment as well as no significant re-orientation of MTs were identified. Respectively, analysis of α- and β-tubulins and ATG8 gene expression was carried out. In particular, the most pronounced increase of expression on both 6th and 9th days in response to simulated microgravity was detected for non-paralogous AtATG8b, AtATG8f, AtATG8i, and AtTUA2, AtTUA3 genes, as well as for the pair of β-tubulin duplicates, namely AtTUB2 and AtTUB3. Overall, the main autophagic response was observed after 6 and 9 days of exposure to simulated microgravity, followed by adaptive response after 12 days. These findings provide a key basis for further studies of cellular mechanisms of autophagy and involvement of cytoskeletal structures in autophagy biogenesis under microgravity, which would enable development of new approaches, aimed on enhancing plant adaptation to microgravity.
Collapse
Affiliation(s)
- Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Ruslana Shadrina
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Rostyslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Svitlana Plokhovska
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| |
Collapse
|
8
|
Perelo LW, Gabernet G, Straub D, Nahnsen S. How tool combinations in different pipeline versions affect the outcome in RNA-seq analysis. NAR Genom Bioinform 2024; 6:lqae020. [PMID: 38456178 PMCID: PMC10919883 DOI: 10.1093/nargab/lqae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Data analysis tools are continuously changed and improved over time. In order to test how these changes influence the comparability between analyses, the output of different workflow options of the nf-core/rnaseq pipeline were compared. Five different pipeline settings (STAR+Salmon, STAR+RSEM, STAR+featureCounts, HISAT2+featureCounts, pseudoaligner Salmon) were run on three datasets (human, Arabidopsis, zebrafish) containing spike-ins of the External RNA Control Consortium (ERCC). Fold change ratios and differential expression of genes and spike-ins were used for comparative analyses of the different tools and versions settings of the pipeline. An overlap of 85% for differential gene classification between pipelines could be shown. Genes interpreted with a bias were mostly those present at lower concentration. Also, the number of isoforms and exons per gene were determinants. Previous pipeline versions using featureCounts showed a higher sensitivity to detect one-isoform genes like ERCC. To ensure data comparability in long-term analysis series it would be recommendable to either stay with the pipeline version the series was initialized with or to run both versions during a transition time in order to ensure that the target genes are addressed the same way.
Collapse
Affiliation(s)
- Louisa Wessels Perelo
- Quantitative Biology Center (QBiC), University of Tübingen, Otfried-Müller-Str. 37, 72076 Tübingen, Baden-Württemberg, 72076, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), University of Tübingen, Otfried-Müller-Str. 37, 72076 Tübingen, Baden-Württemberg, 72076, Germany
| | - Daniel Straub
- Quantitative Biology Center (QBiC), University of Tübingen, Otfried-Müller-Str. 37, 72076 Tübingen, Baden-Württemberg, 72076, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Otfried-Müller-Str. 37, 72076 Tübingen, Baden-Württemberg, 72076, Germany
- M3 Research Center, Faculty of Medicine, University of Tübingen, Otfried-Müller-Str. 37, 72076 Tübingen, Baden-Württemberg, 72076, Germany
- Department of Computer Science, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Otfried-Müller-Str. 37, 72076 Tübingen, Baden-Württemberg, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Otfried-Müller-Str. 37, 72076 Tübingen, Baden-Württemberg, 72076, Germany
| |
Collapse
|
9
|
Ferl RJ, Zhou M, Strickland HF, Haveman NJ, Callaham JB, Bandla S, Ambriz D, Paul AL. Transcriptomic dynamics in the transition from ground to space are revealed by Virgin Galactic human-tended suborbital spaceflight. NPJ Microgravity 2023; 9:95. [PMID: 38123588 PMCID: PMC10733374 DOI: 10.1038/s41526-023-00340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The Virgin Galactic Unity 22 mission conducted the first astronaut-manipulated suborbital spaceflight experiment. The experiment examined the operationalization of Kennedy Space Center Fixation Tubes (KFTs) as a generalizable approach to preserving biology at various phases of suborbital flight. The biology chosen for this experiment was Arabidopsis thaliana, ecotype Col-0, because of the plant history of spaceflight experimentation within KFTs and wealth of comparative data from orbital experiments. KFTs were deployed as a wearable device, a leg pouch attached to the astronaut, which proved to be operationally effective during the course of the flight. Data from the inflight samples indicated that the microgravity period of the flight elicited the strongest transcriptomic responses as measured by the number of genes showing differential expression. Genes related to reactive oxygen species and stress, as well as genes associated with orbital spaceflight, were highly represented among the suborbital gene expression profile. In addition, gene families largely unaffected in orbital spaceflight were diversely regulated in suborbital flight, including stress-responsive transcription factors. The human-tended suborbital experiment demonstrated the operational effectiveness of the KFTs in suborbital flight and suggests that rapid transcriptomic responses are a part of the temporal dynamics at the beginning of physiological adaptation to spaceflight.
Collapse
Affiliation(s)
- Robert J Ferl
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA.
- UF Research, University of Florida, 1523 Union Rd, Grinter Hall, Gainesville, FL, 32611, USA.
| | - Mingqi Zhou
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA
| | - Hunter F Strickland
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA
| | - Natasha J Haveman
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA
| | - Jordan B Callaham
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA
| | - Sirisha Bandla
- Virgin Galactic, 1700 Flight Way, 3rd Floor, Tustin, CA, 92782, USA
| | - Daniel Ambriz
- Virgin Galactic, 1700 Flight Way, 3rd Floor, Tustin, CA, 92782, USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, Gainesville, FL, 32611, USA.
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
11
|
Zhu PK, Yang J, Yang DM, Xu YP, He TY, Rong JD, Zheng YS, Chen LY. Identification and characterization of the cupin_1 domain-containing proteins in ma bamboo ( Dendrocalamus latiflorus) and their potential role in rhizome sprouting. FRONTIERS IN PLANT SCIENCE 2023; 14:1260856. [PMID: 37908839 PMCID: PMC10614299 DOI: 10.3389/fpls.2023.1260856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Cupin_1 domain-containing protein (CDP) family, which is a member of the cupin superfamily with the most diverse functions in plants, has been found to be involved in hormone pathways that are closely related to rhizome sprouting (RS), a vital form of asexual reproduction in plants. Ma bamboo is a typical clumping bamboo, which mainly reproduces by RS. In this study, we identified and characterized 53 Dendrocalamus latiflorus CDP genes and divided them into seven subfamilies. Comparing the genetic structures among subfamilies showed a relatively conserved gene structure within each subfamily, and the number of cupin_1 domains affected the conservation among D. latiflorus CDP genes. Gene collinearity results showed that segmental duplication and tandem duplication both contributed to the expansion of D. latiflorus CDP genes, and lineage-specific gene duplication was an important factor influencing the evolution of CDP genes. Expression patterns showed that CDP genes generally had higher expression levels in germinating underground buds, indicating that they might play important roles in promoting shoot sprouting. Transcription factor binding site prediction and co-expression network analysis indicated that D. latiflorus CDPs were regulated by a large number of transcription factors, and collectively participated in rhizome buds and shoot development. This study significantly provided new insights into the evolutionary patterns and molecular functions of CDP genes, and laid a foundation for further studying the regulatory mechanisms of plant rhizome sprouting.
Collapse
Affiliation(s)
- Peng-kai Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - De-ming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-ping Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian-you He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun-dong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-shan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling-yan Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Nakashima J, Pattathil S, Avci U, Chin S, Alan Sparks J, Hahn MG, Gilroy S, Blancaflor EB. Glycome profiling and immunohistochemistry uncover changes in cell walls of Arabidopsis thaliana roots during spaceflight. NPJ Microgravity 2023; 9:68. [PMID: 37608048 PMCID: PMC10444889 DOI: 10.1038/s41526-023-00312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
A large and diverse library of glycan-directed monoclonal antibodies (mAbs) was used to determine if plant cell walls are modified by low-gravity conditions encountered during spaceflight. This method called glycome profiling (glycomics) revealed global differences in non-cellulosic cell wall epitopes in Arabidopsis thaliana root extracts recovered from RNA purification columns between seedlings grown on the International Space Station-based Vegetable Production System and paired ground (1-g) controls. Immunohistochemistry on 11-day-old seedling primary root sections showed that ten of twenty-two mAbs that exhibited spaceflight-induced increases in binding through glycomics, labeled space-grown roots more intensely than those from the ground. The ten mAbs recognized xyloglucan, xylan, and arabinogalactan epitopes. Notably, three xylem-enriched unsubstituted xylan backbone epitopes were more intensely labeled in space-grown roots than in ground-grown roots, suggesting that the spaceflight environment accelerated root secondary cell wall formation. This study highlights the feasibility of glycomics for high-throughput evaluation of cell wall glycans using only root high alkaline extracts from RNA purification columns, and subsequent validation of these results by immunohistochemistry. This approach will benefit plant space biological studies because it extends the analyses possible from the limited amounts of samples returned from spaceflight and help uncover microgravity-induced tissue-specific changes in plant cell walls.
Collapse
Affiliation(s)
- Jin Nakashima
- Analytical Instrumentation Facility, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC, 27606, USA
| | - Sivakumar Pattathil
- Mascoma LLC (Lallemand Inc.), 67 Etna Road, Lebanon, NH, 03766, USA
- The University of Georgia, Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Utku Avci
- The University of Georgia, Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA, 30602, USA
- Department of Agricultural Biotechnology, Faculty of Agriculture, Eskisehir Osmangazi University, 26160, Eskisehir, Turkey
| | - Sabrina Chin
- Department of Botany, 430 Lincoln Drive, University of Wisconsin, Madison, WI, 53706, USA
| | - J Alan Sparks
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Michael G Hahn
- Department of Agricultural Biotechnology, Faculty of Agriculture, Eskisehir Osmangazi University, 26160, Eskisehir, Turkey
| | - Simon Gilroy
- Department of Botany, 430 Lincoln Drive, University of Wisconsin, Madison, WI, 53706, USA
| | - Elison B Blancaflor
- Utilization & Life Sciences Office, Exploration Research and Technology Programs, NASA John F. Kennedy Space Center, Merritt Island, FL, 32899, USA.
| |
Collapse
|
13
|
Wang S, Wang J, Zeng X, Wang T, Yu Z, Wei Y, Cai M, Zhuoma D, Chu XY, Chen YZ, Zhao Y. Database of space life investigations and information on spaceflight plant biology. PLANTA 2023; 258:58. [PMID: 37528331 DOI: 10.1007/s00425-023-04213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Extensive spaceflight life investigations (SLIs) have revealed observable space effects on plants, particularly their growth, nutrition yield, and secondary metabolite production. Knowledge of these effects not only facilitates space agricultural and biopharmaceutical technology development but also provides unique perspectives to ground-based investigations. SLIs are specialized experimental protocols and notable biological phenomena. These require specialized databases, leading to the development of the NASA Science Data Archive, Erasmus Experiment Archive, and NASA GeneLab. The increasing interests of SLIs across diverse fields demand resources with comprehensive content, convenient search facilities, and friendly information presentation. A new database SpaceLID (Space Life Investigation Database http://bidd.group/spacelid/ ) was developed with detailed menu search tools and categorized contents about the phenomena, protocols, and outcomes of 459 SLIs (including 106 plant investigations) of 92 species, where 236 SLIs and 57 plant investigations are uncovered by the existing databases. The usefulness of SpaceLID as an SLI information source is illustrated by the literature-reported analysis of metabolite, nutrition, and symbiosis variations of spaceflight plants. In conclusion, this study extensively investigated the impact of the space environment on plant biology, utilizing SpaceLID as an information source and examining various plant species, including Arabidopsis thaliana, Brassica rapa L., and Glycyrrhiza uralensis Fisch. The findings provide valuable insights into the effects of space conditions on plant physiology and metabolism.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Junyong Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Xian Zeng
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Tao Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Zijie Yu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Yiqi Wei
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Mengna Cai
- Institute of Civil Design, Tsinghua University, Beijing, 102206, China
| | | | - Xin-Yi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 102206, China
| |
Collapse
|
14
|
Haveman NJ, Schuerger AC, Yu PL, Brown M, Doebler R, Paul AL, Ferl RJ. Advancing the automation of plant nucleic acid extraction for rapid diagnosis of plant diseases in space. FRONTIERS IN PLANT SCIENCE 2023; 14:1194753. [PMID: 37389293 PMCID: PMC10304293 DOI: 10.3389/fpls.2023.1194753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
Human space exploration missions will continue the development of sustainable plant cultivation in what are obviously novel habitat settings. Effective pathology mitigation strategies are needed to cope with plant disease outbreaks in any space-based plant growth system. However, few technologies currently exist for space-based diagnosis of plant pathogens. Therefore, we developed a method of extracting plant nucleic acid that will facilitate the rapid diagnosis of plant diseases for future spaceflight applications. The microHomogenizer™ from Claremont BioSolutions, originally designed for bacterial and animal tissue samples, was evaluated for plant-microbial nucleic acid extractions. The microHomogenizer™ is an appealing device in that it provides automation and containment capabilities that would be required in spaceflight applications. Three different plant pathosystems were used to assess the versatility of the extraction process. Tomato, lettuce, and pepper plants were respectively inoculated with a fungal plant pathogen, an oomycete pathogen, and a plant viral pathogen. The microHomogenizer™, along with the developed protocols, proved to be an effective mechanism for producing DNA from all three pathosystems, in that PCR and sequencing of the resulting samples demonstrated clear DNA-based diagnoses. Thus, this investigation advances the efforts to automate nucleic acid extraction for future plant disease diagnosis in space.
Collapse
Affiliation(s)
- Natasha J. Haveman
- NASA Utilization & Life Sciences Office (UB-A), Kennedy Space Center, Merritt Island, FL, United States
| | - Andrew C. Schuerger
- Department of Plant Pathology, University of Florida, Space Life Science Lab, Merritt Island, FL, United States
| | - Pei-Ling Yu
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Mark Brown
- Claremont BioSolutions Limited Liability Company (LLC), Upland, CA, United States
| | - Robert Doebler
- Claremont BioSolutions Limited Liability Company (LLC), Upland, CA, United States
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Robert J. Ferl
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- University of Florida Office of Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D. Current Knowledge about the Impact of Microgravity on Gene Regulation. Cells 2023; 12:cells12071043. [PMID: 37048115 PMCID: PMC10093652 DOI: 10.3390/cells12071043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Microgravity (µg) has a massive impact on the health of space explorers. Microgravity changes the proliferation, differentiation, and growth of cells. As crewed spaceflights into deep space are being planned along with the commercialization of space travelling, researchers have focused on gene regulation in cells and organisms exposed to real (r-) and simulated (s-) µg. In particular, cancer and metastasis research benefits from the findings obtained under µg conditions. Gene regulation is a key factor in a cell or an organism’s ability to sustain life and respond to environmental changes. It is a universal process to control the amount, location, and timing in which genes are expressed. In this review, we provide an overview of µg-induced changes in the numerous mechanisms involved in gene regulation, including regulatory proteins, microRNAs, and the chemical modification of DNA. In particular, we discuss the current knowledge about the impact of microgravity on gene regulation in different types of bacteria, protists, fungi, animals, humans, and cells with a focus on the brain, eye, endothelium, immune system, cartilage, muscle, bone, and various cancers as well as recent findings in plants. Importantly, the obtained data clearly imply that µg experiments can support translational medicine on Earth.
Collapse
Affiliation(s)
- Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
- Correspondence: ; Tel.: +45-28-992-179
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Maik Böhmer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dario A. Ricciardi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gilmar S. Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
16
|
Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life (Basel) 2022; 12:life12101484. [PMID: 36294919 PMCID: PMC9605285 DOI: 10.3390/life12101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how plants respond and adapt to extraterrestrial conditions is essential for space exploration initiatives. Deleterious effects of the space environment on plant development have been reported, such as the unbalance of cell growth and proliferation in the root meristem, or gene expression reprogramming. However, plants are capable of surviving and completing the seed-to-seed life cycle under microgravity. A key research challenge is to identify environmental cues, such as light, which could compensate the negative effects of microgravity. Understanding the crosstalk between light and gravity sensing in space was the major objective of the NASA-ESA Seedling Growth series of spaceflight experiments (2013–2018). Different g-levels were used, with special attention to micro-g, Mars-g, and Earth-g. In spaceflight seedlings illuminated for 4 days with a white light photoperiod and then photostimulated with red light for 2 days, transcriptomic studies showed, first, that red light partially reverted the gene reprogramming induced by microgravity, and that the combination of microgravity and photoactivation was not recognized by seedlings as stressful. Two mutant lines of the nucleolar protein nucleolin exhibited differential requirements in response to red light photoactivation. This observation opens the way to directed-mutagenesis strategies in crop design to be used in space colonization. Further transcriptomic studies at different g-levels showed elevated plastid and mitochondrial genome expression in microgravity, associated with disturbed nucleus–organelle communication, and the upregulation of genes encoding auxin and cytokinin hormonal pathways. At the Mars g-level, genes of hormone pathways related to stress response were activated, together with some transcription factors specifically related to acclimation, suggesting that seedlings grown in partial-g are able to acclimate by modulating genome expression in routes related to space-environment-associated stress.
Collapse
|
17
|
Manzano A, Carnero-Diaz E, Herranz R, Medina FJ. Recent transcriptomic studies to elucidate the plant adaptive response to spaceflight and to simulated space environments. iScience 2022; 25:104687. [PMID: 35856037 PMCID: PMC9287483 DOI: 10.1016/j.isci.2022.104687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Discovering the adaptation mechanisms of plants to the space environment is essential for supporting human space exploration. Transcriptomic analyses allow the identification of adaptation response pathways by detecting changes in gene expression at the global genome level caused by the main factors of the space environment, namely altered gravity and cosmic radiation. This article reviews transcriptomic studies carried out from plants grown in spaceflights and in different ground-based microgravity simulators. Despite differences in plant growth conditions, these studies have shown that cell wall remodeling, oxidative stress, defense response, and photosynthesis are common altered processes in plants grown under spaceflight conditions. European scientists have significantly contributed to the acquisition of this knowledge, e.g., by showing the role of red light in the adaptation response of plants (EMCS experiments) and the mechanisms of cellular response and adaptation mostly affecting cell cycle regulation, using cell cultures in microgravity simulators. Cell wall, photosynthesis, and stress response are key in plant adaptation to space DNA methylation and alternative splicing are among the involved molecular mechanisms Light is an essential factor for plant development, even more in the space environment EMCS and simulation cell culture experiments are the main European contributions
Collapse
Affiliation(s)
- Aránzazu Manzano
- PCNPμG Lab (Plant Cell Nucleolus, Proliferation and Microgravity), Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eugénie Carnero-Diaz
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, EPHE, UA, Paris, 75005, France
| | - Raúl Herranz
- PCNPμG Lab (Plant Cell Nucleolus, Proliferation and Microgravity), Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - F Javier Medina
- PCNPμG Lab (Plant Cell Nucleolus, Proliferation and Microgravity), Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
18
|
Paul AL, Elardo SM, Ferl R. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Commun Biol 2022; 5:382. [PMID: 35552509 PMCID: PMC9098553 DOI: 10.1038/s42003-022-03334-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
The extent to which plants can enhance human life support on other worlds depends on the ability of plants to thrive in extraterrestrial environments using in-situ resources. Using samples from Apollo 11, 12, and 17, we show that the terrestrial plant Arabidopsis thaliana germinates and grows in diverse lunar regoliths. However, our results show that growth is challenging; the lunar regolith plants were slow to develop and many showed severe stress morphologies. Moreover, all plants grown in lunar soils differentially expressed genes indicating ionic stresses, similar to plant reactions to salt, metal and reactive oxygen species. Therefore, although in situ lunar regoliths can be useful for plant production in lunar habitats, they are not benign substrates. The interaction between plants and lunar regolith will need to be further elucidated, and likely mitigated, to best enable efficient use of lunar regolith for life support within lunar stations. Arabidopsis plants were seeded onto lunar soil samples taken directly from the Apollo 11, 12, and 17 missions. Transcriptomic analyses reveal that plants grown in lunar soil differentially express genes associated with salt, metal, and ROS stress.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Interdisciplinary Center for Biotechnology Research and Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| | - Stephen M Elardo
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Robert Ferl
- UF Research and Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Chin S, Blancaflor EB. Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods Mol Biol 2022; 2368:1-41. [PMID: 34647245 DOI: 10.1007/978-1-0716-1677-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gravitropism, the growth of roots and shoots toward or away from the direction of gravity, has been studied for centuries. Such studies have not only led to a better understanding of the gravitropic process itself, but also paved new paths leading to deeper mechanistic insights into a wide range of research areas. These include hormone biology, cell signal transduction, regulation of gene expression, plant evolution, and plant interactions with a variety of environmental stimuli. In addition to contributions to basic knowledge about how plants function, there is accumulating evidence that gravitropism confers adaptive advantages to crops, particularly under marginal agricultural soils. Therefore, gravitropism is emerging as a breeding target for enhancing agricultural productivity. Moreover, research on gravitropism has spawned several studies on plant growth in microgravity that have enabled researchers to uncouple the effects of gravity from other tropisms. Although rapid progress on understanding gravitropism witnessed during the past decade continues to be driven by traditional molecular, physiological, and cell biological tools, these tools have been enriched by technological innovations in next-generation omics platforms and microgravity analog facilities. In this chapter, we review the field of gravitropism by highlighting recent landmark studies that have provided unique insights into this classic research topic while also discussing potential contributions to agriculture on Earth and beyond.
Collapse
Affiliation(s)
- Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
20
|
Yang J, Gao L, Liu X, Zhang X, Wang X, Wang Z. Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum. Sci Rep 2021; 11:22833. [PMID: 34819523 PMCID: PMC8613186 DOI: 10.1038/s41598-021-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cotton is an important natural fiber crop and economic crop worldwide. The quality of cotton fiber directly determines the quality of cotton textiles. Identifying cotton fiber development-related genes and exploring their biological functions will not only help to better understand the elongation and development mechanisms of cotton fibers but also provide a theoretical basis for the cultivation of new cotton varieties with excellent fiber quality. In this study, RNA sequencing technology was used to construct transcriptome databases for different nonfiber tissues (root, leaf, anther and stigma) and fiber developmental stages (7 days post-anthesis (DPA), 14 DPA, and 26 DPA) of upland cotton Coker 312. The sizes of the seven transcriptome databases constructed ranged from 4.43 to 5.20 Gb, corresponding to approximately twice the genome size of Gossypium hirsutum (2.5 Gb). Among the obtained clean reads, 83.32% to 88.22% could be compared to the upland cotton TM-1 reference genome. By analyzing the differential gene expression profiles of the transcriptome libraries of fiber and nonfiber tissues, we obtained 1205, 1135 and 937 genes with significantly upregulated expression at 7 DPA, 14 DPA and 26 DPA, respectively, and 124, 179 and 213 genes with significantly downregulated expression. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed, which revealed that these genes were mainly involved in catalytic activity, carbohydrate metabolism, the cell membrane and organelles, signal transduction and other functions and metabolic pathways. Through gene annotation analysis, many transcription factors and genes related to fiber development were screened. Thirty-six genes were randomly selected from the significantly upregulated genes in fiber, and expression profile analysis was performed using qRT-PCR. The results were highly consistent with the gene expression profile analyzed by RNA-seq, and all of the genes were specifically or predominantly expressed in fiber. Therefore, our RNA sequencing-based comparative transcriptome analysis will lay a foundation for future research to provide new genetic resources for the genetic engineering of improved cotton fiber quality and for cultivating new transgenic cotton germplasms for fiber quality improvement.
Collapse
Affiliation(s)
- Jiangtao Yang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihua Gao
- School of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Xiaojing Liu
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaochun Zhang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xujing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhixing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
22
|
Mortimer JC, Gilliham M. SpaceHort: redesigning plants to support space exploration and on-earth sustainability. Curr Opin Biotechnol 2021; 73:246-252. [PMID: 34563931 DOI: 10.1016/j.copbio.2021.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Crewed missions to Mars are planned within the next twenty years. Production of food and materials in situ will eventually be necessary for mission success. This will require the development of crops which can thrive in environments we can sustain in Space. Here, we discuss the challenges we must solve to provide adequate nutrition to support long term Space habitation. Further, we propose that plants are an ideal biomanufacturing platform for producing pharmaceuticals and biomaterials on demand. Designing Space plants requires advances in our ability to engineer plant biology in a predictive manner. Parallel development of suitable tightly controlled growth environments, including extensive monitoring and sensing, will also be a key enabler. Collectively, such research promises to deliver solutions for progressing sustainable closed environment agriculture on Earth.
Collapse
Affiliation(s)
- Jenny C Mortimer
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia.
| |
Collapse
|
23
|
Paul AL, Haveman N, Califar B, Ferl RJ. Epigenomic Regulators Elongator Complex Subunit 2 and Methyltransferase 1 Differentially Condition the Spaceflight Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:691790. [PMID: 34589093 PMCID: PMC8475764 DOI: 10.3389/fpls.2021.691790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Background: Plants subjected to the novel environment of spaceflight show transcriptomic changes that resemble aspects of several terrestrial abiotic stress responses. Under investigation here is whether epigenetic modulations, similar to those that occur in terrestrial stress responses, have a functional role in spaceflight physiological adaptation. The Advanced Plant Experiment-04 - Epigenetic Expression experiment examined the role of cytosine methylation in spaceflight adaptation. The experiment was conducted onboard the International Space Station, and evaluated the spaceflight-altered, genome-wide methylation profiles of two methylation-regulating gene mutants [methyltransferase 1 (met1-7) and elongator complex subunit 2 (elp2-5)] along with a wild-type Col-0 control. Results: The elp2-5 plants suffered in their physiological adaptation to spaceflight in that their roots failed to extend away from the seed and the overall development of the plants was greatly impaired in space. The met1-7 plants suffered less, with their morphology affected by spaceflight in a manner similar to that of the Col-0 controls. The differentially expressed genes (DEGs) in spaceflight were dramatically different in the elp2-5 and met1-7 plants compared to Col-0, indicating that the disruptions in these mutants resulted in a reprogramming of their spaceflight responses, especially in elp2-5. Many of the genes comprising the spaceflight transcriptome of each genotype were differentially methylated in spaceflight. In Col-0 the majority of the DEGs were representative of the now familiar spaceflight response, which includes genes associated with cell wall remodeling, pathogen responses and ROS signaling. However, the spaceflight transcriptomes of met1-7 and elp2-5 each presented patterns of DEGs that are almost completely different than Col-0, and to each other. Further, the DEGs of the mutant genotypes suggest a more severe spaceflight stress response in the mutants, particularly in elp2-5. Conclusion: Arabidopsis physiological adaptation to spaceflight results in differential DNA methylation in an organ-specific manner. Disruption of Met1 methyltransferase function does not dramatically affect spaceflight growth or morphology, yet met1-7 reprograms the spaceflight transcriptomic response in a unique manner. Disruption of elp2-5 results in poor development in spaceflight grown plants, together with a diminished, dramatically reprogrammed transcriptomic response.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Natasha Haveman
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Brandon Califar
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Robert J. Ferl
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Office of Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Manzano A, Pereda-Loth V, de Bures A, Sáez-Vásquez J, Herranz R, Medina FJ. Light signals counteract alterations caused by simulated microgravity in proliferating plant cells. AMERICAN JOURNAL OF BOTANY 2021; 108:1775-1792. [PMID: 34524692 DOI: 10.1002/ajb2.1728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Light and gravity are fundamental cues for plant development. Our understanding of the effects of light stimuli on plants in space, without gravity, is key to providing conditions for plants to acclimate to the environment. Here we tested the hypothesis that the alterations caused by the absence of gravity in root meristematic cells can be counteracted by light. METHODS Seedlings of wild-type Arabidopsis thaliana and two mutants of the essential nucleolar protein nucleolin (nuc1, nuc2) were grown in simulated microgravity, either under a white light photoperiod or under continuous darkness. Key variables of cell proliferation (cell cycle regulation), cell growth (ribosome biogenesis), and auxin transport were measured in the root meristem using in situ cellular markers and transcriptomic methods and compared with those of a 1 g control. RESULTS The incorporation of a photoperiod regime was sufficient to attenuate or suppress the effects caused by gravitational stress at the cellular level in the root meristem. In all cases, values for variables recorded from samples receiving light stimuli in simulated microgravity were closer to values from the controls than values from samples grown in darkness. Differential sensitivities were obtained for the two nucleolin mutants. CONCLUSIONS Light signals may totally or partially replace gravity signals, significantly improving plant growth and development in microgravity. Despite that, molecular alterations are still compatible with the expected acclimation mechanisms, which need to be better understood. The differential sensitivity of nuc1 and nuc2 mutants to gravitational stress points to new strategies to produce more resilient plants to travel with humans in new extraterrestrial endeavors.
Collapse
Affiliation(s)
- Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | | | - Anne de Bures
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, 66860, France
- Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, 66860, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, 66860, France
- Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, 66860, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
25
|
An integrative Study Showing the Adaptation to Sub-Optimal Growth Conditions of Natural Populations of Arabidopsis thaliana: A Focus on Cell Wall Changes. Cells 2020; 9:cells9102249. [PMID: 33036444 PMCID: PMC7601860 DOI: 10.3390/cells9102249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
In the global warming context, plant adaptation occurs, but the underlying molecular mechanisms are poorly described. Studying natural variation of the model plant Arabidopsisthaliana adapted to various environments along an altitudinal gradient should contribute to the identification of new traits related to adaptation to contrasted growth conditions. The study was focused on the cell wall (CW) which plays major roles in the response to environmental changes. Rosettes and floral stems of four newly-described populations collected at different altitudinal levels in the Pyrenees Mountains were studied in laboratory conditions at two growth temperatures (22 vs. 15 °C) and compared to the well-described Col ecotype. Multi-omic analyses combining phenomics, metabolomics, CW proteomics, and transcriptomics were carried out to perform an integrative study to understand the mechanisms of plant adaptation to contrasted growth temperature. Different developmental responses of rosettes and floral stems were observed, especially at the CW level. In addition, specific population responses are shown in relation with their environment and their genetics. Candidate genes or proteins playing roles in the CW dynamics were identified and will deserve functional validation. Using a powerful framework of data integration has led to conclusions that could not have been reached using standard statistical approaches.
Collapse
|
26
|
Matthus E, Doddrell NH, Guillaume G, Mohammad-Sidik AB, Wilkins KA, Swarbreck SM, Davies JM. Phosphate Deprivation Can Impair Mechano-Stimulated Cytosolic Free Calcium Elevation in Arabidopsis Roots. PLANTS 2020; 9:plants9091205. [PMID: 32942534 PMCID: PMC7570281 DOI: 10.3390/plants9091205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
Abstract
The root tip responds to mechanical stimulation with a transient increase in cytosolic free calcium as a possible second messenger. Although the root tip will grow through a heterogeneous soil nutrient supply, little is known of the consequence of nutrient deprivation for such signalling. Here, the effect of inorganic phosphate deprivation on the root’s mechano-stimulated cytosolic free calcium increase is investigated. Arabidopsisthaliana (cytosolically expressing aequorin as a bioluminescent free calcium reporter) is grown in zero or full phosphate conditions, then roots or root tips are mechanically stimulated. Plants also are grown vertically on a solid medium so their root skewing angle (deviation from vertical) can be determined as an output of mechanical stimulation. Phosphate starvation results in significantly impaired cytosolic free calcium elevation in both root tips and whole excised roots. Phosphate-starved roots sustain a significantly lower root skewing angle than phosphate-replete roots. These results suggest that phosphate starvation causes a dampening of the root mechano-signalling system that could have consequences for growth in hardened, compacted soils.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Nicholas H. Doddrell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
- NIAB EMR, New Road, East Malling ME19 6BJ, UK
| | - Gaëtan Guillaume
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Amirah B. Mohammad-Sidik
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Katie A. Wilkins
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Stéphanie M. Swarbreck
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
- Correspondence:
| |
Collapse
|