1
|
Glombik M, Arunkumar R, Burrows S, Mogg SL, Wang X, Borrill P. Rapid reprogramming and stabilization of homoeolog expression bias in hexaploid wheat biparental populations. Genome Biol 2025; 26:147. [PMID: 40437599 PMCID: PMC12121048 DOI: 10.1186/s13059-025-03598-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Differences in the relative level of expression of homoeologs, known as homoeolog expression bias, are widely observed in allopolyploids. While the evolution of homoeolog expression bias through hybridization has been characterized, on shorter timescales such as those found in crop breeding programs, the extent to which homoeolog expression bias is preserved or altered between generations remains elusive. RESULTS Here we use biparental mapping populations of hexaploid wheat (Triticum aestivum) with a common "Paragon" parent to explore the inheritance of homoeolog expression bias in the F5 generation. We found that homoeolog expression bias is inherited for 26-27% of triads in both populations. Most triads conserved a similar homoeolog expression bias pattern as one or both parents. Inherited patterns were largely driven by changes in the expression of one homoeolog, allowing homoeolog expression bias in subsequent generations to match parental expression. Novel patterns of homoeolog expression bias occurred more frequently in the biparental population from a landrace × elite cross, than in the population with two elite parents. CONCLUSIONS These results demonstrate that there is significant reprogramming and stabilization of homoeolog expression bias within a small number of generations that differs significantly based on the parental lines used in the crossing.
Collapse
Affiliation(s)
- Marek Glombik
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ramesh Arunkumar
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Germany
| | - Samuel Burrows
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sophie Louise Mogg
- School of Biosciences, University of Birmingham, Birmingham, B15 2 TT, UK
- School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Xiaoming Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Philippa Borrill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
2
|
Gyawali S, Bhattarai G, Correll JC, Shi A, du Toit LJ. Genome wide association study of Fusarium wilt resistance in Spinacia turkestanica. Sci Rep 2025; 15:15486. [PMID: 40319102 PMCID: PMC12049411 DOI: 10.1038/s41598-025-98932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
Fusarium wilt of spinach, caused by Fusarium oxysporum f. sp. spinaciae (Fos), leads to substantial losses in spinach (Spinacia oleracea) seed production in the only region of the USA suitable for growing spinach seed crops, the maritime Pacific Northwest. Accessions of wild spinach, S. turkestanica, serve as a major source of resistance to multiple spinach diseases. In this study, 84 Spinacia genotypes (all 68 S. turkestanica accessions available publicly and 16 S. oleracea) were evaluated for reactions to Fos at medium and high densities of inoculum comprising a mix of isolates of races 1 and 2, using a factorial experimental design of genotypes (n = 84) and Fos inoculum density (0, 12,500, and 37,500 CFU/ml potting medium) with two replicates. The area under the disease progress curve (AUDPC) calculated for wilt severity 28, 35, and 42 days after planting (DAP) ranged from 0.0 to 11.0 and 1.5 to 13.3 at medium and high inoculum densities, respectively. Of the 68 S. turkestanica accessions, 17 and 8 showed high levels of resistance at medium and high inoculum densities, respectively. Single nucleotide polymorphism (SNP) markers (n = 7,065) identified with genotyping-by-sequencing (GBS) were used for genome wide association studies (GWAS) using multiple models tested with GAPIT and TASSEL software. Twelve SNPs were associated significantly with Fusarium wilt resistance in 10 QTL regions located on chromosomes 1, 3, 4, and 6. SNP S6_38110665 on chromosome 6 was validated across multiple GWAS models and demonstrated a major effect (-2.48 to -2.79) at reducing Fusarium wilt severity. SNP S6_38110665 can be used to introduce Fusarium wilt resistance QTL into cultivated spinach (S. oleracea) using marker-assisted selection, thereby enhancing breeding programs for improved disease resistance.
Collapse
Affiliation(s)
- Sanjaya Gyawali
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98273, USA
- PNW Plant Pathology Laboratory, Sakata Seed America Inc, 11857 Bay Ridge Dr., Burlington, WA, 98233, USA
| | - Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
- PNW Plant Pathology Laboratory, Sakata Seed America Inc, 11857 Bay Ridge Dr., Burlington, WA, 98233, USA
| | - James C Correll
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Lindsey J du Toit
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98273, USA.
| |
Collapse
|
3
|
Yadav JK, Sinha S, Shukla H, Singh A, Sahu TK, Jha SK, Kumari J, Verma M, Kumar S, Singh R, Singh GP, Singh AK. Genetic dissection of leaf rust resistance in a diversity panel of tetraploid wheat (Triticum turgidum). BMC PLANT BIOLOGY 2025; 25:406. [PMID: 40165057 PMCID: PMC11956231 DOI: 10.1186/s12870-025-06330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Leaf rust, caused by Puccinia triticina Eriks (Pt) is a major threat to wheat cultivation worldwide. The rapid evolution of this pathogen has led to the emergence of new virulent strains that can overcome the resistance of commonly cultivated wheat varieties. To address this threat, continuous monitoring of leaf rust pathotypes is conducted in wheat-growing regions across the world. This approach helps prioritize the development and deployment of resistant cultivars, as well as the implementation of other effective control measures against the prevailing races. The key wheat leaf rust pathotypes in India include 77-5 (121R63-1), 77-6 (121R55-1), 77-9 (121R60-1), 12-5 (29R45), and 104 (17R23). Among these pathotypes, 77-5 (121R63-1) and 77-9 (121R60-1) are the most prevalent since 2016. As virulent pathotypes continue to evolve and adapt, there is an urgent need to continually explore the vast germplasm repositories of wheat and its related species to identify novel genetic resources and genes that confer resistance to these evolving leaf rust pathotypes. Therefore, the present study aims to identify genes and genomic regions responsible for leaf rust resistance against prevalent pathotypes in India, focusing on a subset of the Global Durum Wheat Panel, which includes genotypes from various tetraploid wheat species. RESULTS This study revealed wide variation in seedling-stage resistance among 189 tetraploid wheat accessions against five prevalent leaf rust pathotypes in India namely, 77-5 (121R63-1), 77-6 (121R55-1), 77-9 (121R60-1), 12-5 (29R45) and 104 (17R23). Approximately 45% of the population exhibited immune/highly resistant to moderately resistant responses to pathotypes 77-5, 77-6 and 104, while around 23-27% showed similar levels of resistance to pathotypes 77-9 and 12-5. A genome-wide association study using six multi-locus models identified 88 significantly associated quantitative trait nucleotides (QTNs) across the five leaf rust pathotypes. Among these, 22 QTNs were considered reliable, including four for pathotype 77-5, six for 12-5, three for 77-9, seven for 104, and two for 77-6. Among the 22 reliable QTNs, 10 coincided with the rust resistance regions reported in previous studies, whereas 12 appeared to be novel. Further investigations of the regions flanking all 88 QTNs revealed 300 genes, including 62 associated with disease resistance or defense responses. In silico expression analysis of these defense-related genes revealed two nucleotide-binding site-leucine-rich repeat genes: one on chromosome 6B (TRITD6Bv1G224600) near QTN RAC875_c35430_373, and another on chromosome 6A (TRITD6Av1G225060) in the vicinity of QTN Excalibur_c77841_224 with significantly higher levels of expression in the leaf-resistant genotype during the early hours of Pt infection. Therefore, these two genes could be potential candidates for resistance to leaf rust in tetraploid wheat germplasm. CONCLUSIONS Our study provides a comprehensive understanding of the genetic basis underlying leaf rust resistance in a diverse tetraploid wheat germplasm panel. It has also revealed novel candidate genomic regions for leaf rust resistance. These genomic regions represent important targets for inclusion in marker-assisted breeding initiatives, aimed at fostering durable resistance against leaf rust disease.
Collapse
Affiliation(s)
- Jitendra Kumar Yadav
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Graduate School, Indian Agricultural Research Institute, New Delhi, India
| | - Shruti Sinha
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Hariom Shukla
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ankur Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Manjusha Verma
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
4
|
Lakkakula IP, Kolmer JA, Sharma R, St Amand P, Bernardo A, Bai G, Ibrahim A, Bowden RL, Carver BF, Boehm JD, Aoun M. Identification of leaf rust resistance loci in hard winter wheat using genome-wide association mapping. THE PLANT GENOME 2025; 18:e20546. [PMID: 39757138 DOI: 10.1002/tpg2.20546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Leaf rust, caused by Puccinia triticina (Pt), is a serious constraint to wheat production. Developing resistant varieties is the best approach to managing this disease. Wheat leaf rust resistance (Lr) genes have been classified into either all-stage resistance (ASR) or adult-plant resistance (APR). The objectives of this study were to identify sources of leaf rust resistance in contemporary US hard winter wheat (HWW) and to dissect the genetic basis underlying leaf rust resistance in HWW. A panel of 732 elite HWW genotypes was evaluated for response to US Pt races at the seedling stage and at the adult plant stage in leaf rust nurseries in Oklahoma, Texas, and Kansas. Further, the panel was genotyped using multiplex restriction amplicon sequencing (MRA-Seq) and DNA markers linked to the known ASR genes Lr18, Lr19, Lr21, Lr24, Lr37, and Lr42 and APR genes Lr34, Lr46, Lr67, Lr68, Lr77, and Lr78. Single nucleotide polymorphism (SNP) markers derived from MRA-Seq, DNA markers linked to the known Lr genes, and the phenotypic data were used for genome-wide association study (GWAS) to identify markers associated with leaf rust response. Gene postulation based on leaf rust reactions, DNA markers, and GWAS suggested the presence of Lr1, Lr2a, Lr10, Lr14a, Lr16, Lr18, Lr19, Lr21, Lr24, Lr26, Lr34, Lr37, Lr39, Lr42, Lr46, Lr68, Lr77, and Lr78 in the HWW panel. The GWAS identified 59 SNPs significantly associated with leaf rust response, of which 20 were likely associated with novel resistance loci and can be used to enhance wheat leaf rust resistance.
Collapse
Affiliation(s)
| | - James A Kolmer
- USDA-ARS Cereal Disease Laboratory, Saint Paul, Minnesota, USA
| | - Rajat Sharma
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Paul St Amand
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Amy Bernardo
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Amir Ibrahim
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA
| | - Robert L Bowden
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jeffrey D Boehm
- USDA-ARS Wheat, Sorghum & Forage Research Unit, Lincoln, Nebraska, USA
| | - Meriem Aoun
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Kruppa K, Türkösi E, Holušová K, Kalapos B, Szakács É, Cséplő M, Farkas A, Ivanizs L, Szőke-Pázsi K, Mikó P, Kovács P, Gulyás A, Hidvégi N, Molnár-Láng M, Darkó É, Bartoš J, Gaál E, Molnár I. Genotyping-by-sequencing uncovers a Thinopyrum 4StS·1J vsS Robertsonian translocation linked to multiple stress tolerances in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:13. [PMID: 39724311 PMCID: PMC11671438 DOI: 10.1007/s00122-024-04791-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
KEYMESSAGE GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement. Despite its potential, limited knowledge of its chromosome structure and homoeologous relationships with hexaploid wheat (Triticum aestivum) has restricted the full exploitation of GLAEL's genetic diversity in breeding programs. Here, we present the development of a 44-chromosome wheat/GLAEL addition line (GLA7). Multicolor genomic in situ hybridization identified one chromosome arm from the St subgenome of Th. intermedium, while the other arm remained unclassified. Genotyping-by-sequencing (GBS) read coverage analysis revealed a unique Robertsonian translocation between two distinct Thinopyrum subgenomes, identified as 4StS·1JvsS. The GLA7 line demonstrated strong adult plant resistance to both leaf rust and stripe rust under natural and artificial infection conditions. Automated phenotyping of shoot morphological parameters together with leaf relative water content and yield components showed that the GLA7 line exhibited elevated drought tolerance compared to parental wheat genotypes. Three years of field trials showed that GLA7 exhibits similar agronomic performance and yield components to the wheat parents. This unique addition line holds promise for enhancing wheat's tolerance to multiple stresses through the introduction of new resistance genes, as well as its ability to mitigate the effects of temporary water limitation during flowering, all without negatively impacting wheat performance.
Collapse
Affiliation(s)
- Klaudia Kruppa
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary.
| | - Kateřina Holušová
- Institute for Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic, 779 00
| | - Balázs Kalapos
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Mónika Cséplő
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - András Farkas
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - László Ivanizs
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Kitti Szőke-Pázsi
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Péter Mikó
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Andrea Gulyás
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Norbert Hidvégi
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Márta Molnár-Láng
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Jan Bartoš
- Institute for Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic, 779 00
| | - Eszter Gaál
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - István Molnár
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| |
Collapse
|
6
|
Mourad AMI, Ahmed AAM, Baenziger PS, Börner A, Sallam A. Broad-spectrum resistance to fungal foliar diseases in wheat: recent efforts and achievements. FRONTIERS IN PLANT SCIENCE 2024; 15:1516317. [PMID: 39735771 PMCID: PMC11671272 DOI: 10.3389/fpls.2024.1516317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
Wheat (Triticum spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually. Out of these diseases, stripe rust, also known as yellow rust (Puccinia striiformis f. sp. tritici), stem rust (Puccinia graminis f. sp. tritici), leaf rust (Puccinia recondita), and powdery mildew (Blumeria graminis f. sp. tritici) are the most important fungal diseases that infect the foliar part of the plant. Many efforts were made to improve wheat resistance to these diseases. Due to the continuous advancement in sequencing methods and genomic tools, genome-wide association study has become available worldwide. This analysis enabled wheat breeders to detect genomic regions controlling the resistance in specific countries. In this review, molecular markers significantly associated with the resistance of the mentioned foliar diseases in the last five years were reviewed. Common markers that control broad-spectrum resistance in different countries were identified. Furthermore, common genes controlling the resistance of more than one of these foliar diseases were identified. The importance of these genes, their functional annotation, and the potential for gene enrichment are discussed. This review will be valuable to wheat breeders in producing genotypes with broad-spectrum resistance by applying genomic selection for the target common markers and associated genes.
Collapse
Affiliation(s)
- Amira M. I. Mourad
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Agronomy, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - Asmaa A. M. Ahmed
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| |
Collapse
|
7
|
Ji Y, Yang G, Li X, Wang H, Bao Y. Development and Characterization of Two Wheat-Rye Introgression Lines with Resistance to Stripe Rust and Powdery Mildew. Int J Mol Sci 2024; 25:11677. [PMID: 39519228 PMCID: PMC11546993 DOI: 10.3390/ijms252111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Rye (Secale cereale L.) genes, which contribute to the tertiary gene pool of wheat, include multiple disease resistance genes useful for the genetic improvement of wheat. Introgression lines are the most valuable materials for wheat breeding because of their small alien segments and limited or lack of linkage drag. In the present study, wheat-rye derivative lines SN21627-2 and SN21627-6 were produced via distant hybridization. A genomic in situ hybridization analysis revealed that SN21627-2 and SN21627-6 lack alien segments, while a multi-color fluorescence in situ hybridization analysis detected structural changes in both introgression lines. At the seedling and adult plant stages, SN21627-2 and SN21627-6 were highly resistant to stripe rust and powdery mildew. Primers for 86 PCR-based landmark unique gene markers and 345 rye-specific SLAF markers were used to amplify SN21627-2 and SN21627-6 genomic DNA. Eight markers specific to rye chromosome 2R were detected in both introgression lines, implying these lines carry chromosome 2R segments with genes conferring stripe rust and powdery mildew resistance. Therefore, SN21627-2 and SN21627-6 are resistant to more than one major wheat disease, making them promising bridging parents for breeding disease-resistant wheat lines.
Collapse
Affiliation(s)
- Yuzhou Ji
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Guotang Yang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xingfeng Li
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Honggang Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Yinguang Bao
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
8
|
Soleimani B, Lehnert H, Schikora A, Stahl A, Matros A, Wehner G. Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency. Microorganisms 2024; 12:1936. [PMID: 39458245 PMCID: PMC11509450 DOI: 10.3390/microorganisms12101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Leaf rust (Puccinia triticina) is a common disease that causes significant yield losses in wheat. The most frequently used methods to control leaf rust are the application of fungicides and the cultivation of resistant genotypes. However, high genetic diversity and associated adaptability of pathogen populations hamper achieving durable resistance in wheat. Emerging alternatives, such as microbial priming, may represent an effective measure to stimulate plant defense mechanisms and could serve as a means of controlling a broad range of pathogens. In this study, 175 wheat genotypes were inoculated with two bacterial strains: Ensifer meliloti strain expR+ch (producing N-acyl homoserine lactone (AHL)) or transformed E. meliloti carrying the lactonase gene attM (control). In total, 21 genotypes indicated higher resistance upon bacterial AHL priming. Subsequently, the phenotypic data of 175 genotypes combined with 9917 single-nucleotide polymorphisms (SNPs) in a genome-wide association study to identify quantitative trait loci (QTLs) and associated markers for relative infection under attM and expR+ch conditions and priming efficiency using the Genome Association and Prediction Integrated Tool (GAPIT). In total, 15 QTLs for relative infection under both conditions and priming efficiency were identified on chromosomes 1A, 1B, 2A, 3A, 3B, 3D, 6A, and 6B, which may represent targets for wheat breeding for priming and leaf-rust resistance.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany;
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Messeweg 11/12, 38104 Braunschweig, Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Andrea Matros
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| |
Collapse
|
9
|
Yang G, Zhang N, Boshoff WHP, Li H, Li B, Li Z, Zheng Q. Identification and introgression of a novel leaf rust resistance gene from Thinopyrum intermedium chromosome 7J s into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:231. [PMID: 37875643 DOI: 10.1007/s00122-023-04474-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE A novel leaf rust resistance locus located on a terminal segment (0-69.29 Mb) of Thinopyrum intermedium chromosome arm 7JsS has been introduced into wheat genome for disease resistance breeding. Xiaoyan 78829, a wheat-Thinopyrum intermedium partial amphiploid, exhibits excellent resistance to fungal diseases in wheat. To transfer its disease resistance to common wheat (Triticum aestivum), we previously developed a translocation line WTT26 using chromosome engineering. Disease evaluation showed that WTT26 was nearly immune to 14 common races of leaf rust pathogen (Puccinia triticina) and highly resistant to Ug99 race PTKST of stem rust pathogen (P. graminis f. sp. tritici) at the seedling stage. It also displayed high adult plant resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Cytogenetic and molecular marker analysis revealed that WTT26 carried a T4BS·7JsS chromosome translocation. Once transferred into the susceptible wheat genetic background, chromosome 7JsS exhibited its resistance to leaf rust, indicating that the resistance locus was located on this alien chromosome. To enhance the usefulness of this locus in wheat breeding, we further developed several new translocation lines with small Th. intermedium segments using irradiation and developed 124 specific markers using specific-locus amplified fragment sequencing, which increased the marker density of chromosome 7JsS. Furthermore, a refined physical map of chromosome 7JsS was constructed with 74 specific markers, and six bins were thus arranged according to the co-occurrence of markers and alien chromosome segments. Combining data from specific marker amplification and resistance evaluation, we mapped a new leaf rust resistance locus in the 0-69.29 Mb region on chromosome 7JsS. The translocation lines carrying the new leaf rust resistance locus and its linked markers will contribute to wheat disease-resistance breeding.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Zhang
- Department of Plant Pathology, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Haile JK, Sertse D, N’Diaye A, Klymiuk V, Wiebe K, Ruan Y, Chawla HS, Henriquez MA, Wang L, Kutcher HR, Steiner B, Buerstmayr H, Pozniak CJ. Multi-locus genome-wide association studies reveal the genetic architecture of Fusarium head blight resistance in durum wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1182548. [PMID: 37900749 PMCID: PMC10601657 DOI: 10.3389/fpls.2023.1182548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
Durum wheat is more susceptible to Fusarium head blight (FHB) than other types or classes of wheat. The disease is one of the most devastating in wheat; it reduces yield and end-use quality and contaminates the grain with fungal mycotoxins such as deoxynivalenol (DON). A panel of 265 Canadian and European durum wheat cultivars, as well as breeding and experimental lines, were tested in artificially inoculated field environments (2019-2022, inclusive) and two greenhouse trials (2019 and 2020). The trials were assessed for FHB severity and incidence, visual rating index, Fusarium-damaged kernels, DON accumulation, anthesis or heading date, maturity date, and plant height. In addition, yellow pigment and protein content were analyzed for the 2020 field season. To capture loci underlying FHB resistance and related traits, GWAS was performed using single-locus and several multi-locus models, employing 13,504 SNPs. Thirty-one QTL significantly associated with one or more FHB-related traits were identified, of which nine were consistent across environments and associated with multiple FHB-related traits. Although many of the QTL were identified in regions previously reported to affect FHB, the QTL QFhb-3B.2, associated with FHB severity, incidence, and DON accumulation, appears to be novel. We developed KASP markers for six FHB-associated QTL that were consistently detected across multiple environments and validated them on the Global Durum Panel (GDP). Analysis of allelic diversity and the frequencies of these revealed that the lines in the GDP harbor between zero and six resistance alleles. This study provides a comprehensive assessment of the genetic basis of FHB resistance and DON accumulation in durum wheat. Accessions with multiple favorable alleles were identified and will be useful genetic resources to improve FHB resistance in durum breeding programs through marker-assisted recurrent selection and gene stacking.
Collapse
Affiliation(s)
- Jemanesh K. Haile
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Demissew Sertse
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Amidou N’Diaye
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valentyna Klymiuk
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krystalee Wiebe
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Harmeet S. Chawla
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maria-Antonia Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Lipu Wang
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hadley R. Kutcher
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Barbara Steiner
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Curtis J. Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Valladares García AP, Desiderio F, Simeone R, Ravaglia S, Ciorba R, Fricano A, Guerra D, Blanco A, Cattivelli L, Mazzucotelli E. QTL mapping for kernel-related traits in a durum wheat x T. dicoccum segregating population. FRONTIERS IN PLANT SCIENCE 2023; 14:1253385. [PMID: 37849841 PMCID: PMC10577384 DOI: 10.3389/fpls.2023.1253385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/19/2023]
Abstract
Durum wheat breeding relies on grain yield improvement to meet its upcoming demand while coping with climate change. Kernel size and shape are the determinants of thousand kernel weight (TKW), which is a key component of grain yield, and the understanding of the genetic control behind these traits supports the progress in yield potential. The present study aimed to dissect the genetic network responsible for kernel size components (length, width, perimeter, and area) and kernel shape traits (width-to-length ratio and formcoefficient) as well as their relationships with kernel weight, plant height, and heading date in durum wheat. Quantitative Trait Locus (QTL) mapping was performed on a segregating population of 110 recombinant inbred lines, derived from a cross between the domesticated emmer wheat accession MG5323 and the durum wheat cv. Latino, evaluated in four different environments. A total of 24 QTLs stable across environments were found and further grouped in nine clusters on chromosomes 2A, 2B, 3A, 3B, 4B, 6B, and 7A. Among them, a QTL cluster on chromosome 4B was associated with kernel size traits and TKW, where the parental MG5323 contributed the favorable alleles, highlighting its potential to improve durum wheat germplasm. The physical positions of the clusters, defined by the projection on the T. durum reference genome, overlapped with already known genes (i.e., BIG GRAIN PROTEIN 1 on chromosome 4B). These results might provide genome-based guidance for the efficient exploitation of emmer wheat diversity in wheat breeding, possibly through yield-related molecular markers.
Collapse
Affiliation(s)
- Ana Paola Valladares García
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Valencia, Spain
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Bari, Italy
| | | | - Roberto Ciorba
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Davide Guerra
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| |
Collapse
|
12
|
Norman M, Bariana H, Bansal U, Periyannan S. The Keys to Controlling Wheat Rusts: Identification and Deployment of Genetic Resistance. PHYTOPATHOLOGY 2023; 113:667-677. [PMID: 36897760 DOI: 10.1094/phyto-02-23-0041-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rust diseases are among the major constraints for wheat production worldwide due to the emergence and spread of highly destructive races of Puccinia. The most common approach to minimize yield losses due to rust is to use cultivars that are genetically resistant. Modern wheat cultivars, landraces, and wild relatives can contain undiscovered resistance genes, which typically encode kinase or nucleotide-binding site leucine rich repeat (NLR) domain containing receptor proteins. Recent research has shown that these genes can provide either resistance in all growth stages (all-stage resistance; ASR) or specially in later growth stages (adult-plant resistance; APR). ASR genes are pathogen and race-specific, meaning can function against selected races of the Puccinia fungus due to the necessity to recognize specific avirulence molecules in the pathogen. APR genes are either pathogen-specific or multipathogen resistant but often race-nonspecific. Prediction of resistance genes through rust infection screening alone remains complex when more than one resistance gene is present. However, breakthroughs during the past half century such as the single-nucleotide polymorphism-based genotyping techniques and resistance gene isolation strategies like mutagenesis, resistance gene enrichment, and sequencing (MutRenSeq), mutagenesis and chromosome sequencing (MutChromSeq), and association genetics combined with RenSeq (AgRenSeq) enables rapid transfer of resistance from source to modern cultivars. There is a strong need for combining multiple genes for better efficacy and longer-lasting resistance. Hence, techniques like gene cassette creation speeds up the gene combination process, but their widespread adoption and commercial use is limited due to their transgenic nature.
Collapse
Affiliation(s)
- Michael Norman
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT 2601, Australia
| | - Harbans Bariana
- School of Science, Western Sydney University, Bourke Road, Richmond, NSW 2753, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Sambasivam Periyannan
- School of Agriculture and Environmental Science & Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld 4350, Australia
| |
Collapse
|
13
|
Klymiuk V, Haile T, Ens J, Wiebe K, N’Diaye A, Fatiukha A, Krugman T, Ben-David R, Hübner S, Cloutier S, Pozniak CJ. Genetic architecture of rust resistance in a wheat ( Triticum turgidum) diversity panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1145371. [PMID: 36998679 PMCID: PMC10043469 DOI: 10.3389/fpls.2023.1145371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Introduction Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teketel Haile
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N’Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrii Fatiukha
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Roi Ben-David
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO) – The Volcani Center, Rishon LeZion, Israel
| | - Sariel Hübner
- Galilee Research Institute (MIGAL), Tel Hai Academic College, Upper Galilee, Israel
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Kaur S, Gill HS, Breiland M, Kolmer JA, Gupta R, Sehgal SK, Gill U. Identification of leaf rust resistance loci in a geographically diverse panel of wheat using genome-wide association analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1090163. [PMID: 36818858 PMCID: PMC9929074 DOI: 10.3389/fpls.2023.1090163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases posing a significant threat to global wheat production. The continuously evolving virulent Pt races in North America calls for exploring new sources of leaf rust resistance. A diversity panel of 365 bread wheat accessions selected from a worldwide population of landraces and cultivars was evaluated at the seedling stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide distribution of seedling responses against the four Pt races was observed. Majority of the genotypes displayed a susceptible response with only 28 (9.8%), 59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we conducted a high-resolution multi-locus genome-wide association study (GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms (SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf rust resistance on different wheat chromosomes of which 20 MTAs were found in the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in previous studies. The remaining seven significant MTAs identified represent genomic regions that harbor potentially novel genes for leaf rust resistance. Furthermore, the candidate gene analysis for the significant MTAs identified various genes of interest that may be involved in disease resistance. The identified resistant lines and SNPs linked to the QTLs in this study will serve as valuable resources in wheat rust resistance breeding programs.
Collapse
Affiliation(s)
- Shivreet Kaur
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Matthew Breiland
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - James A. Kolmer
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), St. Paul, MN, United States
| | - Rajeev Gupta
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fargo, ND, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
15
|
Lhamo D, Sun Q, Zhang Q, Li X, Fiedler JD, Xia G, Faris JD, Gu YQ, Gill U, Cai X, Acevedo M, Xu SS. Genome-wide association analyses of leaf rust resistance in cultivated emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:20. [PMID: 36683081 DOI: 10.1007/s00122-023-04281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Fifteen and eleven loci, with most loci being novel, were identified to associate with seedling and adult resistances, respectively, to the durum-specific races of leaf rust pathogen in cultivated emmer. Leaf rust, caused by Puccinia triticina (Pt), constantly threatens durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum) production worldwide. A Pt race BBBQD detected in California in 2009 poses a potential threat to durum production in North America because resistance source to this race is rare in durum germplasm. To find new resistance sources, we assessed a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for seedling resistance to BBBQD and for adult resistance to a mixture of durum-specific races BBBQJ, CCMSS, and MCDSS in the field, and genotyped the panel using genotype-by-sequencing (GBS) and the 9 K SNP (Single Nucleotide Polymorphism) Infinium array. The results showed 24 and nine accessions consistently exhibited seedling and adult resistance, respectively, with two accessions providing resistance at both stages. We performed genome-wide association studies using 46,383 GBS and 4,331 9 K SNP markers and identified 15 quantitative trait loci (QTL) for seedling resistance located mostly on chromosomes 2B and 6B, and 11 QTL for adult resistance on 2B, 3B and 6A. Of these QTL, one might be associated with leaf rust resistance (Lr) gene Lr53, and two with the QTL previously reported in durum or hexaploid wheat. The remaining QTL are potentially associated with new Lr genes. Further linkage analysis and gene cloning are necessary to identify the causal genes underlying these QTL. The emmer accessions with high levels of resistance will be useful for developing mapping populations and adapted durum germplasm and varieties with resistance to the durum-specific races.
Collapse
Affiliation(s)
- Dhondup Lhamo
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Qun Sun
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijun Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Yong-Qiang Gu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Xiwen Cai
- USDA-ARS, Wheat, Sorghum and Forage Research Unit, and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Maricelis Acevedo
- Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
| | - Steven S Xu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
16
|
Kumar S, Pradhan AK, Kumar U, Dhillon GS, Kaur S, Budhlakoti N, Mishra DC, Singh AK, Singh R, Kumari J, Kumaran VV, Mishra VK, Bhati PK, Das S, Chand R, Singh K, Kumar S. Validation of Novel spot blotch disease resistance alleles identified in unexplored wheat (Triticum aestivum L.) germplasm lines through KASP markers. BMC PLANT BIOLOGY 2022; 22:618. [PMID: 36577935 PMCID: PMC9798658 DOI: 10.1186/s12870-022-04013-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND During the last few decades, the diverse sources of resistance, several genes and QTLs for spot blotch resistance have been identified. However, a large set of germplasm lines are still unexplored that have the potential to develop highly resistant wheat cultivars for the target environments. Therefore, the identification of new sources of resistance to spot blotch is essential for breeding programmes to develop spot blotch resistant cultivars and sustain wheat production. The association mapping panel of 294 diverse bread wheat accessions was used to explore new sources of spot blotch disease resistance and to identify genomic regions using genome wide association analysis (GWAS). The genotypes were tested in replicated trials for spot blotch disease at three major hot spots in India (Varanasi in UP, Pusa in Bihar, and Cooch Behar in West Bengal). The area under the disease progress curve (AUDPC) was calculated to assess the level of resistance in each genotype. RESULTS A total of 19 highly and 76 moderately resistant lines were identified. Three accessions (EC664204, IC534306 and IC535188) were nearly immune to spot blotch disease. The genotyping of all accessions resulted in a total of 16,787 high-quality polymorphic SNPs. The GWAS was performed using a Compressed Mixed Linear Model (CMLM) and a Mixed Linear Model (MLM). A total of seven significant MTAs, common in both the models and consistent across the environment, were further validated to develop KASP markers. Four MTAs (AX-94710084, AX-94865722, AX-95135556, and AX-94529408) on three chromosomes (2AL, 2BL, and 3BL) have been successfully validated through the KASP marker. CONCLUSIONS The new source of resistance was identified from unexplored germplasm lines. The genomic regions identified through GWAS were validated through KASP markers. The marker information and the highly resistant sources are valuable resources to rapidly develop immune or near immune wheat varieties.
Collapse
Affiliation(s)
- Suneel Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Uttam Kumar
- Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi, India.
| | | | - Satinder Kaur
- Punjab Agricultural University, Ludhiana, Punjab, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Vikas V Kumaran
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, India
| | | | | | - Saikat Das
- Uttar Banga Krishi Vishwavidyalaya, Pundibari, Coochbehar, India
| | - Ramesh Chand
- Banaras Hindu University, Uttar Pradesh, Varanasi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
17
|
Huerta-Espino J, Singh RP, Villaseñor-Mir HE, Ammar K. Mining Sources of Resistance to Durum Leaf Rust among Tetraploid Wheat Accessions from CIMMYT's Germplasm Bank. PLANTS (BASEL, SWITZERLAND) 2022; 12:49. [PMID: 36616178 PMCID: PMC9823849 DOI: 10.3390/plants12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A collection of 482 tetraploid wheat accessions from the CIMMYT Germplasm Bank was screened in the greenhouse for resistance to leaf rust disease caused by the fungus Puccinia triticina E. The accessions were screened against two races CBG/BP and BBG/BP in the field at two locations: against race CBG/BP at the Norman E. Borlaug Experimental Station (CENEB) located in the Yaqui Valley in the northern state of Sonora in Mexico during the 2014-2015 growing season; and against race BBG/BP at CIMMYT headquarters in El Batan, Texcoco, in the state of Mexico in the summer of 2015. Among the accessions, 79 durum genotypes were identified, of which 68 continued demonstrating their resistance in the field (past the seedling stage) against the two leaf rust races. An additional set of 41 genotypes was susceptible at the seedling stage, but adult plant race-specific resistance was identified in the field. The 79 seedling-resistant genotypes were tested against 15 different leaf rust races at the seedling stage to measure the usefulness of their resistance in a breeding program. Among the 79 accessions tested, 35 were resistant to all races used in the tests. Two sample sources, CIMMYT (18/35) pre-breeding germplasm and Ethiopian landraces (17/35), showed seedling resistance to all races tested except for seven landraces from Ethiopia, which became susceptible to the Cirno race identified in 2017.
Collapse
Affiliation(s)
- Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Apdo. Postal 10, Chapingo 56230, Mexico
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico City 06600, Mexico
| | | | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico City 06600, Mexico
| |
Collapse
|
18
|
Zeibig F, Kilian B, Frei M. The grain quality of wheat wild relatives in the evolutionary context. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4029-4048. [PMID: 34919152 PMCID: PMC9729140 DOI: 10.1007/s00122-021-04013-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat (Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAAmAm genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.
Collapse
Affiliation(s)
- Frederike Zeibig
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany.
| |
Collapse
|
19
|
Genievskaya Y, Pecchioni N, Laidò G, Anuarbek S, Rsaliyev A, Chudinov V, Zatybekov A, Turuspekov Y, Abugalieva S. Genome-Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151904. [PMID: 35893608 PMCID: PMC9329756 DOI: 10.3390/plants11151904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 05/05/2023]
Abstract
Leaf rust (LR) and stem rust (SR) are diseases increasingly impacting wheat production worldwide. Fungal pathogens producing rust diseases in wheat may cause yield losses of up to 50−60%. One of the most effective methods for preventing such losses is the development of resistant cultivars with high yield potential. This goal can be achieved through complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. The objective of this study was to identify sources of tetraploid wheat resistance to LR and SR races, both at the seedling growth stage in the greenhouse and at the adult plant stage in field experiments, under the conditions of the North Kazakhstan region. A panel consisting of 193 tetraploid wheat accessions was used in a genome-wide association study (GWAS) for the identification of quantitative trait loci (QTLs) associated with LR and SR resistance, using 16,425 polymorphic single-nucleotide polymorphism (SNP) markers in the seedling and adult stages of plant development. The investigated panel consisted of seven tetraploid subspecies (Triticum turgidum ssp. durum, ssp. turanicum, ssp. turgidum, ssp. polonicum, ssp. carthlicum, ssp. dicoccum, and ssp. dicoccoides). The GWAS, based on the phenotypic evaluation of the tetraploid collection’s reaction to the two rust species at the seedling (in the greenhouse) and adult (in the field) stages, revealed 38 QTLs (p < 0.001), comprising 17 for LR resistance and 21 for SR resistance. Ten QTLs were associated with the reaction to LR at the seedling stage, while six QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. Eleven QTLs were associated with SR response at the seedling stage, while nine QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. A comparison of these results with previous LR and SR studies indicated that 11 of the 38 QTLs are presumably novel loci. The QTLs identified in this work can potentially be used for marker-assisted selection of tetraploid and hexaploid wheat for the breeding of new LR- and SR-resistant cultivars.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Giovanni Laidò
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Shynar Anuarbek
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan;
| | - Vladimir Chudinov
- Breeding Department, Karabalyk Agricultural Experimental Station, Nauchnoe 110908, Kazakhstan;
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence: ; Tel.: +7-727-394-8006
| |
Collapse
|
20
|
Pal N, Jan I, Saini DK, Kumar K, Kumar A, Sharma PK, Kumar S, Balyan HS, Gupta PK. Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2385-2405. [PMID: 35699741 DOI: 10.1007/s00122-022-04119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
In wheat, multiple disease resistance meta-QTLs (MDR-MQTLs) and underlying candidate genes for the three rusts were identified which may prove useful for development of resistant cultivars. Rust diseases in wheat are a major threat to global food security. Therefore, development of multiple disease-resistant cultivars (resistant to all three rusts) is a major goal in all wheat breeding programs worldwide. In the present study, meta-QTLs and candidate genes for multiple disease resistance (MDR) involving all three rusts were identified using 152 individual QTL mapping studies for resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR). From these 152 studies, a total of 1,146 QTLs for resistance to three rusts were retrieved, which included 368 QTLs for LR, 291 QTLs for SR, and 487 QTLs for YR. Of these 1,146 QTLs, only 718 QTLs could be projected onto the consensus map saturated with 2, 34,619 markers. Meta-analysis of the projected QTLs resulted in the identification of 86 MQTLs, which included 71 MDR-MQTLs. Ten of these MDR-MQTLs were referred to as the 'Breeders' MQTLs'. Seventy-eight of the 86 MQTLs could also be anchored to the physical map of the wheat genome, and 54 MQTLs were validated by marker-trait associations identified during earlier genome-wide association studies. Twenty MQTLs (including 17 MDR-MQTLs) identified in the present study were co-localized with 44 known R genes. In silico expression analysis allowed identification of several differentially expressed candidate genes (DECGs) encoding proteins carrying different domains including the following: NBS-LRR, WRKY domains, F-box domains, sugar transporters, transferases, etc. The introgression of these MDR loci into high-yielding cultivars should prove useful for developing high yielding cultivars with resistance to all the three rusts.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
- Murdoch's Centre for Crop & Food Innovation, Murdoch University, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
21
|
Mourad AMI, Draz IS, Omar GE, Börner A, Esmail SM. Genome-Wide Screening of Broad-Spectrum Resistance to Leaf Rust ( Puccinia triticina Eriks) in Spring Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:921230. [PMID: 35812968 PMCID: PMC9258335 DOI: 10.3389/fpls.2022.921230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 06/01/2023]
Abstract
Wheat leaf rust (LR) causes significant yield losses worldwide. In Egypt, resistant cultivars began to lose their efficiency in leaf rust resistance. Therefore, a diverse spring wheat panel was evaluated at the seedling stage to identify new sources of broad-spectrum seedling resistance against the Egyptian Puccinia triticina (Pt) races. In three different experiments, seedling evaluation was done using Pt spores collected from different fields and growing seasons. Highly significant differences were found among experiments confirming the presence of different races population in each experiment. Highly significant differences were found among the tested genotypes confirming the ability to select superior genotypes. Genome-wide association study (GWAS) was conducted for each experiment and a set of 87 markers located within 48 gene models were identified. The identified gene models were associated with disease resistance in wheat. Five gene models were identified to resist all Pt races in at least two experiments and could be identified as stable genes under Egyptian conditions. Ten genotypes from five different countries were stable against all the tested Pt races but showed different degrees of resistance.
Collapse
Affiliation(s)
- Amira M. I. Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Ibrahim S. Draz
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghady E. Omar
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
22
|
Amo A, Soriano JM. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. THE PLANT GENOME 2022; 15:e20185. [PMID: 34918873 DOI: 10.1002/tpg2.20185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Leaf rust, caused by the fungus Puccinia triticina Erikss (Pt), is a destructive disease affecting wheat (Triticum aestivum L.) and a threat to food security. Developing resistant cultivars represents a useful method of disease control, and thus, understanding the genetic basis for leaf rust resistance is required. To this end, a comprehensive bibliographic search for leaf rust resistance quantitative trait loci (QTL) was performed, and 393 QTL were collected from 50 QTL mapping studies. Afterward, a consensus map with a total length of 4,567 cM consisting of different types of markers (simple sequence repeat [SSR], diversity arrays technology [DArT], chip-based single-nucleotide polymorphism [SNP] markers, and SNP markers from genotyping-by-sequencing) was used for QTL projection, and meta-QTL (MQTL) analysis was performed on 320 QTL. A total of 75 MQTL were discovered and refined to 15 high-confidence MQTL (hcmQTL). The candidate genes discovered within the hcmQTL interval were then checked for differential expression using data from three transcriptome studies, resulting in 92 differentially expressed genes (DEGs). The expression of these genes in various leaf tissues during wheat development was explored. This study provides insight into leaf rust resistance in wheat and thereby provides an avenue for developing resistant cultivars by incorporating the most important hcmQTL.
Collapse
Affiliation(s)
- Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F Univ., Yangling, Shaanxi, China
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, 25198, Spain
| |
Collapse
|
23
|
Wambugu PW, Henry R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol Ecol 2022; 31:2207-2222. [PMID: 35170117 PMCID: PMC9303585 DOI: 10.1111/mec.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome‐based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148, 00100, Nairobi, Kenya
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
24
|
Atia MAM, El-Khateeb EA, Abd El-Maksoud RM, Abou-Zeid MA, Salah A, Abdel-Hamid AME. Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2021; 10:1378. [PMID: 34371581 PMCID: PMC8309345 DOI: 10.3390/plants10071378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity's food security. Developing effective marker-assisted selection programs for leaf rust resistance in wheat mainly depends on the availability of deep mining of resistance genes within the germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence of 28 leaf rust resistance (Lr) genes within the studied wheat collection. The field evaluation results indicated that most of these varieties demonstrated high to moderate leaf rust resistance levels except Gemmeiza 1, Gemmeiza 9, Giza162, Giza 163, Giza 164, Giza 165, Sids 1, Sids 2, Sids 3, Sakha 62, Sakha 69, Sohag 3 and Bany Swif 4, which showed fast rusting behavior. On the other hand, out of these 28 Lr genes tested against the wheat collection, 21 Lr genes were successfully identified. Out of 15 Lr genes reported conferring the adult plant resistant or slow rusting behavior in wheat, only five genes (Lr13, Lr22a, Lr34, Lr37, and Lr67) were detected within the Egyptian collection. Remarkedly, the genes Lr13, Lr19, Lr20, Lr22a, Lr28, Lr29, Lr32, Lr34, Lr36, Lr47, and Lr60, were found to be the most predominant Lr genes across the 50 Egyptian wheat varieties. The molecular phylogeny results also inferred the same classification of field evaluation, through grouping genotypes characterized by high to moderate leaf rust resistance in one cluster while being highly susceptible in a separate cluster, with few exceptions.
Collapse
Affiliation(s)
- Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Eman A. El-Khateeb
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Reem M. Abd El-Maksoud
- Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Mohamed A. Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Arwa Salah
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Amal M. E. Abdel-Hamid
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt;
| |
Collapse
|