1
|
Barman M, Tenhaken R, Dötterl S. Negative and sex-specific effects of drought on flower production, resources and pollinator visitation, but not on floral scent in monoecious Cucurbita pepo. THE NEW PHYTOLOGIST 2024; 244:1013-1023. [PMID: 39117354 DOI: 10.1111/nph.20016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 08/10/2024]
Abstract
The globally changing climatic condition is increasing the incidences of drought in several parts of the world. This is predicted and already shown to not only impact plant growth and flower development, but also plant-pollinator interactions and the pollination success of entomophilous plants. However, there is a large gap in our understanding of how drought affects the different flowers and pollen transfer among flowers in sexually polymorphic species. Here, we evaluated in monoecious Styrian oil pumpkin, and separately for female and male flowers, the responses of drought stress on flower production, petal size, nectar, floral scent and visitation by bumblebee pollinators. Drought stress adversely affected all floral traits studied, except floral scent. Although both flower sexes were adversely affected by drought stress, the effects were more severe on female flowers, with most of the female flowers even aborted before opening. The drought had negative effects on floral visitation by the pollinators, which generally preferred female flowers. Overall, our study highlights that the two flower sexes of a monoecious plant species are differently affected by drought stress and calls for further investigations to better understand the cues used by the pollinators to discriminate against male flowers and against flowers of drought-stressed plants.
Collapse
Affiliation(s)
- Monica Barman
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Raimund Tenhaken
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| |
Collapse
|
2
|
Buchmann SL, Papaj DR. Hung out to dry: diminished flowers offer less to pollinators and us. THE NEW PHYTOLOGIST 2024; 244:746-748. [PMID: 39117350 DOI: 10.1111/nph.19975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This article is a Commentary on Barman et al. (2024), 244: 1013–1023.
Collapse
Affiliation(s)
- Stephen L Buchmann
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Daniel R Papaj
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Gérard M, Gardelin E, Lehmann P, Roberts KT, Sepúlveda-Rodríguez G, Sisquella C, Baird E. Experimental elevated temperature affects bumblebee foraging and flight speed. Proc Biol Sci 2024; 291:20241598. [PMID: 39471861 PMCID: PMC11521611 DOI: 10.1098/rspb.2024.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024] Open
Abstract
Global warming threatens wild bees and their interaction with plants. While earlier studies have highlighted the negative effects of elevated temperatures on bee-plant interactions, we still lack knowledge about how they impact the foraging behaviours that are central to bee pollination activities. To address this knowledge gap, we investigated how ambient temperature affected the foraging behaviours of the bumblebee Bombus terrestris. We allowed the bumblebees to forage freely on artificial flowers in two climate-controlled rooms set at 24°C and 32°C. The colonies were alternated between the two temperatures every week. We recorded the flower visitation rate, flight speed, total foraging time and number of foraging trips. In addition, we measured flight metabolic rate across a range of temperatures to assess its potential as an underlying mechanism. In comparison to 24°C, at 32°C, flower visitation time decreased while flower visitation rate and flight speed increased. This is consistent with the reduction in flight metabolic rate recorded between these temperatures. At 32°C, the number of trips made by each worker decreased, suggesting that, despite the reduced energetic cost, flight in elevated temperatures may be stressful. Our results suggest that elevated temperatures affect bumblebee foraging behaviour and that this would likely disrupt plant-insect interactions.
Collapse
Affiliation(s)
- Maxence Gérard
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000 Mons, Belgium
| | - Erika Gardelin
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Kevin T. Roberts
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Guadalupe Sepúlveda-Rodríguez
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Clara Sisquella
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Emily Baird
- Department of Zoology, INSECT Lab, Division of Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| |
Collapse
|
4
|
Birkenbach M, Straub F, Kiesel A, Ayasse M, Wilfert L, Kuppler J. Land-use affects pollinator-specific resource availability and pollinator foraging behaviour. Ecol Evol 2024; 14:e11061. [PMID: 38455145 PMCID: PMC10918743 DOI: 10.1002/ece3.11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Land-use management is a key factor causing pollinator declines in agricultural grasslands. This decline can not only be directly driven by land-use (e.g., habitat loss) but also be indirectly mediated through a reduction in floral resource abundance and diversity, which might in turn affect pollinator health and foraging. We conducted surveys of the abundance of flowering plant species and behavioural observations of two common generalist pollinator species, namely the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, in managed grasslands of variable land-use intensity (LUI) to investigate whether land-use affects (1) resource availability of the pollinators, (2) their host plant selection and (3) pollinator foraging behaviour. We have found that the floral composition of plant species that were used as resource by the investigated pollinator species depends on land-use intensity and practices such as mowing or grazing. We have also found that bumblebees, but not syrphid flies, visit different plants depending on LUI or management type. Furthermore, LUI indirectly changed pollinator behaviour via a reduction in plot-level flower diversity and abundance. For example, bumblebees show longer flight durations with decreasing flower cover indicating higher energy expenditure when foraging on land-use intensive plots. Syrphid flies were generally less affected by local land use, showing how different pollinator groups can differently react to land-use change. Overall, we show that land-use can change resource composition, abundance and diversity for pollinators, which can in turn affect pollinator foraging behaviour and potentially contribute to pollinator decline in agricultural grasslands.
Collapse
Affiliation(s)
- Markus Birkenbach
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Florian Straub
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Anna Kiesel
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| |
Collapse
|
5
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
6
|
García Y, Dow BS, Parachnowitsch AL. Water deficit changes patterns of selection on floral signals and nectar rewards in the common morning glory. AOB PLANTS 2023; 15:plad061. [PMID: 37899982 PMCID: PMC10601024 DOI: 10.1093/aobpla/plad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/24/2023] [Indexed: 10/31/2023]
Abstract
Understanding whether and how resource limitation alters phenotypic selection on floral traits is key to predict the evolution of plant-pollinator interactions under climate change. Two important resources predicted to decline with our changing climate are pollinators and water in the form of increased droughts. Most work, however, has studied these selective agents separately and in the case of water deficit, studies are rare. Here, we use the common morning glory (Ipomoea purpurea) to investigate the effects of experimental reduction in pollinator access and water availability on floral signals and nectar rewards and their effects on phenotypic selection on these traits. We conducted a manipulative experiment in a common garden, where we grew plants in three treatments: (1) pollinator restriction, (2) water reduction and (3) unmanipulated control. Plants in pollinator restriction and control treatments were well-watered compared to water deficit. We found that in contrast to pollinator restriction, water deficit had strong effects altering floral signals and nectar rewards but also differed in the direction and strength of selection on these traits compared to control plants. Water deficit increased the opportunity for selection, and selection in this treatment favoured lower nectar volumes and larger floral sizes, which might further alter pollinator visitation. In addition, well-watered plants, both in control and pollinator deficit, showed similar patterns of selection to increase nectar volume suggesting non-pollinator-mediated selection on nectar. Our study shows that floral traits may evolve in response to reduction in water access faster than to declines in pollinators and reinforces that abiotic factors can be important agents of selection for floral traits. Although only few experimental selection studies have manipulated access to biotic and abiotic resources, our results suggest that this approach is key for understanding how pollination systems may evolve under climate change.
Collapse
Affiliation(s)
- Yedra García
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, NB E3B 5A3, Canada
| | - Benjamin S Dow
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, NB E3B 5A3, Canada
| | - Amy L Parachnowitsch
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
7
|
Blasi M, Clough Y, Jönsson AM, Sahlin U. A model of wild bee populations accounting for spatial heterogeneity and climate-induced temporal variability of food resources at the landscape level. Ecol Evol 2022; 12:e9014. [PMID: 35784045 PMCID: PMC9205664 DOI: 10.1002/ece3.9014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022] Open
Abstract
The viability of wild bee populations and the pollination services that they provide are driven by the availability of food resources during their activity period and within the surroundings of their nesting sites. Changes in climate and land use influence the availability of these resources and are major threats to declining bee populations. Because wild bees may be vulnerable to interactions between these threats, spatially explicit models of population dynamics that capture how bee populations jointly respond to land use at a landscape scale and weather are needed. Here, we developed a spatially and temporally explicit theoretical model of wild bee populations aiming for a middle ground between the existing mapping of visitation rates using foraging equations and more refined agent-based modeling. The model is developed for Bombus sp. and captures within-season colony dynamics. The model describes mechanistically foraging at the colony level and temporal population dynamics for an average colony at the landscape level. Stages in population dynamics are temperature-dependent triggered by a theoretical generalized seasonal progression, which can be informed by growing degree days. The purpose of the LandscapePhenoBee model is to evaluate the impact of system changes and within-season variability in resources on bee population sizes and crop visitation rates. In a simulation study, we used the model to evaluate the impact of the shortage of food resources in the landscape arising from extreme drought events in different types of landscapes (ranging from different proportions of semi-natural habitats and early and late flowering crops) on bumblebee populations.
Collapse
Affiliation(s)
- Maria Blasi
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | - Yann Clough
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | - Anna Maria Jönsson
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Ullrika Sahlin
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| |
Collapse
|
8
|
Gérard M, Cariou B, Henrion M, Descamps C, Baird E. Exposure to elevated temperature during development affects bumblebee foraging behavior. Behav Ecol 2022; 33:816-824. [PMID: 35812365 PMCID: PMC9262166 DOI: 10.1093/beheco/arac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/14/2022] Open
Abstract
Bee foraging behavior provides a pollination service that has both ecological and economic benefits. However, bee population decline could directly affect the efficiency of this interaction. Among the drivers of this decline, global warming has been implicated as an emerging threat but exactly how increasing temperatures affect bee foraging behavior remains unexplored. Here, we assessed how exposure to elevated temperatures during development affects the foraging behavior and morphology of workers from commercial and wild Bombus terrestris colonies. Workers reared at 33 °C had a higher visiting rate and shorter visiting time than those reared at 27°C. In addition, far fewer workers reared at 33 °C engaged in foraging activities and this is potentially related to the drastic reduction in the number of individuals produced in colonies exposed to 33 °C. The impact of elevated developmental temperature on wild colonies was even stronger as none of the workers from these colonies performed any foraging trips. We also found that rearing temperature affected wing size and shape. Our results provide the first evidence that colony temperature can have striking effects on bumblebee foraging behavior. Of particular importance is the drastic reduction in the number of workers performing foraging trips, and the total number of foraging trips made by workers reared in high temperatures. Further studies should explore if, ultimately, these observed effects of exposure to elevated temperature during development lead to a reduction in pollination efficiency.
Collapse
Affiliation(s)
- Maxence Gérard
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| | - Bérénice Cariou
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Sorbonne Université, Faculté des Sciences et Ingénierie, 5 place Jussieu, 75005 Paris, France
| | - Maxime Henrion
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
- Ecole Normale Supérieure de Lyon, 15 parvis René Descartes, Lyon, France, and
| | - Charlotte Descamps
- Earth and Life Institute-Agrotnomy, UCLouvain, Croix du Sud 2, box L7.05.14, 1348 Louvain-la-Neuve, Belgium
| | - Emily Baird
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 11418 Stockholm, Sweden
| |
Collapse
|
9
|
Wu Y, Duan X, Tong Z, Li Q. Pollinator-Mediated Selection on Floral Traits of Primula tibetica Differs Between Sites With Different Soil Water Contents and Among Different Levels of Nutrient Availability. FRONTIERS IN PLANT SCIENCE 2022; 13:807689. [PMID: 35300008 PMCID: PMC8921772 DOI: 10.3389/fpls.2022.807689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Abiotic environmental factors are predicted to affect plant traits and the intensity of plant-pollinator interactions. However, knowledge of their potential effects on pollinator-mediated selection on floral traits is still limited. We separately estimated the effects of soil water (two sites with different soil water contents) and N-P-K nutrient availability (different levels of nutrient addition) on pollinator-mediated selection on floral traits of Primula tibetica (an insect-pollinated perennial herbaceous species). Our results demonstrated that floral traits, plant reproductive success and pollinator-mediated selection on floral traits varied between sites with different soil water contents and among different levels of nutrient addition. The strength of pollinator-mediated selection was stronger at the site with low soil water content than at the site with high soil water content, and first decreased and then increased with increasing N-P-K nutrient addition. Our results support the hypothesis that abiotic environmental factors influence the importance of pollinators in shaping floral evolution.
Collapse
Affiliation(s)
- Yun Wu
- School of Architecture and Civil Engineering, Xihua University, Chengdu, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhaoli Tong
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
10
|
Höfer RJ, Ayasse M, Kuppler J. Water Deficit, Nitrogen Availability, and Their Combination Differently Affect Floral Scent Emission in Three Brassicaceae Species. J Chem Ecol 2022; 48:882-899. [PMID: 36525146 PMCID: PMC9840598 DOI: 10.1007/s10886-022-01393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022]
Abstract
Floral scent plays a central role in plant-pollinator interactions, as flower visitors can discriminate between scent differences to recognize and forage on rewarding flowers. Changes in scent compositions might therefore lead to recognition mismatches between host plants and flower visitors. An understanding of the phenotypic plasticity of floral scent, especially in crop species, is becoming important because of climate change, e.g., increasing drought periods, and other anthropogenic influences, e.g., nitrogen (N) deposition. We have investigated the effects of the combination of progressive water deficits (dry-down) and N supplementation on floral scent emission in three Brassicaceae species (cultivated vs. wild). Individuals were randomly assigned to one of four treatments: (1) well-watered without N supplementation; (2) well-watered with N supplementation; (3) dry-down without N supplementation; (4) dry-down with N supplementation. We collected scent on day 0, 2, 7, and 14 after the commencement of the watering treatment. All samples were analyzed using gas chromatography coupled with mass spectrometry. We found that the highly cultivated Brassica napus had the lowest overall emission rate; its scent composition was affected by the interaction of watering treatment and N supplementation. Scent bouquets of the cultivated Sinapis alba also changed under these treatments. Scent bouquets of the common weed Sinapis arvensis were affected by watering treatment, but not by time and N supplementation. Furthermore, the influence of treatments on the emission rate of single compounds was highly compound-specific. Nonetheless, our study revealed that especially terpenes were negatively affected by drought-stress.
Collapse
Affiliation(s)
- Rebecca J. Höfer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Kuppler J, Kotowska MM. A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit. GLOBAL CHANGE BIOLOGY 2021; 27:3095-3108. [PMID: 33774883 DOI: 10.1111/gcb.15621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Alterations in water availability and drought events as predicted by climate change scenarios will increasingly impact natural communities with effects already emerging at present. Water deficit leads to increasing physiological stress in plants, likely affecting floral development and causing changes in floral morphology, nectar and pollen production or scent. Understanding how these floral traits are altered by water deficit is necessary to predict changes in plant-pollinator interactions and how communities are impacted in the future. Here we employ a meta-analysis approach to synthesize the current evidence of experimental water deficit on floral traits and plant-pollinator interactions. Furthermore, we explore experimental factors potentially increasing heterogeneity between studies and provide ideas how to enhance comparability between studies. In the end, we highlight future directions and knowledge gaps for floral traits and plant-pollinator interactions under water deficit. Our analysis showed consistent decreases in floral size, number of flowers and nectar volume to reduced water availability. Other floral traits such as the start of flowering or herkogamy showed no consistent pattern. This indicates that effects of reduced water availability differ between specific traits that are potentially involved in different functions such as pollinator attraction or efficiency. We found no general decreasing visitation rates with water deficit for flower-visitor interactions. Furthermore, the comparison of available studies suggests that increased reporting of plant stress severity and including more hydraulic and physiological measurements will improve the comparability across experiments and aid a more mechanistic understanding of plant-pollinator interactions under altered environmental conditions. Overall, our results show that water deficit has the potential to strongly affect plant-pollinator interactions via changes in specific floral traits. Linking these changes to pollination services and pollinator performance is one crucial step for understanding how changing water availability and drought events under climate change will alter plant and pollinator communities.
Collapse
Affiliation(s)
- Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Martyna M Kotowska
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Warm Temperatures Reduce Flower Attractiveness and Bumblebee Foraging. INSECTS 2021; 12:insects12060493. [PMID: 34070688 PMCID: PMC8226554 DOI: 10.3390/insects12060493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In the context of climate warming, modifications in plant pollination and reproductive success constitute a crucial issue. Modifications of both floral signals (display, size of flowers) and rewards (nectar and pollen) due to increased air temperatures may affect plant–pollinator interactions. However, relationships between modifications in floral traits and rewards caused by increased air temperatures and the associated effects on pollinator visitation rate and foraging behavior have not been thoroughly investigated. To explore the effects of temperature increase on plant–pollinator interactions, we chose the highly attractive bee-pollinated Borago officinalis and one of its pollinators, Bombus terrestris. We measured visual floral signals and rewards for plants cultivated at 21 °C or 26 °C and we investigated bumblebee behavior by tracking insect visits on plants in an indoor flight arena. Our results show that exposure to higher temperature during the flowering stages of B. officinalis negatively affects visual floral traits (e.g., by reducing the number of flowers) as well as floral rewards, affecting bumblebee visitation and foraging behavior. Bumblebees visited flowers from plants grown at 26 °C four times less frequently than they visited those from plants grown at 21 °C. Thus, the global increases in temperature caused by climate change could reduce plant pollination rates and reproductive success by reducing flower visitation. Abstract (1) Background: Plants attract pollinators using several visual signals, mainly involving the display, size, shape, and color of flowers. Each signal is relevant for pollinators foraging for floral rewards, pollen, and nectar. Changes in floral signals and rewards can be induced by an increase in temperature, drought, or other abiotic stresses and are expected to increase as global temperatures rise. In this study, we explored how pollinators respond to modified floral signals and rewards following an increase in temperature; (2) Methods: We tested the effects of warmer temperatures on bee-pollinated starflower (Borago officinalis, Boraginaceae) and determined the behavior of one of its main pollinators, the buff-tailed bumblebee (Bombus terrestris). We measured visual floral traits (display and size) and rewards (nectar and pollen) for plants cultivated at 21 °C or 26 °C. We investigated bumblebee behavior by tracking insect visits in a binary choice experiment in an indoor flight arena; (3) Results: Plants cultivated at 26 °C exhibited a smaller floral area (i.e., corolla sizes summed for all flowers per plant, 34.4 ± 2.3 cm2 versus 71.2 ± 2.7 cm2) and a greater flower height (i.e., height of the last inflorescence on the stem, 87 ± 1 cm versus 75 ± 1 cm) compared to plants grown at 21 °C. Nectar production per flower was lower in plants grown at 26 °C than in plants grown at 21 °C (2.67 ± 0.37 µL versus 4.15 ± 0.22 µL), and bumblebees visited flowers from plants grown at 26 °C four times less frequently than they visited those from plants grown at 21 °C; (4) Conclusions: These results show that warmer temperatures affect floral signals and reduce overall floral resources accessible to pollinators. Thus, the global increases in temperature caused by climate change could reduce plant pollination rates and reproductive success by reducing flower visitation.
Collapse
|