1
|
Aparna S, Kumar ARV, Sotelo-Cardona P, Srinivasan R. Host plant selection is linked to performance in Phthorimaea absoluta (Lepidoptera: Gelechiidae). ENVIRONMENTAL ENTOMOLOGY 2024; 53:665-676. [PMID: 38828479 DOI: 10.1093/ee/nvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The evolution of oviposition preference in insects is considered a key evolutionary strategy in the context of host-plant interaction. It is hypothesized that insects maximize the survival and fitness of the subsequent generations by preferring specific host plant(s), known as the "preference-performance hypothesis." In this study, we tested whether adult host preference reflects the immature performance in an oligophagous insect, Phthorimaea absoluta Meyrick, a rapidly emerging invasive pest in Asia, Africa, and Europe. Based on a preliminary survey of the potential host plants of P. absoluta, we selected 6 Solanaceae species, namely, tomato, potato, eggplant, black nightshade, sweet pepper, and tobacco, for the oviposition preference studies. The results indicated that the tomato was the most preferred host in no-, dual- and multiple-choice assays, followed by potato, eggplant, and black nightshade. Subsequently, the insect life-table parameters were found to be superior on tomato compared to other hosts. The order of oviposition preference on the host plants was strongly correlated with the life-table parameters of P. absoluta. Thus, we provide clear evidence for the preference-performance hypothesis in the host selection behavior of P. absoluta. We also emphasize the necessity of conducting oviposition behavior research at various geographic locations to develop tailor-made integrated pest management programs.
Collapse
Affiliation(s)
- Shivanna Aparna
- Safe and Sustainable Value Chains Flagship Program, World Vegetable Center, South and Central Asia, ICRISAT Campus, Hyderabad, Telangana 502324, India
- Department of Agricultural Entomology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - Amritha R V Kumar
- Department of Agricultural Entomology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - Paola Sotelo-Cardona
- Safe and Sustainable Value Chains Flagship Program, World Vegetable Center, P.O. Box 42, Shanhua, Tainan 74199, Taiwan
| | - Ramasamy Srinivasan
- Safe and Sustainable Value Chains Flagship Program, World Vegetable Center, P.O. Box 42, Shanhua, Tainan 74199, Taiwan
| |
Collapse
|
2
|
Miller S, Wilner D, Boldbaatar J, Bonduriansky R. Does ecology shape geographical parthenogenesis? Evidence from the facultatively parthenogenetic stick insect Megacrania batesii. Ecol Evol 2024; 14:e70145. [PMID: 39145042 PMCID: PMC11322659 DOI: 10.1002/ece3.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
Closely related sexual and parthenogenetic species often show distinct distribution patterns, known as geographical parthenogenesis. Similar patterns, characterized by the existence of separate sexual and parthenogenetic populations across their natural range, can also be found in facultative parthenogens - species in which every female is capable of both sexual and parthenogenetic reproduction. The underlying mechanisms driving this phenomenon in nature remain unclear. Features of the habitat, such as differences in host-plant phenotypes or niche breadth, could favour sexual or asexual reproductive modes and thus help to explain geographical parthenogenesis in natural insect populations. Megacrania batesii is a facultatively parthenogenetic stick insect that displays geographical parthenogenesis in the wild. We aimed to explore whether sexual and parthenogenetic populations of M. batesii displayed niche differentiation or variations in niche breadth that could explain the separation of the two population types. To do this, we sampled host plants from across the range of M. batesii and quantified phenotypic traits that might affect palatability or accessibility for M. batesii, including leaf thickness, toughness, spike size and density, plant height, and chemical composition. We also quantified host-plant density, which could affect M. batesii dispersal. We found little evidence of phenotypic differences between host plants supporting sexual versus asexual M. batesii populations, and no difference in host-plant density or niche breadth between the two population types. Our results suggest that habitat parameters do not play a substantial role in shaping patterns of geographical parthenogenesis in wild populations of M. batesii. Instead, population sex ratio variation could result from interactions between the sexes or dispersal dynamics.
Collapse
Affiliation(s)
- Soleille Miller
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Daniela Wilner
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Jigmidmaa Boldbaatar
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Zhai J, Hou B, Hu F, Yu G, Li Z, Palmer-Young EC, Xiang H, Gao L. Active defense strategies for invasive plants may alter the distribution pattern of pests in the invaded area. FRONTIERS IN PLANT SCIENCE 2024; 15:1428752. [PMID: 39055354 PMCID: PMC11269258 DOI: 10.3389/fpls.2024.1428752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Introduction In the invaded areas, it is believed that invasive species reduce their investment in defense due to the absence of natural enemies. Methods By field investigation and a series of laboratory assays, This study explored the defense strategies of invasive plants. Results Field investigation indicated that invasive plants have a antifeedant effect on herbivorous pests, and the distribution frequency of wormholes of native plants shows a peak at a distance of 2-3 m from the invasive species. The feeding preference experiment conducted with two generalist herbivorous insects (native insect Spodoptera litura and invasive insect Spodoptera frugiperda) showed that the invasive plants have a stronger antifeedant effect than native plants. By analyzing the content of secondary metabolites in the leaves of three invasive plants (Sphagneticola trilobata, Mikania micrantha, Ipomoea cairica) and three native plants (Ipomoea nil, Paederia foetida, Polygonum chinense), the leaves of invasive plants had higher concentrations of substances associated with defenses, including total phenols, flavonoids, jasmonic acid, tannin, H2O2, and total antioxidant capacity (TAC), and lower soluble protein concentrations than native plants. After leaf damage, compared to native plants, the leaves of invasive plants showed an overall increase in substances associated with defense, except for soluble sugar. Discussion These results suggest that invasive plants maintain active defense strategies in invaded areas, leading to changes in the distribution patterns of herbivorous insects in a manner that facilitates invasion.
Collapse
Affiliation(s)
- Junjie Zhai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Hou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fangyu Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guozhu Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Evan C. Palmer-Young
- United States Department of Agriculture- Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
5
|
Čėsna V, Čėsnienė I, Sirgedaitė-Šėžienė V, Marčiulynienė D. Changes in Biologically Active Compounds in Pinus sylvestris Needles after Lymantria monacha Outbreaks and Treatment with Foray 76B. PLANTS (BASEL, SWITZERLAND) 2024; 13:328. [PMID: 38276785 PMCID: PMC10821276 DOI: 10.3390/plants13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Due to climate warming, the occurrence of Lymantria monacha outbreaks is predicted to become more frequent, causing repeated and severe damage to conifer trees. Currently, the most effective way to control the outbreaks is aerial spraying with the bioinsecticide Foray 76B. The present study aimed to determine the impact of both: (i) L. monacha outbreaks and (ii) treatment with Foray 76B on tree resistance through the synthesis of polyphenols (TPC), flavonoids (TFC), photosynthetic pigments (chlorophyll a and b, carotenoids), lipid peroxidation (MDA), and soluble sugars (TSS) in Pinus sylvestris needles. Samples were collected from visually healthy (control), damaged/untreated, and damaged/Foray 76B-treated plots in 2020 and 2021 (following year after the outbreaks). The results revealed that L. monacha outbreaks contributed to the increase in TPC by 34.1% in 2020 and 26.7% in 2021. TFC negatively correlated with TPC, resulting in 17.6% and 11.1% lower concentrations in L. monacha-damaged plots in 2020 and 2021, respectively. A decrease in MDA was found in the damaged plots in both 2020 and 2021 (10.2% and 23.3%, respectively), which was associated with the increased synthesis of photosynthetic pigments in 2021. The research results also showed that in the following year after the outbreaks, the increase in the synthesis of photosynthetic pigments was also affected by the treatment with Foray 76B. Moreover, the increase in the synthesis of TPC and photosynthetic pigments in the damaged plots in 2021 illustrates the ability of pines to keep an activated defense system to fight biotic stress. Meanwhile, a higher synthesis of photosynthetic pigments in Foray 76B-treated plots indicates a possible effect of the treatment on faster tree growth and forest recovery after L. monacha outbreaks.
Collapse
Affiliation(s)
- Vytautas Čėsna
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania; (I.Č.); (V.S.-Š.); (D.M.)
| | | | | | | |
Collapse
|
6
|
Zhang A, Li T, Yuan L, Tan M, Jiang D, Yan S. Digestive Characteristics of Hyphantria cunea Larvae on Different Host Plants. INSECTS 2023; 14:insects14050463. [PMID: 37233091 DOI: 10.3390/insects14050463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Digestive physiology mediates the adaptation of phytophagous insects to host plants. In this study, the digestive characteristics of Hyphantria cunea larvae feeding preferences on different host plants were investigated. The results showed that the body weight, food utilization, and nutrient contents of H. cunea larvae feeding on the high-preference host plants were significantly higher than those feeding on the low-preference host plants. However, the activity of larval digestive enzymes in different host plants presented an opposite trend, as higher α-amylase or trypsin activity was observed in the group feeding on the low-preference host plants than that feeding on the high-preference host plants. Upon treatment of leaves with α-amylase and trypsin inhibitors, the body weight, food intake, food utilization rate, and food conversion rate of H. cunea larvae significantly decreased in all host plant groups. Furthermore, the H. cunea comprised highly adaptable compensatory mechanisms of digestion involving digestive enzymes and nutrient metabolism in response to digestive enzyme inhibitors. Taken together, digestive physiology mediates the adaptation of H. cunea to multiple host plants, and the compensatory effect of digestive physiology is an important counter-defense strategy implemented by H. cunea to resist plant defense factors, especially the insect digestive enzyme inhibitors.
Collapse
Affiliation(s)
- Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Jaafari-Behi V, Ziaee M, Kocheili F, Ali Hemmati S, Francikowski J. Life-table parameters of Plodia interpunctella (Lepidoptera: Pyralidae) on different stored date palm fruits under laboratory conditions. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7175444. [PMID: 37217169 DOI: 10.1093/jisesa/iead028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/11/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is a polyphagous insect pest that causes serious damage to various food crops in storage. This study aimed to investigate the life-history and demographic parameters of P. interpunctella on 5 varieties of date palm fruits (Phoenix dactylifera L.), including Dayri, Estemaran, Fersi, Halavi, and Zahedi under laboratory conditions. Data were analyzed and compared using the age-stage, 2-sex life table. Plodia interpunctella completed its development on all date varieties. The shortest and longest pre-adult periods were recorded on Zahedi (38.47 days) and Estemaran (44.65 days) varieties, respectively. The net reproductive rates (R0) were 82.51, 59.05, 63.61, 102.27, and 114.86 offspring on Dayri, Estemaran, Fersi, Halavi, and Zahedi varieties, respectively. The intrinsic rate of increase (r) were 0.098, 0.085, 0.089, 0.109, and 0.113 day-1 on Dayri, Estemaran, Fersi, Halavi, and Zahedi varieties, respectively. The female fecundity ranged from 133.4 to 259.24 eggs on Estemaran and Zahedi varieties, respectively. The highest mean generation time (T) was obtained on Estemaran (47.984 days), and the lowest value of this parameter was obtained on Zahedi (41.722 days) variety. The results indicated that Zahedi and Halavi varieties were the susceptible hosts for P. interpunctella. In contrast, the Estemaran and Fersi were the most resistant varieties against P. interpunctella, which can be used for integrated management programs to decrease the damage of this pest.
Collapse
Affiliation(s)
- Vahid Jaafari-Behi
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P.O. Box 61357-43311, Ahvaz, Iran
| | - Masumeh Ziaee
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P.O. Box 61357-43311, Ahvaz, Iran
| | - Farhan Kocheili
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P.O. Box 61357-43311, Ahvaz, Iran
| | - Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P.O. Box 61357-43311, Ahvaz, Iran
| | - Jacek Francikowski
- Laboratory of Insect Physiology and Ethology, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa Street, 40-007 Katowice, Poland
| |
Collapse
|
8
|
Wu S, Chen L, Zhou Y, Xiao F, Liu D, Wang Y. Invasive Plants Have Higher Resistance to Native Generalist Herbivores Than Exotic Noninvasive Congeners. ENVIRONMENTAL ENTOMOLOGY 2023; 52:81-87. [PMID: 36545824 DOI: 10.1093/ee/nvac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Research on the invasive plant Phytolacca americana (L.) mostly focuses on its medicinal value and enrichment of heavy metals. However, little is known regarding its impact on native herbivorous insects. In this study, we explored the effects of P. americana and the exotic noninvasive Phytolacca icosandra (L.) on the Spodoptera litura (Fabricius) (native tobacco cutworm) via bioassay, oviposition preference, detoxifying enzyme activity analysis, and phytochemical determination. We found that the oviposition preference index (OPI) of S. litura feeding on P. icosandra was higher than that of P. americana. The developmental duration of S. litura feeding on P. icosandra was shorter than that of P. americana. Additionally, the Acetylcholinesterase (AchE) and Glutathione-S-transferase (GST) activities of S. litura feeding on P. americana were higher than that of S. litura feeding on artificial diets or P. icosandra. The content of lignin and flavonoids in P. americana was relatively high, whereas starch content was relatively low. These findings suggest invasive plants have higher resistance to herbivores, thereby suffering less damage than exotic noninvasive plants.
Collapse
Affiliation(s)
- Shan Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Li Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Yue Zhou
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Feng Xiao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Danfeng Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| |
Collapse
|
9
|
Kallure GS, Shinde BA, Barvkar VT, Kumari A, Giri AP. Dietary influence on modulation of Helicoverpa armigera oral secretion composition leading to differential regulation of tomato plant defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111120. [PMID: 34895549 DOI: 10.1016/j.plantsci.2021.111120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Little is known about how different plant-based diets influence the insect herbivores' oral secretion (OS) composition and eventually the plant defense responses. We analyzed the OS composition of the generalist Lepidopteran insect, Helicoverpa armigera feeding on the host plant tomato (OSH), non-host plant capsicum (OSNH), and artificial diet (OSAD) using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Higher numbers and levels of alkaloids and terpenoids were observed in OSH and OSNH, respectively while OSAD was rich in phospholipids. Interestingly, treatment of H. armigera OSAD, OSH and OSNH on wounded tomato leaves showed differential expression of (i) genes involved in JA and SA biosynthesis and their responsive genes, and (ii) biosynthetic pathway genes of chlorogenic acid (CGA) and trehalose, which exhibited increased accumulation along with several other plant defensive metabolites. Specifically, high levels of CGA were detected after OSH and OSNH treatments in tomato leaves. There was higher expression of the genes involved in phenylpropanoid biosynthesis, which may lead to the increased accumulation of CGA and related metabolites. In the insect bioassay, CGA significantly inhibited H. armigera larval growth. Our results underline the differential accumulation of plant and insect OS metabolites and identified potential plant metabolite(s) affecting insect growth and development.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Balkrishna A Shinde
- Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Shu B, Yang X, Dai J, Yu H, Yu J, Li X, Cao L, Lin J. Effects of camptothecin on histological structures and gene expression profiles of fat bodies in Spodoptera frugiperda. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112968. [PMID: 34763196 DOI: 10.1016/j.ecoenv.2021.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Spodoptera frugiperda is a serious threat to global food production. Our previous study demonstrated that Camptothecin (CPT), a bioactive secondary metabolite from Camptotheca acuminata (Decne: Nyssaceae), exhibits adverse impact on the larval midgut of S. frugiperda and inhibits insect growth. However, effects of CPT on fat bodies of S. frugiperda larvae have not been examined yet. In the present study, we found that histological structures of fat bodies of S. frugiperda larvae were damaged in insects treated with CPT. Comparative transcriptomic analyses among different fat body samples from controls and insects treated with 1.0 and 5.0 μg/g CPT were performed. A total of 4212 and 5044 differentially expressed genes (DEGs) were identified in the samples treated with 1.0 and 5.0 μg/g CPT, respectively. Our data indicated that the pathways of detoxification, immune response, fatty acids, chitin, and hormone biosynthesis in fat bodies were affected by CPT treatments based on DEGs. These results provided a comprehensive view of the damage and gene expression changes in fat bodies of S. frugiperda after CPT exposure, which shall be useful to reveal the mechanism of CPT toxicity against S. frugiperda in future.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xianmei Yang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haikuo Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jingcheng Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangli Li
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Liang Cao
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
11
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Khan MM, Chen L, Ren X, Zhou S, Fernández-Grandon GM, Zalucki MP, Lu Y. Behavioral and Physiological Plasticity Provides Insights into Molecular Based Adaptation Mechanism to Strain Shift in Spodoptera frugiperda. Int J Mol Sci 2021; 22:10284. [PMID: 34638623 PMCID: PMC8508907 DOI: 10.3390/ijms221910284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
How herbivorous insects adapt to host plants is a key question in ecological and evolutionary biology. The fall armyworm, (FAW) Spodoptera frugiperda (J.E. Smith), although polyphagous and a major pest on various crops, has been reported to have a rice and corn (maize) feeding strain in its native range in the Americas. The species is highly invasive and has recently established in China. We compared behavioral changes in larvae and adults of a corn population (Corn) when selected on rice (Rice) and the molecular basis of these adaptational changes in midgut and antennae based on a comparative transcriptome analysis. Larvae of S. frugiperda reared on rice plants continuously for 20 generations exhibited strong feeding preference for with higher larval performance and pupal weight on rice than on maize plants. Similarly, females from the rice selected population laid significantly more eggs on rice as compared to females from maize population. The most highly expressed DEGs were shown in the midgut of Rice vs. Corn. A total of 6430 DEGs were identified between the populations mostly in genes related to digestion and detoxification. These results suggest that potential adaptations for feeding on rice crops, may contribute to the current rapid spread of fall armyworm on rice crops in China and potentially elsewhere. Consistently, highly expressed DEGs were also shown in antennae; a total of 5125 differentially expressed genes (DEGs) s were identified related to the expansions of major chemosensory genes family in Rice compared to the Corn feeding population. These results not only provide valuable insight into the molecular mechanisms in host plants adaptation of S. frugiperda but may provide new gene targets for the management of this pest.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, China;
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forest University, Fuzhou 350002, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| | | | - Myron P. Zalucki
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.Z.); (J.H.); (L.C.); (X.R.); (S.Z.)
| |
Collapse
|
12
|
Variable host responses mediate host preference in marine flatworm-snail symbioses. PLoS One 2021; 16:e0247551. [PMID: 33651807 PMCID: PMC7924752 DOI: 10.1371/journal.pone.0247551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
Host preference of symbionts evolves from fitness trade-offs. However, it is often unclear how interspecific variations in host response traits influence this evolutionary process. Using the association between the polyclad flatworm Paraprostatum echinolittorinae and its intertidal snail hosts on the Pacific Coast of Panama, we assessed how a symbiont’s host preference is associated with varying host defenses and post-infestation performances. We first characterized the prevalence and intensity of worm infestation in five snail hosts (Tegula pellisserpentis, Nerita scabricosta, N. funiculata, Planaxis planicostatus, and Cerithium stercusmuscarum). We then used manipulative experiments to test flatworm’s host choice, hosts’ behavioral rejection of flatworms, and hosts’ growth and survival following the infestation. In the field, flatworms were orders of magnitude more prevalent and dense in T. pellisserpentis, N. scabricosta, N. funiculata than P. planicostatus and C. stercusmuscarum, although the three former hosts were not necessarily more abundant. The results from our laboratory host selection trials mirrored these patterns; flatworms were 3 to 14 times more likely to choose T. pellisserpentis, N. scabricosta, N. funiculata over P. planicostatus and C. stercusmuscarum. The less preferred hosts frequently rejected flatworms via mantle contractions and foot withdrawals, which reduced the infestation rate by 39%−67%. These behaviors were less frequent or absent in the preferred hosts. Flatworm infestation variably influenced host performances in the field, negligibly affecting the growth and survival of T. pellisserpentis and N. funiculata but reducing the growth of P. planicostatus. Flatworms thus preferred less defended hosts that can also support higher worm densities without being harmed. Stable isotope analysis further revealed that flatworms are unlikely to feed on snail tissues and may live as a commensal in their preferred hosts. Our study demonstrates that host response traits can modulate a symbiont’s host choice and calls for more explicit considerations of host response variability in host preference research.
Collapse
|