1
|
Yamawo A, Hagiwara T, Yoshida S, Ohno M, Nakajima R, Mori Y, Hayashi T, Yamagishi H, Shiojiri K. Interspecific Variations in Interplant Communication and Ecological Characteristics in Trees. Ecol Evol 2025; 15:e70876. [PMID: 39830700 PMCID: PMC11739611 DOI: 10.1002/ece3.70876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Plants evolve diverse communication systems in adapting to complex and variable environments. Here, we examined the relationship between plant architecture, population density and inter-plant communication within tree species. We tested the hypothesis that trees of species with complex architecture or high population density (high population density: HPD) communicate among conspecifics via volatiles. In addition, we hypothesize that states of mycorrhizal symbiosis (arbuscular mycorrhizal or ectomycorrhiza) which relation to population density can predict the development of interplant communication in trees. We tested induced defense as an indicator of communication in saplings of nine tree species with various complexities of architecture (number of leaves per shoot) and either low (low population density: LPD) or HPD, either exposed for 10 days to volatiles from a damaged conspecific or not exposed. We evaluated the number of insect-damaged leaves and the area of leaf damage on these trees after 1 and 2 months in the field. Most exposed HPD trees had less leaf damage than controls. However, LPD trees did not differ in leaf damage between treatments. These results are partially supported by plant hormone analysis. In addition, the presence of inter-plant communication was positively correlated with both the number of leaves per shoot (complexity of plant architecture) and population density. The analysis which combined results of previous studies suggests that states of mycorrhizal symbiosis predict the development of interplant communication; interplant communication is common in ectomycorrhiza species. These results suggest the importance of plant architecture and population density as well as state of mycorrhizal symbiosis in the development of interplant communications within tree species.
Collapse
Affiliation(s)
- Akira Yamawo
- Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
- Center for Ecological ResearchKyoto UniversityOtsu, ShigaJapan
| | | | - Satomi Yoshida
- Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | - Misuzu Ohno
- Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | - Riku Nakajima
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
| | - Yusuke Mori
- Faculty of AgricultureRyukoku UniversityOtsuShigaJapan
| | - Tamayo Hayashi
- Faculty of Advanced Science and TechnologyRyukoku UniversityOtsuShigaJapan
| | - Hiroki Yamagishi
- Faculty of Agriculture and Life Science, The Shirakami Research Center for Environmental SciencesHirosaki UniversityHirosakiJapan
| | | |
Collapse
|
2
|
Jaakkola E, Hellén H, Olin S, Pleijel H, Tykkä T, Holst T. Ozone stress response of leaf BVOC emission and photosynthesis in mountain birch ( Betula pubescens spp. czerepanovii) depends on leaf age. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10134. [PMID: 38323128 PMCID: PMC10840370 DOI: 10.1002/pei3.10134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024]
Abstract
Oxidative stress from ozone (O3) causes plants to alter their emission of biogenic volatile organic compounds (BVOC) and their photosynthetic rate. Stress reactions from O3 on birch trees can result in prohibited plant growth and lead to increased BVOC emission rates as well as changes in their compound blend to emit more monoterpenes (MT) and sesquiterpenes (SQT). BVOCs take part in atmospheric reactions such as enhancing the production of secondary organic aerosols (SOA). As the compound blend and emission rate change with O3 stress, this can influence the atmospheric conditions by affecting the production of SOA. Studying the stress responses of plants provides important information on how these reactions might change, which is vital to making better predictions of the future climate. In this study, measurements were taken to find out how the leaves of mature mountain birch trees (Betula pubescens ssp. czerepanovii) respond to different levels of elevated O3 exposure in situ depending on leaf age. We found that leaves from both early and late summers responded with induced SQT emission after exposure to 120 ppb O3. Early leaves were, however, more sensitive to increased O3 concentrations, with enhanced emission of green leaf volatiles (GLV) and tendencies of both induced leaf senescence as well as poor recovery in the photosynthetic rate between exposures. Late leaves had more stable photosynthetic rates throughout the experiment and responded less to exposure at different O3 levels.
Collapse
Affiliation(s)
- Erica Jaakkola
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Heidi Hellén
- Atmospheric Composition ResearchFinnish Meteorological InstituteHelsinkiFinland
| | - Stefan Olin
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Håkan Pleijel
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Toni Tykkä
- Atmospheric Composition ResearchFinnish Meteorological InstituteHelsinkiFinland
| | - Thomas Holst
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| |
Collapse
|
3
|
Rieksta J, Li T, Davie‐Martin CL, Aeppli LCB, Høye TT, Rinnan R. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:23-35. [PMID: 37284597 PMCID: PMC10168049 DOI: 10.1002/pei3.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/08/2023]
Abstract
Plants release a complex blend of volatile organic compounds (VOCs) in response to stressors. VOC emissions vary between contrasting environments and increase with insect herbivory and rising temperatures. However, the joint effects of herbivory and warming on plant VOC emissions are understudied, particularly in high latitudes, which are warming fast and facing increasing herbivore pressure. We assessed the individual and combined effects of chemically mimicked insect herbivory, warming, and elevation on dwarf birch (Betula glandulosa) VOC emissions in high-latitude tundra ecosystems in Narsarsuaq, South Greenland. We hypothesized that VOC emissions and compositions would respond synergistically to warming and herbivory, with the magnitude differing between elevations. Warming increased emissions of green leaf volatiles (GLVs) and isoprene. Herbivory increased the homoterpene, (E)-4,8-dimethyl-1,3,7-nonatriene, emissions, and the response was stronger at high elevation. Warming and herbivory had synergistic effects on GLV emissions. Dwarf birch emitted VOCs at similar rates at both elevations, but the VOC blends differed between elevations. Several herbivory-associated VOC groups did not respond to herbivory. Harsher abiotic conditions at high elevations might not limit VOC emissions from dwarf birch, and high-elevation plants might be better at herbivory defense than assumed. The complexity of VOC responses to experimental warming, elevation, and herbivory are challenging our understanding and predictions of future VOC emissions from dwarf birch-dominated ecosystems.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research StationKey Laboratory for Bio‐resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cleo L. Davie‐Martin
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Laurids Christian Brogaard Aeppli
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Toke Thomas Høye
- Department of Bioscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
4
|
Rieksta J, Li T, Michelsen A, Rinnan R. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra. GLOBAL CHANGE BIOLOGY 2021; 27:5030-5042. [PMID: 34185349 PMCID: PMC8518364 DOI: 10.1111/gcb.15773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/01/2023]
Abstract
Climate change increases the insect abundance, especially in Arctic ecosystems. Insect herbivory also significantly increases plant emissions of volatile organic compounds (VOCs), which are highly reactive in the atmosphere and play a crucial role in atmospheric chemistry and physics. However, it is unclear how the effects of insect herbivory on VOC emissions interact with climatic changes, such as warming and increased cloudiness. We assessed how experimental manipulations of temperature and light availability in subarctic tundra, that had been maintained for 30 years at the time of the measurements, affect the VOC emissions from a widespread dwarf birch (Betula nana) when subjected to herbivory by local geometrid moth larvae, the autumnal moth (Epirrita autumnata) and the winter moth (Operophtera brumata). Warming and insect herbivory on B. nana stimulated VOC emission rates and altered the VOC blend. The herbivory-induced increase in sesquiterpene and homoterpene emissions were climate-treatment-dependent. Many herbivory-associated VOCs were more strongly induced in the shading treatment than in other treatments. We showed generally enhanced tundra VOC emissions upon insect herbivory and synergistic effects on the emissions of some VOC groups in a changing climate, which can have positive feedbacks on cloud formation. Furthermore, the acclimation of plants to long-term climate treatments affects VOC emissions and strongly interacts with plant responses to herbivory. Such acclimation complicates predictions of how climate change, together with interacting biotic stresses, affects VOC emissions in the high latitudes.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Key Laboratory for Bio‐resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Anders Michelsen
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Riikka Rinnan
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
5
|
BVOC Emissions From a Subarctic Ecosystem, as Controlled by Insect Herbivore Pressure and Temperature. Ecosystems 2021. [DOI: 10.1007/s10021-021-00690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The biogenic volatile organic compounds, BVOCs have a central role in ecosystem–atmosphere interactions. High-latitude ecosystems are facing increasing temperatures and insect herbivore pressure, which may affect their BVOC emission rates, but evidence and predictions of changes remain scattered. We studied the long-term effects of + 3 °C warming and reduced insect herbivory (achieved through insecticide sprayings) on mid- and late summer BVOC emissions from field layer vegetation, supplemented with birch saplings, and the underlying soil in Subarctic mountain birch forest in Finland in 2017–2018. Reduced insect herbivory decreased leaf damage by 58–67% and total ecosystem BVOC emissions by 44–72%. Of the BVOC groups, total sesquiterpenes had 70–80% lower emissions with reduced herbivory, and in 2017 the decrease was greater in warmed plots (89% decrease) than in ambient plots (34% decrease). While non-standardized total BVOC, monoterpene, sesquiterpene and GLV emissions showed instant positive responses to increasing chamber air temperature in midsummer samplings, the long-term warming treatment effects on standardized emissions mainly appeared as changes in the compound structure of BVOC blends and varied with compounds and sampling times. Our results suggest that the effects of climate warming on the total quantity of BVOC emissions will in Subarctic ecosystems be, over and above the instant temperature effects, mediated through changes in insect herbivore pressure rather than plant growth. If insect herbivore numbers will increase as predicted under climate warming, our results forecast herbivory-induced increases in the quantity of Subarctic BVOC emissions.
Graphic Abstract
Collapse
|
6
|
Ryde I, Li T, Rieksta J, dos Santos BM, Neilson EHJ, Gericke O, Jepsen JU, Bork LRH, Holm HS, Rinnan R. Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata). TREE PHYSIOLOGY 2021; 41:1019-1033. [PMID: 33601421 PMCID: PMC8190950 DOI: 10.1093/treephys/tpab023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 05/06/2023]
Abstract
The mountain birch [Betula pubescens var. pumila (L.)] forest in the Subarctic is periodically exposed to insect outbreaks, which are expected to intensify due to climate change. To mitigate abiotic and biotic stresses, plants have evolved chemical defenses, including volatile organic compounds (VOCs) and non-volatile specialized compounds (NVSCs). Constitutive and induced production of these compounds, however, are poorly studied in Subarctic populations of mountain birch. Here, we assessed the joint effects of insect herbivory, elevation and season on foliar VOC emissions and NVSC contents of mountain birch. The VOCs were sampled in situ by an enclosure technique and analyzed by gas chromatography-mass spectrometry. NVSCs were analyzed by liquid chromatography-mass spectrometry using an untargeted approach. At low elevation, experimental herbivory by winter moth larvae (Operophtera brumata) increased emissions of monoterpenes and homoterpenes over the 3-week feeding period, and sesquiterpenes and green leaf volatiles at the end of the feeding period. At high elevation, however, herbivory augmented only homoterpene emissions. The more pronounced herbivory effects at low elevation were likely due to higher herbivory intensity. Of the individual compounds, linalool, ocimene, 4,8-dimethylnona-1,3,7-triene, 2-methyl butanenitrile and benzyl nitrile were among the most responsive compounds in herbivory treatments. Herbivory also altered foliar NVSC profiles at both low and high elevations, with the most responsive compounds likely belonging to fatty acyl glycosides and terpene glycosides. Additionally, VOC emissions from non-infested branches were higher at high than low elevation, particularly during the early season, which was mainly driven by phenological differences. The VOC emissions varied substantially over the season, largely reflecting the seasonal variations in temperature and light levels. Our results suggest that if insect herbivory pressure continues to rise in the mountain birch forest with ongoing climate change, it will significantly increase VOC emissions with important consequences for local trophic interactions and climate.
Collapse
Affiliation(s)
- Ingvild Ryde
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Jolanta Rieksta
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Bruna M dos Santos
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Elizabeth H J Neilson
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Oliver Gericke
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jane U Jepsen
- Department of Tromsø (NINA Tromsø), Norwegian Institute for Nature Research (NINA), Hjalmar Johansens Gate 14, NO-9296 Tromsø, Norway
| | - Louise R H Bork
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Hildur S Holm
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| |
Collapse
|
7
|
Yu H, Holopainen JK, Kivimäenpää M, Virtanen A, Blande JD. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Molecules 2021; 26:2283. [PMID: 33920862 PMCID: PMC8071236 DOI: 10.3390/molecules26082283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Compared to most other forest ecosystems, circumpolar boreal and subarctic forests have few tree species, and are prone to mass outbreaks of herbivorous insects. A short growing season with long days allows rapid plant growth, which will be stimulated by predicted warming of polar areas. Emissions of biogenic volatile organic compounds (BVOC) from soil and vegetation could be substantial on sunny and warm days and biotic stress may accelerate emission rates. In the atmosphere, BVOCs are involved in various gas-phase chemical reactions within and above forest canopies. Importantly, the oxidation of BVOCs leads to secondary organic aerosol (SOA) formation. SOA particles scatter and absorb solar radiation and grow to form cloud condensation nuclei (CCN) and participate in cloud formation. Through BVOC and moisture release and SOA formation and condensation processes, vegetation has the capacity to affect the abiotic environment at the ecosystem scale. Recent BVOC literature indicates that both temperature and herbivory have a major impact on BVOC emissions released by woody species. Boreal conifer forest is the largest terrestrial biome and could be one of the largest sources of biogenic mono- and sesquiterpene emissions due to the capacity of conifer trees to store terpene-rich resins in resin canals above and belowground. Elevated temperature promotes increased diffusion of BVOCs from resin stores. Moreover, insect damage can break resin canals in needles, bark, and xylem and cause distinctive bursts of BVOCs during outbreaks. In the subarctic, mountain birch forests have cyclic outbreaks of Geometrid moths. During outbreaks, trees are often completely defoliated leading to an absence of BVOC-emitting foliage. However, in the years following an outbreak there is extended shoot growth, a greater number of leaves, and greater density of glandular trichomes that store BVOCs. This can lead to a delayed chemical defense response resulting in the highest BVOC emission rates from subarctic forest in the 1-3 years after an insect outbreak. Climate change is expected to increase insect outbreaks at high latitudes due to warmer seasons and arrivals of invasive herbivore species. Increased BVOC emission will affect tropospheric ozone (O3) formation and O3 induced oxidation of BVOCs. Herbivore-induced BVOC emissions from deciduous and coniferous trees are also likely to increase the formation rate of SOA and further growth of the particles in the atmosphere. Field experiments measuring the BVOC emission rates, SOA formation rate and particle concentrations within and above the herbivore attacked forest stands are still urgently needed.
Collapse
Affiliation(s)
- H. Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - J. K. Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - M. Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| | - A. Virtanen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - J. D. Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (H.Y.); (J.K.H.); (M.K.)
| |
Collapse
|