1
|
van der Niet T, Cozien RJ. Evidence for moth pollination in a rhinomyiophilous Erica species from the Cape Floristic Region of South Africa. PHYTOKEYS 2024; 246:43-70. [PMID: 39257487 PMCID: PMC11384911 DOI: 10.3897/phytokeys.246.126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/12/2024] [Indexed: 09/12/2024]
Abstract
Contrasting pollination syndromes in closely related species suggest that floral trait divergence is associated with differences in pollination system, but empirical observations are required to confirm syndrome-based predictions. We present a comparative study of two closely related Erica species with contrasting pollination syndromes from the Cape Floristic Region of South Africa. Ericacylindrica has narrowly tubular pale and strongly scented flowers and is known to be hawkmoth-pollinated. The closely related Ericainfundibuliformis has bright flower colours and appears to lack scent, traits that are suggestive of pollination by long-tongued nemestrinid flies (rhinomyiophily). Floral trait measurements revealed that both species exhibit predominantly upright flower orientation and elongated floral tubes, although tube length of E.infundibuliformis is consistently greater than that of E.cylindrica. For both species, petals are brighter than floral tube surfaces, but flowers of E.cylindrica lack the strong UV reflectance found in E.infundibuliformis. Nectar of E.infundibuliformis is more concentrated and produced in larger volumes. Scent composition, but not evening scent emission rates, differed between the species: scent of E.cylindrica is dominated by aromatic compounds, whereas scent of E.infundibuliformis is dominated by (E)-ocimene and other terpenoid compounds and is emitted at higher rates during the day than the evening. Pollinator observations contradicted trait-based predictions: although a single nemestrinid fly captured in the vicinity of E.infundibuliformis did carry Erica pollen, almost all other diurnal flower visitors were nectar-robbing Hymenoptera which did not carry Erica pollen. Contrary to predictions, at two sites and over two flowering seasons, flowers were consistently visited in the evenings by several species of settling moths and hawkmoths which carried pollen, almost exclusively of Erica, on their proboscides. Our findings thus suggest that, despite objective differences in key floral traits between the closely related hawkmoth-pollinated E.cylindrica and E.infundibuliformis, moths are also important pollinators of E.infundibuliformis. A bimodal pollination system involving predominant pollination by moths and occasional visits by long-proboscid flies could partially reconcile findings with predictions. Our study further suggests that hawkmoth pollination may be more widespread in both Erica and the broader Cape flora than has hitherto been assumed and emphasises the importance of nocturnal pollinator observations.
Collapse
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa University of KwaZulu-Natal Pietermaritzburg South Africa
| | - Ruth J Cozien
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa University of KwaZulu-Natal Pietermaritzburg South Africa
| |
Collapse
|
2
|
Seco R, Nagalingam S, Joo E, Gu D, Guenther A. The UCI Fluxtron: A versatile dynamic chamber and software system for biosphere-atmosphere exchange research. CHEMOSPHERE 2024; 364:143061. [PMID: 39127187 DOI: 10.1016/j.chemosphere.2024.143061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Here we present the UCI Fluxtron, a cost-effective multi-enclosure dynamic gas exchange system that provides an adequate level of control of the experimental conditions for investigating biosphere-atmosphere exchange of trace gases. We focus on the hardware and software used to monitor, control, and record the air flows, temperatures, and valve switching, and on the software that processes the collected data to calculate the exchange flux of trace gases. We provide the detailed list of commercial materials used and also the software code developed for the Fluxtron, so that similar dynamic enclosure systems can be quickly adopted by interested researchers. Furthermore, the two software components -Fluxtron Control and Fluxtron Process- work independently of each other, thus being highly adaptable for other experimental designs. Beyond plants, the same experimental setup can be applied to the study of trace gas exchange by animals, microbes, soil, or any materials that can be enclosed in a suitable container.
Collapse
Affiliation(s)
- Roger Seco
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Catalonia, Spain.
| | - Sanjeevi Nagalingam
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Eva Joo
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Dasa Gu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Alex Guenther
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
3
|
Qian C, Xie W, Su Z, Wen X, Ma T. Quantitative analysis and characterization of floral volatiles, and the role of active compounds on the behavior of Heortia vitessoides. FRONTIERS IN PLANT SCIENCE 2024; 15:1439087. [PMID: 39246814 PMCID: PMC11377291 DOI: 10.3389/fpls.2024.1439087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
This study explores the role of floral volatile organic compounds (FVOCs) in insect behavior, focusing on Aquilaria sinensis (AS), a valuable tropical plant threatened by Heortia vitessoides Moore. Despite H. vitessoides' attraction to AS and non-host plants like Elaeocarpus decipiens (ED) and Dalbergia odorifera (DO), little is known about their chemical interactions. FVOCs from these plants were analyzed at 9:00 and 18:00 using GC×GC-QTOF-MS and HS-SPME. The results showed that ED exhibiting the highest concentration (92.340 ng/mg), followed by DO (75.167 ng/mg) and AS (64.450 ng/mg). Through GC-EAD and EAG, a total of 11 FVOC compounds with electrophysiological activates were identified. These compounds, except linalool, showed dose-dependent responses. Y-Tube bioassays confirmed phenylethyl alcohol or the mixture of EAD-active compounds produced positive chemotactic responses in both males and females. FVOCs have the potential to be used as a natural and sustainable alternative to chemical insecticides in pest control.
Collapse
Affiliation(s)
- Chenyu Qian
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wenqi Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhongqi Su
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiujun Wen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tao Ma
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
5
|
Sundaraj Y, Abdullah H, Nezhad NG, Rodrigues KF, Sabri S, Baharum SN. Cloning, Expression and Functional Characterization of a Novel α-Humulene Synthase, Responsible for the Formation of Sesquiterpene in Agarwood Originating from Aquilaria malaccensis. Curr Issues Mol Biol 2023; 45:8989-9002. [PMID: 37998741 PMCID: PMC10670791 DOI: 10.3390/cimb45110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from Aquilaria malaccensis. The partial sesquiterpene synthase gene from the transcriptome data of A. malaccensis was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as AmDG2, has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The AmDG2 was successfully expressed in the E. coli:pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and β-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from A. malaccensis species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.
Collapse
Affiliation(s)
- Yasotha Sundaraj
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
- Faculty of Engineering and Life Sciences, Universiti Selangor (UNISEL), Bestari Jaya 45600, Selangor, Malaysia;
| | - Hasdianty Abdullah
- Faculty of Engineering and Life Sciences, Universiti Selangor (UNISEL), Bestari Jaya 45600, Selangor, Malaysia;
| | - Nima Ghahremani Nezhad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah (UMS), Kota Kinabalu 88400, Sabah, Malaysia;
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
6
|
Pimienta MC, Salazar D, Koptur S. The Nighttime Fragrance of Guettarda scabra (Rubiaceae): Flower Scent and Its Implications for Moth Pollination. Molecules 2023; 28:6312. [PMID: 37687140 PMCID: PMC10489014 DOI: 10.3390/molecules28176312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Floral scent is crucial for attracting pollinators, especially in plants that bloom at night. However, chemical profiles of flowers from nocturnal plants with varied floral morphs are poorly documented, limiting our understanding of their pollination ecology. We investigated the floral scent in Guettarda scabra (L.) Vent. (Rubiaceae), a night-blooming species with short- and long-styled floral morphs, found in the threatened pine rocklands in south Florida, US. By using dynamic headspace sampling and GC-MS analysis, we characterized the chemical profiles of the floral scent in both morphs. Neutral red staining was also employed to determine the specific floral regions responsible for scent emission in G. scabra. The results revealed that G. scabra's fragrance consists entirely of benzenoid and terpenoid compounds, with benzeneacetaldehyde and (E)-β-ocimene as dominant components. There were no differences in the chemical profiles between the long- and short-styled flowers. Staining assays indicated that the corolla lobes, anthers, and stigma were the primary sources of the scent. These findings indicate that G. scabra's floral scent is consistent with that of night-blooming plants pollinated by nocturnal hawkmoths, providing important insights into its chemical ecology and pollinator attraction. This study demonstrates how floral scent chemistry can validate predictions based on flower morphology in hawkmoth-pollinated plants.
Collapse
Affiliation(s)
- María Cleopatra Pimienta
- Department of Biological Sciences, International Center for Tropical Botany, Institute of the Environment, Florida International University, Miami, FL 33199, USA;
| | - Diego Salazar
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA;
| | - Suzanne Koptur
- Department of Biological Sciences, International Center for Tropical Botany, Institute of the Environment, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
7
|
Chybicki IJ. NMπ 2.0: Software update to minimize the risk of false positives among determinants of reproductive success. Mol Ecol Resour 2023. [PMID: 36788731 DOI: 10.1111/1755-0998.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
In plant populations, parentage analysis helps understand factors shaping individual reproductive success. However, estimating reproductive success determinants based on parentage counts requires decoupling the effects of individual fecundity and propagule dispersal. The neighbourhood model implemented in the NMπ software provides a standard solution for this problem based on the fixed-effects regression-like approach. Nonetheless, it has been recently shown that the method is prone to false discoveries when important fecundity determinants are omitted. To account for the unexplained variance in fecundity, the Bayesian approach was developed based on the new model (the hierarchical neighbourhood model; HNM). Here, I present the NMπ software update that allows the HNM approach to be used in the framework of a friendly interface. More importantly, the HNM approach is now made available for both dispersed (seedlings) and nondispersed (seeds with known mothers) progeny data. The Bayesian approach, among others, selects significant fecundity determinants, estimates the proportion of variance in reproductive potential explained by selected determinants (R2 ), and provides individual female and male fecundity values. Although the software was designed to handle microsatellite marker data, a solution is proposed for large sets of single nucleotide polymorphisms. The program can be run on Windows (using either a terminal or a graphical interface) as well as (using a terminal) on Linux, or macOS platforms. In any case, NMπ can utilize multicore processors to speed up the analysis. The updated package containing the code, the executable file, the user manual, and example data is available at https://www.ukw.edu.pl/pracownicy/plik/igor_chybicki/3694/.
Collapse
Affiliation(s)
- Igor J Chybicki
- Department of Genetics, Kazimierz Wielki University, Bydgoszcz, Poland
| |
Collapse
|
8
|
Floral scent divergence across an elevational hybrid zone with varying pollinators. Oecologia 2023; 201:45-57. [PMID: 36374316 DOI: 10.1007/s00442-022-05289-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Divergence in floral traits attractive to different pollinators can promote reproductive isolation in related species. When isolation is incomplete, hybridization may occur, which offers the opportunity to explore mechanisms underlying reproductive isolation. Recent work suggests that divergence in floral scent may frequently contribute to reproductive barriers, although such divergence has seldom been examined in species with generalized pollination. Here, we used two closely related Penstemon species, P. newberryi and P. davidsonii, and their natural hybrids from an elevational gradient with pollinator communities that are predicted to vary in their reliance on floral scent (i.e., primarily hummingbirds at low elevation vs. bees at high elevation). The species vary in a suite of floral traits, but scent is uncharacterized. To address whether scent varies along elevation and potentially contributes to reproductive isolation, we genetically characterized individuals collected at field and identified whether they were parental species or hybrids. We then characterized scent amount and composition. Although the parental species had similar total emissions, some scent characteristics (i.e., scent composition, aromatic emission) diverged between them and may contribute to their isolation. However, the species emitted similar compound sets which could explain hybridization in the contact area. Hybrids were similar to the parents for most scent traits, suggesting that their floral scent would not provide a strong barrier to backcrossing. Our study suggests floral scent may be a trait contributing to species boundaries even in plants with generalized pollination, and reinforces the idea that evolutionary pollinator transitions may involve changes in multiple floral traits.
Collapse
|
9
|
Campbell DR, Sakai AK, Weller SG, Culley TM, Dunbar‐Wallis AK, Andres AM, Wong TG, Dang T, Au B, Ku M, Marcantonio AR, Ngo PJ, Nguyen AA, Tran MH, Tran Q. Genetic potential for changes in breeding systems: Predicted and observed trait changes during artificial selection for male and female allocation in a gynodioecious species. AMERICAN JOURNAL OF BOTANY 2022; 109:1918-1938. [PMID: 36380502 PMCID: PMC9828115 DOI: 10.1002/ajb2.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Evolution of separate sexes from hermaphroditism often proceeds through gynodioecy, but genetic constraints on this process are poorly understood. Genetic (co-)variances and between-sex genetic correlations were used to predict evolutionary responses of multiple reproductive traits in a sexually dimorphic gynodioecious species, and predictions were compared with observed responses to artificial selection. METHODS Schiedea (Caryophyllaceae) is an endemic Hawaiian lineage with hermaphroditic, gynodioecious, subdioecious, and dioecious species. We measured genetic parameters of Schiedea salicaria and used them to predict evolutionary responses of 18 traits in hermaphrodites and females in response to artificial selection for increased male (stamen) biomass in hermaphrodites or increased female (carpel, capsule) biomass in females. Observed responses over two generations were compared with predictions in replicate lines of treatments and controls. RESULTS In only two generations, both stamen biomass in hermaphrodites and female biomass in females responded markedly to direct selection, supporting a key assumption of models for evolution of dioecy. Other biomass traits, pollen and ovule numbers, and inflorescence characters important in wind pollination evolved indirectly in response to selection on sex allocation. Responses generally followed predictions from multivariate selection models, with some responses unexpectedly large due to increased genetic correlations as selection proceeded. CONCLUSIONS Results illustrate the power of artificial selection and utility of multivariate selection models incorporating sex differences. They further indicate that pollen and ovule numbers and inflorescence architecture could evolve in response to selection on biomass allocation to male versus female function, producing complex changes in plant phenotype as separate sexes evolve.
Collapse
Affiliation(s)
- Diane R. Campbell
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Ann K. Sakai
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Stephen G. Weller
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Theresa M. Culley
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOH45221USA
| | - Amy K. Dunbar‐Wallis
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCO80309USA
| | - Allen M. Andres
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Tiffany G. Wong
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Tam Dang
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Bryan Au
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Mickey Ku
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Andrea R. Marcantonio
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Paul J. Ngo
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Andrew A. Nguyen
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Department of Gastroenterology and HepatologyKaiser Permanente WashingtonSeattleWA98112USA
| | - My Hanh Tran
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| | - Quoc‐Phong Tran
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
10
|
Keefover-Ring K, Hetherington MC, Brunet J. Population-specific responses of floral volatiles to abiotic factors in changing environments. AMERICAN JOURNAL OF BOTANY 2022; 109:676-688. [PMID: 35435247 DOI: 10.1002/ajb2.1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Shifts in abiotic factors can affect many plant traits, including floral volatiles. This study examined the response of floral volatiles to water availability and whether phenotypic plasticity to water availability differs among populations. It also investigated genetic differentiation in floral volatiles, determined the effect of temperature on phenotypic plasticity to water availability, and assessed temporal variation in floral scent emission between day and evening, since pollinator visitation differs at those times. METHODS Rocky Mountain columbine plants (Aquilegia coerulea), started from seeds collected in three wild populations in Colorado, Utah, and Arizona, were grown under two water treatments in a greenhouse in Madison, Wisconsin, United States. One population was also grown under the two water treatments, at two temperatures. Air samples were collected from enclosed flowers using dynamic headspace methods and floral volatiles were identified and quantified by gas chromatography (GC) with mass spectrometry (MS). RESULTS Emission of three floral volatiles increased in the wetter environment, indicating phenotypic plasticity. The response of six floral volatiles to water availability differed among populations, suggesting genetic differentiation in phenotypic plasticity. Five floral volatiles varied among populations, and emission of most floral volatiles was greater during the day. CONCLUSIONS Phenotypic plasticity to water availability permits a quick response of floral volatiles in changing environments. The genetic differentiation in phenotypic plasticity suggests that phenotypic plasticity can evolve but complicates predictions of the effects of environmental changes on a plant and its pollinators.
Collapse
Affiliation(s)
- Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | | | - Johanne Brunet
- Vegetable Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Madison, 53706, WI, USA
| |
Collapse
|
11
|
Kim H, Lee G, Song J, Kim SG. Real-Time Visualization of Scent Accumulation Reveals the Frequency of Floral Scent Emissions. FRONTIERS IN PLANT SCIENCE 2022; 13:835305. [PMID: 35548271 PMCID: PMC9083826 DOI: 10.3389/fpls.2022.835305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
Flowers emit a bouquet of volatiles to attract pollinators or to protect flowers from pathogen and herbivore attacks. Most floral volatiles are synthesized in the cytoplasm of petals and released into the headspace at a specific time of day. Various floral scent sampling methods coupled with gas chromatography-mass spectrometry have been used to measure the quality and quantity of floral volatiles. However, little is known about the emission patterns of floral scents. In most cases, it is still unclear whether floral scents emit continuously or discontinuously. Here we measured the frequency with which lily flowers emit scents using optical interferometry. By analyzing the refractive index difference between volatile organic compounds and ambient air, we were able to visualize the accumulation of the volatile vapors. The frequency of volatile emission was calculated from the unique footprint of temporal power spectrum maps. Based on these real-time measurements, we found that lily flowers emit the volatile compounds discontinuously, with pulses observed around every 10-50 min.
Collapse
Affiliation(s)
- Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gilgu Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Junyong Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
12
|
Powers JM, Sakai AK, Weller SG, Campbell DR. Variation in floral volatiles across time, sexes, and populations of wind-pollinated Schiedea globosa. AMERICAN JOURNAL OF BOTANY 2022; 109:345-360. [PMID: 35192727 DOI: 10.1002/ajb2.1820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Floral scent is a key aspect of plant reproduction, but its intraspecific variation at multiple scales is poorly understood. Sexual dimorphism and temporal regulation of scent can be shaped by evolution, and interpopulation variation may be a bridge to species differences. We tested whether intraspecific chemical diversity in a wind-pollinated species where selection from biotic pollination is absent is associated with genetic divergence across the Hawaiian archipelago. METHODS Floral volatiles from females, males, and hermaphrodites of subdioecious Schiedea globosa grown in a common environment from 12 populations were sampled day and night and analyzed by gas chromatography-mass spectrometry. Variation among groups was analyzed by constrained ordination. We also examined the relationships of scent dissimilarity to geographic and genetic distance between populations. RESULTS Flowers increased total emissions at night through higher emissions of several ketones, oximes, and phenylacetaldehyde. Females emitted less total scent per flower at night but more of some aliphatic compounds than males, and males emitted more ketones and aldoximes. Scent differed among populations during day and night. Divergence in scent produced at night increased with geographic distance within 70-100 km and increased with genetic distance for males during the day and night, but not for females. CONCLUSIONS Schiedea globosa exhibits diel and sex-based variation in floral scent despite wind pollination and presumed loss of biotic pollination. In males, interpopulation scent differences are correlated with genetic differences, suggesting that scent evolved with dispersal within and across islands.
Collapse
Affiliation(s)
- John M Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Ann K Sakai
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Stephen G Weller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| |
Collapse
|
13
|
Cagliero C, Mastellone G, Marengo A, Bicchi C, Sgorbini B, Rubiolo P. Analytical strategies for in-vivo evaluation of plant volatile emissions - A review. Anal Chim Acta 2020; 1147:240-258. [PMID: 33485582 DOI: 10.1016/j.aca.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
Biogenic volatile organic compounds (BVOCs) are metabolites emitted by living plants that have a fundamental ecological role since they influence atmospheric chemistry, plant communication and pollinator/herbivore behaviour, and human activities. Over the years, several strategies have been developed to isolate and identify them, and to take advantage of their activity. The main techniques used for in-vivo analyses include dynamic headspace (D-HS), static headspace (S-HS) and, more recently, direct contact (DC) methods in association with gas chromatography (GC) and mass spectrometry (MS). The aim of this review is to provide insight into the in-vivo characterisation of plant volatile emissions with a focus on sampling, analysis and possible applications. This review first provides a critical discussion of the challenges associated with conventional approaches and their limitations and advantages. Then, it describes a series of applications of in-vivo volatilomic studies to enhance how the information they provide impact on our knowledge of plant behaviour, including the effects of abiotic (damage, flooding, climate) and biotic (insect feeding) stress factors in relation to the plants.
Collapse
Affiliation(s)
- Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy.
| | - Giulia Mastellone
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Arianna Marengo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| |
Collapse
|