1
|
Sun B, Zhao X, Qu T, Zhong Y, Guan C, Hou C, Tang L, Tang X, Wang Y. The causal link between nitrogen structure and physiological processes of Ulva prolifera as the causative species of green tides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176170. [PMID: 39260471 DOI: 10.1016/j.scitotenv.2024.176170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Harmful algal blooms (HABs) increase with eutrophication depending on the nutrient structure (availability and ratios), but an unequivocal causal link between these factors is rarely established. Here, we provide support for the causal link between the nitrogen structure and physiological processes of Ulva prolifera as the causative species of Yellow Sea green tides (YSGTs) using in situ and laboratory experiments. The results showed that the components of nitrogen nutrients in seawater exhibited significant spatiotemporal variation. The concentration of NO3--N showed a notable decreasing trend from south to north. Sufficient dissolved inorganic nitrogen (DIN) induced increases in thalli nitrate reductase (NR) and glutamine synthetase (GS) activities. This could accelerate thalli uptake of nitrogen nutrients. The glutamate dehydrogenase (GDH) activity was significantly upregulated with the increasing proportion of dissolved organic nitrogen (DON) in seawater. The change in nitrogen structure regulated the activity of NR during the long-distance floating migration of the YSGTs. And the activity of NR could modulate the nitric oxide (NO) content in the thalli. NO was used as a signal molecule to enhance the antioxidant defense system of thalli. The efficient antioxidant system in the thalli could reduce oxidative stress and effectively maintain high photosynthetic activity. The findings deepen our understanding of the relationship between nitrogen structures and key biological processes in macroalgae. This study also suggest that NO can enhance key biological processes in U. prolifera under varying nitrogen structures.
Collapse
Affiliation(s)
- Baixue Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinyu Zhao
- Laoshan Laboratory, 168 Wenhai Middle Road, Qingdao 266237, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Liuqing Tang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao 266104, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Road, Qingdao 266237, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Road, Qingdao 266237, China.
| |
Collapse
|
2
|
Ma L, Wei A, Liu C, Liu N, Han Y, Chen Z, Wang N, Du S. Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis. Genes (Basel) 2024; 15:1505. [PMID: 39766773 PMCID: PMC11675882 DOI: 10.3390/genes15121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cucumber (Cucumis sativus L.) is a crucial vegetable crop, requiring significant nitrogen fertilizer inputs. However, excessive nitrogen application not only impairs growth but also poses severe environmental risks. Thus, enhancing nitrogen use efficiency (NUE) in cucumber is imperative. For the identification of genes associated with NUE in cucumber, roots of high NUE and low NUE lines were analyzed under high nitrogen conditions. Using transcriptome sequencing through WGCNA, a total of 15,180 genes were categorized into 35 co-expression modules, with 5 modules being highly correlated with NUE. Based on differential expression within the five modules and the results of GO and KEGG enrichment analyses, 25 genes were identified as potentially related to NUE. Among these, CsaV4_1G002492 (GLR22), CsaV4_2G003460 (GLR35), CsaV4_3G000307 (NRT1.1), and CsaV4_7G001709 (UPS2) were homologous to genes in Arabidopsis known to directly participate in NUE related process. These four genes were chosen as key genes for further analysis. qRT-PCR analysis revealed that CsaV4_3G000307 and CsaV4_7G001709 were more active during the early stages of the high nitrogen treatment in the high NUE line. Conversely, CsaV4_1G002492 and CsaV4_2G003460 were more active in the low NUE line. Using transcriptomic analysis, a frameshift INDEL mutation was observed in CsaV4_3G000307 in the low NUE line, which impacted the compactness of the protein structure, potentially altering its function. Analysis of protein interactions of these four key genes predicted some potential interaction networks. This research offers critical insights into the genetic factors influencing NUE in cucumber, presenting potential targets for genetic modification or breeding programs.
Collapse
Affiliation(s)
- Linhao Ma
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Nan Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhengwu Chen
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ningning Wang
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- College of Agricultural Science, Nankai University, Tianjin 300071, China
| | - Shengli Du
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
3
|
Anwar A, Zheng J, Chen C, Chen M, Xue Y, Wang J, Su W, Chen R, Song S. Effects of NH 4 +-N: NO 3 --N ratio on growth, nutrient uptake and production of blueberry ( Vaccinium spp.) under soilless culture. FRONTIERS IN PLANT SCIENCE 2024; 15:1438811. [PMID: 39502920 PMCID: PMC11536338 DOI: 10.3389/fpls.2024.1438811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Blueberry (Vaccinium corymbosum) is a small pulp shrub, which prefers to grow on a soilless culture. For soilless culture, nutritional management remains typically vital for blueberry production. However, the effect of different nutritional treatments on blueberry growth and production is largely unknown. This study was designed to investigate to formulate a specific nutritional treatment for blueberry. The results showed that NH4 +-N: NO3 --N ratios significantly affected the growth, nutrient uptake, physiological characteristics, and flowering, as well as the fruiting characteristics of blueberry plants. The number of shoots and top projection area was increased considerably by 25:75 treatment. In contrast, 50:50 treatment promotes plant height, shoot length, and stem thickness, increasing chlorophyll contents, photosynthetic capacity, and P, Ca, and Mg in leaves. In contrast, 50:50 treatment promotes the flowering fruiting rate and prolongs the blueberry flowering period. The maximum soluble sugar contents were noted in 25:75, while maximum starch contents were reported in the 50:50 treatment. The treatments 100:0 and 75:25 promote early flowering and accelerate fruit set. Notably, NH4 +-N: NO3 --N ratios; 50:50 treatment significantly encourages plant growth, nutrient uptake, chlorophyll contents, photosynthetic capacity, and fruit setting rate in blueberry plants. These findings suggested that NH4 +-N: NO3 --N ratios 50:50 is the most appropriate treatment that significantly promotes vegetative growth and enhances production in blueberry plants. This study provides valuable information for improved blueberry production under a controlled environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Ostria-Gallardo E, Bascuñán-Godoy L, Fernández Del-Saz N. Editorial: Nitrogen metabolism in crops and model plant species. FRONTIERS IN PLANT SCIENCE 2024; 15:1502273. [PMID: 39439505 PMCID: PMC11493684 DOI: 10.3389/fpls.2024.1502273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Enrique Ostria-Gallardo
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| | - Luisa Bascuñán-Godoy
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
5
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|
6
|
Saifi M, Ashrafi K, Qamar F, Abdin MZ. Regulatory trends in engineering bioactive-phytocompounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112167. [PMID: 38925476 DOI: 10.1016/j.plantsci.2024.112167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The secondary plant metabolites are of enormous importance because of their extensive medicinal, nutraceutical, and industrial applications. In plants, these secondary metabolites are often found in extremely small amounts, therefore, following the discovery of any prospective metabolite, the main constraining element is the ability to generate enough material for use in both industrial and therapeutic settings. In order to satisfy the rising demand for value-added metabolites, researchers prefer to use different molecular approaches for scalable and sustainable production of these phytocompounds. Here, we discuss the emerging regulatory trends in engineering these bioactive-phytocompounds and provide recommendation on successful employment of these state-of-the-art technologies for translation of these academic researches into novel process and products.
Collapse
Affiliation(s)
- Monica Saifi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Kudsiya Ashrafi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Firdaus Qamar
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - M Z Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
7
|
Gülüt KY, Şentürk GG. Impact of nitrogen fertilizer type and application rate on growth, nitrate accumulation, and postharvest quality of spinach. PeerJ 2024; 12:e17726. [PMID: 39011375 PMCID: PMC11249000 DOI: 10.7717/peerj.17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Background A balanced supply of nitrogen is essential for spinach, supporting both optimal growth and appropriate nitrate (NO3 -) levels for improved storage quality. Thus, choosing the correct nitrogen fertilizer type and application rate is key for successful spinach cultivation. This study investigated the effects of different nitrogen (N) fertilizer type and application rates on the growth, nitrate content, and storage quality of spinach plants. Methods Four fertilizer types were applied at five N doses (25, 50, 200, and 400 mg N kg-1) to plants grown in plastic pots at a greenhouse. The fertilizer types used in the experiment were ammonium sulphate (AS), slow-release ammonium sulphate (SRAS), calcium nitrate (CN), and yeast residue (YR). Spinach parameters like Soil Plant Analysis Development (SPAD) values (chlorophyll content), plant height, and fresh weight were measured. Nitrate content in leaves was analyzed after storage periods simulating post-harvest handling (0, 5, and 10 days). Results The application of nitrogen fertilizer significantly influenced spinach growth parameters and nitrate content. The YRx400 treatment yielded the largest leaves (10.3 ± 0.5 cm long, 5.3 ± 0.2 cm wide). SPAD values increased with higher N doses for AS, SRAS, and CN fertilizers, with AS×400 (58.1 ± 0.8) and SRAS×400 (62.0 ± 5.8) reaching the highest values. YR treatments showed a moderate SPAD increase. Fresh weight response depended on fertilizer type, N dose, and storage period. While fresh weight increased in all fertilizers till 200 mg kg-1 dose, a decrease was observed at the highest dose for AS and CN. SRAS exhibited a more gradual increase in fresh weight with increasing nitrogen dose, without the negative impact seen at the highest dose in AS and CN. Nitrate content in spinach leaves varied by fertilizer type, dose, and storage day. CNx400 resulted in the highest NO3 - content (4,395 mg kg-1) at harvest (Day 0), exceeding the European Union's safety limit. This level decreased over 10 days of storage but remained above the limit for CN on Days 0 and 5. SRAS and YR fertilizers generally had lower NO3 - concentrations throughout the experiment. Storage at +4 °C significantly affected NO3 - content. While levels remained relatively stable during the first 5 days, a substantial decrease was observed by Day 10 for all fertilizers and doses, providing insights into the spinach's nitrate content over a 10-day storage period. Conclusion For rapid early growth and potentially higher yields, AS may be suitable at moderate doses (200 mg kg-1). SRAS offers a more balanced approach, promoting sustained growth while potentially reducing NO3 - accumulation compared to AS. Yeast residue, with its slow nitrogen release and consistently low NO3 - levels, could be a viable option for organic spinach production.
Collapse
Affiliation(s)
- Kemal Yalçın Gülüt
- Department of Soil Science and Plant Nutrition/Faculty of Agriculture, Çukurova University, Sarıçam, Adana, Turkey
| | - Gamze Güleç Şentürk
- Department of Soil Science and Plant Nutrition/Faculty of Agriculture, Çukurova University, Sarıçam, Adana, Turkey
| |
Collapse
|
8
|
Lacrampe N, Lugan R, Dumont D, Nicot PC, Lecompte F, Colombié S. Modelling metabolic fluxes of tomato stems reveals that nitrogen shapes central metabolism for defence against Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4093-4110. [PMID: 38551810 PMCID: PMC11233421 DOI: 10.1093/jxb/erae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 07/11/2024]
Abstract
Among plant pathogens, the necrotrophic fungus Botrytis cinerea is one of the most prevalent, leading to severe crop damage. Studies related to its colonization of different plant species have reported variable host metabolic responses to infection. In tomato, high N availability leads to decreased susceptibility. Metabolic flux analysis can be used as an integrated method to better understand which metabolic adaptations lead to effective host defence and resistance. Here, we investigated the metabolic response of tomato infected by B. cinerea in symptomless stem tissues proximal to the lesions for 7 d post-inoculation, using a reconstructed metabolic model constrained by a large and consistent metabolic dataset acquired under four different N supplies. An overall comparison of 48 flux solution vectors of Botrytis- and mock-inoculated plants showed that fluxes were higher in Botrytis-inoculated plants, and the difference increased with a reduction in available N, accompanying an unexpected increase in radial growth. Despite higher fluxes, such as those involved in cell wall synthesis and other pathways, fluxes related to glycolysis, the tricarboxylic acid cycle, and amino acid and protein synthesis were limited under very low N, which might explain the enhanced susceptibility. Limiting starch synthesis and enhancing fluxes towards redox and specialized metabolism also contributed to defence independent of N supply.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, F-84914 Avignon, France
- UMR Qualisud, Avignon Université, F-84916 Avignon, France
| | | | | | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, F-33883 Villenave d’Ornon, France
| |
Collapse
|
9
|
Farruggia D, Di Miceli G, Licata M, Leto C, Salamone F, Novak J. Foliar application of various biostimulants produces contrasting response on yield, essential oil and chemical properties of organically grown sage ( Salvia officinalis L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1397489. [PMID: 39011298 PMCID: PMC11248988 DOI: 10.3389/fpls.2024.1397489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
Sage (Salvia officinalis L.) is a medicinal and aromatic plant (MAP) belonging to the Lamiaceae family. Its morphological, productive and chemical characteristics are affected by abiotic and biotic factors. The use of biostimulants seems to be one of the most interesting innovative practices due to fact they can represent a promising approach for achieving sustainable and organic agriculture. Despite a large application in horticulture, the use of biostimulants on MAPs has been poorly investigated. On this basis, a field experiment in a 2-year study was done to assess the effect of foliar treatments with different types of biostimulants (containing seaweeds, fulvic acids and protein hydrolysates) and two frequencies of application on morphological, productive, and chemical characteristics of S. officinalis grown organically in Mediterranean environment. Morphological, productive, and chemical parameters were affected by the factors. The biostimulant application generated higher plant height, chlorophyll content, relative water content, biomass yield and essential oil yield compared to control plants. In addition, more frequent application of biostimulants produced higher biomass and essential oil yield. The application of fulvic acid and protein hydrolysates every week produced the highest total fresh yields (between 3.9 and 8.7 t ha-1) and total dry yields (between 1.3 and 2.5 t ha-1). The essential oil yield almost doubled (33.9 kg ha-1) with a higher frequency of protein hydrolysates application. In this study, 44 essential oil compounds were identified, and the frequency factor significantly influenced the percentage of 38 compounds. The highest percentage of some of the most representative monoterpenes, such as 1,8-cineole, α-thujone and camphor, were observed in biostimulated plants, with average increases between 6% and 35% compared to control plants. The highest values for total phenolics, rosmarinic acid, antioxidant activity were obtained in control plants and with a lower frequency of biostimulant applications. This study emphasizes how biostimulant applications may be used to improve sage production performance and essential oil parameters when produced in agricultural organic system. At the same time, biostimulants application caused a decrease in total phenolic, antioxidant activity and rosmarinic acid values.
Collapse
Affiliation(s)
- Davide Farruggia
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Di Miceli
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Mario Licata
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Claudio Leto
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
- Research Consortium for the Development of Innovative Agro-Environmental Systems (CoRiSSIA), Palermo, Italy
| | - Francesco Salamone
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Palermo, Italy
| | - Johannes Novak
- Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
10
|
The SV, Santiago JP, Pappenberger C, Hammes UZ, Tegeder M. UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts. THE PLANT CELL 2024; 36:1119-1139. [PMID: 38092462 PMCID: PMC10980354 DOI: 10.1093/plcell/koad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 04/01/2024]
Abstract
Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.
Collapse
Affiliation(s)
- Samantha Vivia The
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - James P Santiago
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Clara Pappenberger
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
11
|
Atero-Calvo S, Izquierdo-Ramos MJ, García-Huertas C, Rodríguez-Alcántara M, Navarro-Morillo I, Navarro-León E. An Evaluation of the Effectivity of the Green Leaves Biostimulant on Lettuce Growth, Nutritional Quality, and Mineral Element Efficiencies under Optimal Growth Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:917. [PMID: 38611447 PMCID: PMC11013046 DOI: 10.3390/plants13070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
The use of biostimulants is becoming a useful tool for increasing crop productivity while enhancing nutritional quality. However, new studies are necessary to confirm that the joint application of different types of biostimulants, together with bioactive compounds, is effective and not harmful to plants. This study examined the impact of applying the biostimulant Green Leaves, comprising Macrocystis algae extract and containing a mixture of amino acids, corn steep liquor extract, calcium, and the bioactive compound glycine betaine. The effect of applying two different doses (3 and 5 mL L-1) of this biostimulant was evaluated on lettuce plants, and growth and quality parameters were analyzed along with photosynthetic efficiency, nutritional status, and nutrient efficiency parameters. The application of Green Leaves improved plant weight (25%) and leaf area and enhanced the photosynthetic rate, the accumulation of soluble sugars and proteins, and the agronomic efficiency of all essential nutrients. The 3 mL L-1 dose improved the nutritional quality of lettuce plants, improving the concentration of phenolic compounds and ascorbate and the antioxidant capacity and reducing NO3- accumulation. The 5 mL L-1 dose improved the absorption of most nutrients, especially N, which reduced the need for fertilizers, thus reducing costs and environmental impact. In short, the Green Leaves product has been identified as a useful product for obtaining higher yield and better quality.
Collapse
Affiliation(s)
- Santiago Atero-Calvo
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.A.-C.); (M.J.I.-R.); (C.G.-H.); (M.R.-A.)
| | - María José Izquierdo-Ramos
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.A.-C.); (M.J.I.-R.); (C.G.-H.); (M.R.-A.)
| | - Carmen García-Huertas
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.A.-C.); (M.J.I.-R.); (C.G.-H.); (M.R.-A.)
| | - Miguel Rodríguez-Alcántara
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.A.-C.); (M.J.I.-R.); (C.G.-H.); (M.R.-A.)
| | | | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (S.A.-C.); (M.J.I.-R.); (C.G.-H.); (M.R.-A.)
| |
Collapse
|
12
|
Bolat I, Korkmaz K, Dogan M, Turan M, Kaya C, Seyed Hajizadeh H, Kaya O. Enhancing drought, heat shock, and combined stress tolerance in Myrobalan 29C rootstocks with foliar application of potassium nitrate. BMC PLANT BIOLOGY 2024; 24:140. [PMID: 38413882 PMCID: PMC10898176 DOI: 10.1186/s12870-024-04811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Drought and heat stress are significant concerns to food security in arid and semi-arid regions, where global warming is predicted to increase both frequency and severity. To cope with these challenges, the use of drought-tolerant plants or technological interventions are essential. In this study, the effects of foliar potassium nitrate (KNO3) application on the stress tolerance and recovery of Myrobalan 29C rootstocks (Prunus cerasifera Ehrh.) were evaluated. These rootstocks are widely recognized for their adaptability and are extensively used in fruit production. To assess their response, the rootstocks were subjected to drought, heat shock, or a combination of both stressors. Additionally, they were treated with 1.0% KNO3 via foliar application. Throughout the stress and recovery periods, various morphological, physiological, and bio-chemical parameters were measured. RESULTS Based on our results, KNO3 treatment improved LRWC, Chl stability, SC, and key stress markers like proline, MDA, H2O2, along with antioxidant enzymes CAT, SOD, POD during both stress and recovery phases. Moreover, our results emphasized KNO3's critical role in hormone regulation under stress. KNO3 application significantly altered hormone levels, notably increasing ABA during drought and heat shock stress, essential for stress response and adaptation. In contrast, IAA, GA, and cytokinin's significantly increased during the recovery phase in KNO3-treated plants, indicating improved growth regulation and stress recovery. In addition, KNO3 application improved the recovery process of the rootstocks by restoring their physiological and biochemical functions. CONCLUSION This study suggests that the application of foliar KNO3 is an effective technique for enhancing the drought and heat tolerance as well as the recovery of Myrobalan 29C rootstocks. These results hold significant value for farmers, policymakers, and researchers, as they offer crucial insights into the development of drought-tolerant crops and the management of climate change's adverse effects on agriculture.
Collapse
Affiliation(s)
- Ibrahim Bolat
- Faculty of Agriculture, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Kubra Korkmaz
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Meral Dogan
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Metin Turan
- Faculty of Economy and Administrative Science, Yeditepe University, Istanbul, 34755, Türkiye
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Türkiye.
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Türkiye.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
13
|
Tian Z, Wang X, Li Y, Xi Y, He M, Guo Y. Co-inoculation of Soybean Seedling with Trichoderma asperellum and Irpex laceratus Promotes the Absorption of Nitrogen and Phosphorus. Curr Microbiol 2024; 81:87. [PMID: 38311653 DOI: 10.1007/s00284-023-03571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/22/2023] [Indexed: 02/06/2024]
Abstract
Soybean are one of the main oil crops in the world. The study demonstrated that co-inoculation with Trichoderma asperellum (Sordariomycetes, Hypocreomycetidae) and Irpex laceratus (Basidiomycota, Polyporales) isolated from Kosteletzkya virginica can promote the growth of soybean seedlings. The two fungi were found to produce various enzymes, including cellulase, amylase, laccase, protease, and urease. Upon inoculation, T. asperellum mainly colonized within the phloem of the roots in soybean seedlings, while I. laceratus mainly in the xylem and phloem of the roots. Physiological parameters, such as plant height, root length, and fresh weight, were significantly increased in soybean seedlings co-inoculated with T. asperellum and I. laceratus. Moreover, the expression of key genes related to N and P absorption and metabolism was also increased, leading to improved N and P utilization efficiency in soybean seedlings. These results indicate that the two fungi may have complementary roles in promoting plant growth, co-inoculation with T. asperellum and I. laceratus can enhance the growth and nutrient uptake of soybean. These findings suggest that T. asperellum and I. laceratus have the potential to be used as bio-fertilizers to improve soybean growth and yield.
Collapse
Affiliation(s)
- Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaomin Wang
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Yanyi Li
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Yu Xi
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Mengting He
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Arévalo-Hernández CO, Arévalo-Gardini E, Correa V JA, Souza Júnior JO, Neves JCL. Soil characteristics and allometric models for biometric characteristics and nutrient amounts for high yielding "Bolaina" (Guazuma crinita) trees. Sci Rep 2024; 14:2444. [PMID: 38286795 PMCID: PMC10825134 DOI: 10.1038/s41598-024-52790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
The Peruvian amazon is very diverse in native forestry species, the Guazuma crinita "Bolaina" being one of the most planted species in the country; however, little or no information about soil requirements and nutrient demands is known. The objective of this work was to assess the general conditions of soil fertility, biomass and macro- and micronutrient amounts in high-productivity Guazuma crinita plantations. Fields of high yielding Bolaina of different ages (1-10 years) were sampled in two regions. Soil and plant samples were collected in each field and biometric measurements of fresh weight, diameter at breast height and height were performed. For soil and plant analysis, both macro- (N, P, K, Ca, Mg, S) and micronutrients (B, Cu, Fe, Mn, Zn) were determined. Finally, allometric equations were constructed for biometric and nutrient amounts. This study is the first to assess and model macro- and micronutrient amounts in the productive cycle in this species, which grows in fertile soils. In the case of biometric equations, the logarithmic and logistic models performed better. For nutrient amounts, this species followed a pattern of Ca > N > K > P > S > Mg for macronutrients and Fe > B > Mn > Zn > Cu for micronutrients. The best prediction models for nutrients were the square root and logistic models.
Collapse
Affiliation(s)
- C O Arévalo-Hernández
- Department of Soils, Instituto de Cultivos Tropicales (ICT), Tarapoto, Peru.
- Professional School of Agronomic Engineering, Universidad Nacional Autonoma de Alto Amazonas (UNAAA), Yurimaguas, Peru.
- Department of Soils, Universidade Federal de Viçosa (UFV), Viçosa, Brazil.
| | - E Arévalo-Gardini
- Department of Soils, Instituto de Cultivos Tropicales (ICT), Tarapoto, Peru
- Professional School of Agronomic Engineering, Universidad Nacional Autonoma de Alto Amazonas (UNAAA), Yurimaguas, Peru
| | - J A Correa V
- Department of Soils, Instituto de Cultivos Tropicales (ICT), Tarapoto, Peru
| | - J O Souza Júnior
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - J C L Neves
- Department of Soils, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| |
Collapse
|
15
|
Xin L, Fu Y, Ma S, Li C, Wang H, Gao Y, Wang X. Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:4086. [PMID: 38140412 PMCID: PMC10747144 DOI: 10.3390/plants12244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
To develop optimal management strategies for water and nitrogen fertilizer application in winter wheat cultivation, we conducted a potted experiment to investigate the effects of different irrigation levels and nitrogen fertilizer treatments on the activity of starch synthesis-related enzymes and the grain quality of winter wheat. The potted experiment consisted of three irrigation levels, with the lower limits set at 50-55% (I0), 60-65% (I1), and 70-75% (I2) of the field capacity. In addition, four levels of nitrogen fertilizer were applied, denoted as N0 (0 kg N hm-2), N1 (120 kg N hm-2), N2 (240 kg N hm-2), and N3 (300 kg N hm-2), respectively. The results revealed the significant impacts of irrigation and nitrogen treatments on the activities of key starch-related enzymes, including adenosine diphosphoglucose pyrophosphrylase (ADPG-PPase), soluble starch synthase (SSS), granule-bound starch synthase (GBSS), and starch branching enzymes (SBE) in wheat grains. These treatments also influenced the starch content, amylopectin content, and, ultimately, wheat yield. In summary, our findings suggest that maintaining irrigation at a lower limit of 60% to 65% of the field capacity and applying nitrogen fertilizer at a rate of 240 kg hm-2 is beneficial for achieving both high yield and high quality in winter wheat cultivation.
Collapse
Affiliation(s)
- Lang Xin
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (L.X.); (H.W.)
| | - Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Shoutian Ma
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Caixia Li
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| | - Hongbo Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (L.X.); (H.W.)
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
- Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xingpeng Wang
- Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (Y.F.); (S.M.); (C.L.)
| |
Collapse
|
16
|
Prasanna JA, Mandal VK, Kumar D, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis of rice RGA1 mutant reveals the role of G-protein alpha subunit in negative regulation of nitrogen-sensitivity and use efficiency. PLANT CELL REPORTS 2023; 42:1987-2010. [PMID: 37874341 DOI: 10.1007/s00299-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
KEY MESSAGE Nitrate-responsive transcriptomic, phenotypic and physiological analyses of rice RGA1 mutant revealed many novel RGA1-regulated genes/processes/traits related to nitrogen use efficiency, and provided robust genetic evidence of RGA1-regulation of NUE. Nitrogen (N) use efficiency (NUE) is important for sustainable agriculture. G-protein signalling was implicated in N-response/NUE in rice, but needed firm genetic characterization of the role of alpha subunit (RGA1). The knock-out mutant of RGA1 in japonica rice exhibited lesser nitrate-dose sensitivity than the wild type (WT), in yield and NUE. We, therefore, investigated its genomewide nitrate-response relative to WT. It revealed 3416 differentially expressed genes (DEGs), including 719 associated with development, grain yield and phenotypic traits for NUE. The upregulated DEGs were related to photosynthesis, chlorophyll, tetrapyrrole and porphyrin biosynthesis, while the downregulated DEGs belonged to cellular protein metabolism and transport, small GTPase signalling, cell redox homeostasis, etc. We validated 26 nitrate-responsive DEGs across functional categories by RT-qPCR. Physiological validation of nitrate-response in the mutant and the WT at 1.5 and 15 mM doses revealed higher chlorophyll and stomatal length but decreased stomatal density, conductance and transpiration. The consequent increase in photosynthesis and water use efficiency may have contributed to better yield and NUE in the mutant, whereas the WT was N-dose sensitive. The mutant was not as N-dose-responsive as the WT in shoot/root growth, productive tillers and heading date, but equally responsive as WT in total N and protein content. The RGA1 mutant was less impacted by higher N-dose or salt stress in terms of yield, protein content, photosynthetic performance, relative water content, water use efficiency and catalase activity. PPI network analyses revealed known NUE-related proteins as RGA1 interactors. Therefore, RGA1 negatively regulates N-dose sensitivity and NUE in rice.
Collapse
Affiliation(s)
- Jangam Annie Prasanna
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Vikas Kumar Mandal
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
- Prof. H.S. Srivastava Foundation for Science and Society, 10B/7, Madan Mohan Malviya Marg, Lucknow, India
| | - Dinesh Kumar
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Navjyoti Chakraborty
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
17
|
An YQ, Ma DJ, Xi Z. Multi-Omics Analysis Reveals Synergistic Enhancement of Nitrogen Assimilation Efficiency via Coordinated Regulation of Nitrogen and Carbon Metabolism by Co-Application of Brassinolide and Pyraclostrobin in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16435. [PMID: 38003624 PMCID: PMC10671621 DOI: 10.3390/ijms242216435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Improving nitrogen (N) assimilation efficiency without yield penalties is important to sustainable food security. The chemical regulation approach of N assimilation efficiency is still less explored. We previously found that the co-application of brassinolide (BL) and pyraclostrobin (Pyr) synergistically boosted biomass and yield via regulating photosynthesis in Arabidopsis thaliana. However, the synergistic effect of BL and Pyr on N metabolism remains unclear. In this work, we examined the N and protein contents, key N assimilatory enzyme activities, and transcriptomic and metabolomic changes in the four treatments (untreated, BL, Pyr, and BL + Pyr). Our results showed that BL + Pyr treatment synergistically improved N and protein contents by 56.2% and 58.0%, exceeding the effects of individual BL (no increase) or Pyr treatment (36.4% and 36.1%). Besides synergistically increasing the activity of NR (354%), NiR (42%), GS (62%), and GOGAT (62%), the BL + Pyr treatment uniquely coordinated N metabolism, carbon utilization, and photosynthesis at the transcriptional and metabolic levels, outperforming the effects of individual BL or Pyr treatments. These results revealed that BL + Pyr treatments could synergistically improve N assimilation efficiency through improving N assimilatory enzyme activities and coordinated regulation of N and carbon metabolism. The identified genes and metabolites also informed potential targets and agrochemical combinations to enhance N assimilation efficiency.
Collapse
Affiliation(s)
- Ya-Qi An
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China; (Y.-Q.A.); (D.-J.M.)
| | - De-Jun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China; (Y.-Q.A.); (D.-J.M.)
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China; (Y.-Q.A.); (D.-J.M.)
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
18
|
Jiang M, Song Y, Yang R, Zheng C, Zheng Y, Zhang H, Li S, Tan Y, Huang J, Shu Q, Li R. Melatonin activates the OsbZIP79-OsABI5 module that orchestrates nitrogen and ROS homeostasis to alleviate nitrogen-limitation stress in rice. PLANT COMMUNICATIONS 2023; 4:100674. [PMID: 37598294 PMCID: PMC10721462 DOI: 10.1016/j.xplc.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Melatonin (Mel) has previously been reported to effectively alleviate nitrogen-limitation (N-L) stress and thus increase nitrogen-use efficiency (NUE) in several plants, but the underlying mechanism remains obscure. Here, we revealed that OsbZIP79 (BASIC LEUCINE ZIPPER 79) is transcriptionally activated under N-L conditions, and its expression is further enhanced by exogenous Mel. By the combined use of omics, genetics, and biological techniques, we revealed that the OsbZIP79-OsABI5 (ABSCISIC ACID INSENSITIVE 5) module stimulated regulation of reactive oxygen species (ROS) homeostasis and the uptake and metabolism of nitrogen under conditions of indoor nitrogen limitation (1/16 normal level). OsbZIP79 activated the transcription of OsABI5, and OsABI5 then bound to the promoters of target genes, including genes involved in ROS homeostasis and nitrogen metabolism, activating their transcription. This module was also indispensable for upregulation of several other genes involved in abscisic acid catabolism, nitrogen uptake, and assimilation under N-L and Mel treatment, although these genes were not directly transactivated by OsABI5. Field experiments demonstrated that Mel significantly improved rice growth under low nitrogen (L-N, half the normal level) by the same mechanism revealed in the nitrogen-limitation study. Mel application produced a 28.6% yield increase under L-N and thus similar increases in NUE. Also, two OsbZIP79-overexpression lines grown in L-N field plots had significantly higher NUE (+13.7% and +21.2%) than their wild types. Together, our data show that an OsbZIP79-OsABI5 module regulates the rice response to N insufficiency (N limitation or low N), which is important for increasing NUE in rice production.
Collapse
Affiliation(s)
- Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yunchao Zheng
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Breeding and Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Shan Li
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Jianzhong Huang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Qingyao Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China.
| | - Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
19
|
Meng X, Zhang Z, Wang H, Nai F, Wei Y, Li Y, Wang X, Ma X, Tegeder M. Multi-scale analysis provides insights into the roles of ureide permeases in wheat nitrogen use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5564-5590. [PMID: 37478311 DOI: 10.1093/jxb/erad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
The ureides allantoin and allantoate serve as nitrogen (N) transport compounds in plants, and more recently, allantoin has been shown to play a role in signaling. In planta, tissue ureide levels are controlled by the activity of enzymes of the purine degradation pathway and by ureide transporters called ureide permeases (UPS). Little is known about the physiological function of UPS proteins in crop plants, and especially in monocotyledon species. Here, we identified 13 TaUPS genes in the wheat (Triticum aestivum L.) genome. Phylogenetic and genome location analyses revealed a close relationship of wheat UPSs to orthologues in other grasses and a division into TaUPS1, TaUPS2.1, and TaUPS2.2 groups, each consisting of three homeologs, with a total of four tandem duplications. Expression, localization, and biochemical analyses resolved spatio-temporal expression patterns of TaUPS genes, transporter localization at the plasma membrane, and a role for TaUPS2.1 proteins in cellular import of ureides and phloem and seed loading. In addition, positive correlations between TaUPS1 and TaUPS2.1 transcripts and ureide levels were found. Together the data support that TaUPSs function in regulating ureide pools at source and sink, along with source-to-sink transport. Moreover, comparative studies between wheat cultivars grown at low and high N strengthened a role for TaUPS1 and TaUPS2.1 transporters in efficient N use and in controlling primary metabolism. Co-expression, protein-protein interaction, and haplotype analyses further support TaUPS involvement in N partitioning, N use efficiency, and domestication. Overall, this work provides a new understanding on UPS transporters in grasses as well as insights for breeding resilient wheat varieties with improved N use efficiency.
Collapse
Affiliation(s)
- Xiaodan Meng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- National Engineering Research Centre for Wheat, Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhiyong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huali Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Furong Nai
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yihao Wei
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongchun Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- National Engineering Research Centre for Wheat, Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaochun Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
20
|
Bělonožníková K, Černý M, Hýsková V, Synková H, Valcke R, Hodek O, Křížek T, Kavan D, Vaňková R, Dobrev P, Haisel D, Ryšlavá H. Casein as protein and hydrolysate: Biostimulant or nitrogen source for Nicotiana tabacum plants grown in vitro? PHYSIOLOGIA PLANTARUM 2023; 175:e13973. [PMID: 37402155 DOI: 10.1111/ppl.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.
Collapse
Affiliation(s)
- Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Roland Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ondřej Hodek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Radomíra Vaňková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
21
|
Khan MN, Siddiqui MH, Mukherjee S, AlSolami MA, Alhussaen KM, AlZuaibr FM, Siddiqui ZH, Al-Amri AA, Alsubaie QD. Melatonin involves hydrogen sulfide in the regulation of H +-ATPase activity, nitrogen metabolism, and ascorbate-glutathione system under chromium toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121173. [PMID: 36740162 DOI: 10.1016/j.envpol.2023.121173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Contamination of soils with chromium (Cr) jeopardized agriculture production globally. The current study was planned with the aim to better comprehend how melatonin (Mel) and hydrogen sulfide (H2S) regulate antioxidant defense system, potassium (K) homeostasis, and nitrogen (N) metabolism in tomato seedlings under Cr toxicity. The data reveal that application of 30 μM Mel to the seedlings treated with 25 μM Cr has a positive effect on H2S metabolism that resulted in a considerable increase in H2S. Exogenous Mel improved phytochelatins content and H+-ATPase activity with an associated increase in K content as well. Use of tetraethylammonium chloride (K+-channel blocker) and sodium orthovanadate (H+-ATPase inhibitor) showed that Mel maintained K homeostasis through regulating H+-ATPase activity under Cr toxicity. Supplementation of the stressed seedlings with Mel substantially scavenged excess reactive oxygen species (ROS) that maintained ROS homeostasis. Reduced electrolyte leakage and lipid peroxidation were additional signs of Mel's ROS scavenging effects. In addition, Mel also maintained normal functioning of nitrogen (N) metabolism and ascorbate-glutathione (AsA-GSH) system. Improved level of N fulfilled its requirement for various enzymes that have induced resilience during Cr stress. Additionally, the AsA-GSH cycle's proper operation maintained redox equilibrium, which is necessary for the biological system to function normally. Conversely, 1 mM hypotaurine (H2S scavenger) abolished the Mel-effect and again Cr-induced impairment on the above-mentioned parameters was observed even in presence of Mel. Therefore, based on the observed findings, we concluded that Mel needs endogenous H2S to alleviate Cr-induced impairments in tomato seedlings.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Jangipur, India
| | - Mazen A AlSolami
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khalaf M Alhussaen
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fahad M AlZuaibr
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid H Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
22
|
Alam I, Zhang H, Du H, Rehman NU, Manghwar H, Lei X, Batool K, Ge L. Bioengineering Techniques to Improve Nitrogen Transformation and Utilization: Implications for Nitrogen Use Efficiency and Future Sustainable Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3921-3938. [PMID: 36842151 DOI: 10.1021/acs.jafc.2c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is crucial for plant growth and development, especially in physiological and biochemical processes such as component of different proteins, enzymes, nucleic acids, and plant growth regulators. Six categories, such as transporters, nitrate absorption, signal molecules, amino acid biosynthesis, transcription factors, and miscellaneous genes, broadly encompass the genes regulating NUE in various cereal crops. Herein, we outline detailed research on bioengineering modifications of N metabolism to improve the different crop yields and biomass. We emphasize effective and precise molecular approaches and technologies, including N transporters, transgenics, omics, etc., which are opening up fascinating opportunities for a complete analysis of the molecular elements that contribute to NUE. Moreover, the detection of various types of N compounds and associated signaling pathways within plant organs have been discussed. Finally, we highlight the broader impacts of increasing NUE in crops, crucial for better agricultural yield and in the greater context of global climate change.
Collapse
Affiliation(s)
- Intikhab Alam
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hanyin Zhang
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Huan Du
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Naveed Ur Rehman
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hakim Manghwar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, SCAU, Guangzhou 510642, China
| | - Xiao Lei
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Khadija Batool
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| |
Collapse
|
23
|
Wan W, Liu Q, Zhang C, Li K, Sun Z, Li Y, Li H. Alfalfa growth and nitrogen fixation constraints in salt-affected soils are in part offset by increased nitrogen supply. FRONTIERS IN PLANT SCIENCE 2023; 14:1126017. [PMID: 36895871 PMCID: PMC9989181 DOI: 10.3389/fpls.2023.1126017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION In China, alfalfa (Medicago sativa L.) is often grown on marginal land with poor soil fertility and suboptimal climate conditions. Soil salt stress is one of the most limiting factors for alfalfa yield and quality, through its inhibition of nitrogen (N) uptake and N fixation. METHODS To understand if N supply could improve alfalfa yield and quality through increasing N uptake in salt-affected soils, a hydroponic experiment and a soil experiment were conducted. Alfalfa growth and N fixation were evaluated in response to different salt levels and N supply levels. RESULTS AND DISCUSSION The results showed that salt stress not only significantly decreased alfalfa biomass, by 43%-86%, and N content, by 58%-91%, but also reduced N fixation ability and N derived from the atmosphere (%Ndfa) through the inhibition of nodule formation and N fixation efficiency when the salt level was above 100 mmol Na2SO4 L-1. Salt stress also decreased alfalfa crude protein by 31%-37%. However, N supply significantly improved shoot dry weight by 40%-45%, root dry weight by 23%-29%, and shoot N content by 10%-28% for alfalfa grown in salt-affected soil. The N supply was also beneficial for the %Ndfa and N fixation for alfalfa with salt stress, and the increase reached 47% and 60%, respectively. Nitrogen supply offset the negative effects on alfalfa growth and N fixation caused by salt stress, in part through improving plant N nutrition status. Our results suggest that optimal N fertilizer application is essential to alleviate the loss of growth and N fixation in alfalfa in salt-affected soils.
Collapse
|
24
|
Aluko OO, Kant S, Adedire OM, Li C, Yuan G, Liu H, Wang Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1074839. [PMID: 36895876 PMCID: PMC9989036 DOI: 10.3389/fpls.2023.1074839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nitrate ( NO 3 - ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of NO 3 - transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of NO 3 - transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters' functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of NO 3 - transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
25
|
Bashir SS, Siddiqi TO, Kumar D, Ahmad A. Physio-biochemical, agronomical, and gene expression analysis reveals different responsive approach to low nitrogen in contrasting rice cultivars for nitrogen use efficiency. Mol Biol Rep 2023; 50:1575-1593. [PMID: 36520360 DOI: 10.1007/s11033-022-08160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nitrogen (N) is an essential macronutrient for plant growth and development as it is an essential constituent of biomolecules. Its availability directly impacts crop yield. Increased N application in crop fields has caused environmental and health problems, and decreasing nitrogen inputs are in demand to maintain crop production sustainability. Understanding the molecular mechanism of N utilization could play a crucial role in improving the nitrogen use efficiency (NUE) of crop plants. METHODS AND RESULTS In the present study, the effect of low N supply on plant growth, physio-biochemical, chlorophyll fluorescence attributes, yield components, and gene expression analysis were measured at six developmental stages in rice cultivars. Two rice cultivars were grown with a supply of optimium (120 kg ha-1) and low N (60 kg ha-1). Cultivar Vikramarya excelled Aditya at low N supply, and exhibits enhanced plant growth, physiological efficiency, agronomic efficiency, and improved NUE due to higher N uptake and utilization at low N treatment. Moreover, plant biomass, leaf area, and photosynthetic rate were significantly higher in cv. Vikramarya than cv. Aditya at different growth stages, under low N treatment. In addition, enzymatic activities in cultivar Vikramarya were higher than cultivar Aditya under low nitrogen, indicating its greater potential for N metabolism. Gene expression analysis was carried out for the most important nitrogen assimilatory enzymes, such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT). Expression levels of these genes at different growth stages were significantly higher in cv. Vikramarya compared to cv. Aditya at low N supply. Our findings suggest that improving NUE needs specific revision in N metabolism and physiological assimilation. CONCLUSION Overall differences in plant growth, physiological efficiency, biochemical activities, and expression levels of N metabolism genes in N-efficient and N-inefficient rice cultivars need a specific adaptation to N metabolism. Regulatory genes may separately or in conjunction, enhance the NUE. These results provide a platform for selecting crop cultivars for nitrogen utilization efficiency at low N treatment.
Collapse
Affiliation(s)
- Sheikh Shanawaz Bashir
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Tariq Omar Siddiqi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Dinesh Kumar
- Division of Agronomy, Indian Agricultural Research Institute, New Delhi, India
| | - Altaf Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
26
|
Marcianò D, Ricciardi V, Maddalena G, Massafra A, Marone Fassolo E, Masiero S, Bianco PA, Failla O, De Lorenzis G, Toffolatti SL. Influence of Nitrogen on Grapevine Susceptibility to Downy Mildew. PLANTS (BASEL, SWITZERLAND) 2023; 12:263. [PMID: 36678977 PMCID: PMC9867458 DOI: 10.3390/plants12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Downy mildew, caused by the obligate parasite Plasmopara viticola, is one of the most important threats to viticulture. The exploitation of resistant and susceptibility traits of grapevine is one of the most promising ways to increase the sustainability of disease management. Nitrogen (N) fertilization is known for influencing disease severity in the open field, but no information is available on its effect on plant-pathogen interaction. A previous RNAseq study showed that several genes of N metabolism are differentially regulated in grapevine upon P. viticola inoculation, and could be involved in susceptibility or resistance to the pathogen. The aim of this study was to evaluate if N fertilization influences: (i) the foliar leaf content and photosynthetic activity of the plant, (ii) P. viticola infectivity, and (iii) the expression of the candidate susceptibility/resistance genes. Results showed that N level positively correlated with P. viticola infectivity, confirming that particular attention should be taken in vineyard to the fertilization, but did not influence the expression of the candidate genes. Therefore, these genes are manipulated by the pathogen and can be exploited for developing new, environmentally friendly disease management tools, such as dsRNAs, to silence the susceptibility genes or breeding for resistance.
Collapse
Affiliation(s)
- Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Valentina Ricciardi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Giuliana Maddalena
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | | | | | - Simona Masiero
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| |
Collapse
|
27
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
28
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|
29
|
Genome-Wide Identification of WRKY Family Genes and the Expression Profiles in Response to Nitrogen Deficiency in Poplar. Genes (Basel) 2022; 13:genes13122324. [PMID: 36553591 PMCID: PMC9777946 DOI: 10.3390/genes13122324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The fast-growing arbor poplar is widely distributed across the world and is susceptible to nitrogen availability. The WRKY transcription factor is an important regulatory node of stress tolerance as well as nutrient utilization. However, the potential response mechanism of WRKY genes toward nitrogen is poorly understood. Therefore, the identification of WRKY genes on the Populus trichocarpa genome was performed, and 98 PtWRKYs (i.e., PtWRKY1 to PtWRKY98) were identified. Phylogenetic analysis and the promoter cis-acting element detection revealed that PtWRKYs have multiple functions, including phosphorus and nitrogen homeostasis. By constructing multilayer-hierarchical gene regulatory networks (ML-hGRNs), it was predicted that many WRKY transcription factors were involved in the nitrogen response, such as PtWRKY33 and PtWRKY95. They mainly regulated the expression of primary nitrogen-responsive genes (NRGs), such as PtNRT2.5A, PtNR2 and PtGLT2. The integrative analysis of transcriptome and RT-qPCR results show that the expression levels of 6 and 15 PtWRKYs were regulated by nitrogen availability in roots and leaves, respectively, and those were also found in ML-hGRN. Our study demonstrates that PtWRKYs respond to nitrogen by regulating NRGs, which enriches the nitrate-responsive transcription factor network and helps to uncover the hub of nitrate and its related signaling regulation.
Collapse
|
30
|
Huang Y, Wang H, Zhu Y, Huang X, Li S, Wu X, Zhao Y, Bao Z, Qin L, Jin Y, Cui Y, Ma G, Xiao Q, Wang Q, Wang J, Yang X, Liu H, Lu X, Larkins BA, Wang W, Wu Y. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 2022; 612:292-300. [PMID: 36385527 DOI: 10.1038/s41586-022-05441-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.
Collapse
Affiliation(s)
- Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Yidong Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shuai Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhigui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Qin
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Yongbo Jin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yahui Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hongjun Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Brian A Larkins
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
Peixoto B, Baena-González E. Management of plant central metabolism by SnRK1 protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7068-7082. [PMID: 35708960 PMCID: PMC9664233 DOI: 10.1093/jxb/erac261] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 05/07/2023]
Abstract
SUCROSE NON-FERMENTING1 (SNF1)-RELATED KINASE 1 (SnRK1) is an evolutionarily conserved protein kinase with key roles in plant stress responses. SnRK1 is activated when energy levels decline during stress, reconfiguring metabolism and gene expression to favour catabolism over anabolism, and ultimately to restore energy balance and homeostasis. The capacity to efficiently redistribute resources is crucial to cope with adverse environmental conditions and, accordingly, genetic manipulations that increase SnRK1 activity are generally associated with enhanced tolerance to stress. In addition to its well-established function in stress responses, an increasing number of studies implicate SnRK1 in the homeostatic control of metabolism during the regular day-night cycle and in different organs and developmental stages. Here, we review how the genetic manipulation of SnRK1 alters central metabolism in several plant species and tissue types. We complement this with studies that provide mechanistic insight into how SnRK1 modulates metabolism, identifying changes in transcripts of metabolic components, altered enzyme activities, or direct regulation of enzymes or transcription factors by SnRK1 via phosphorylation. We identify patterns of response that centre on the maintenance of sucrose levels, in an analogous manner to the role described for its mammalian orthologue in the control of blood glucose homeostasis. Finally, we highlight several knowledge gaps and technical limitations that will have to be addressed in future research aiming to fully understand how SnRK1 modulates metabolism at the cellular and whole-plant levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | |
Collapse
|
32
|
Guo B, Sun L, Jiang S, Ren H, Sun R, Wei Z, Hong H, Luan X, Wang J, Wang X, Xu D, Li W, Guo C, Qiu LJ. Soybean genetic resources contributing to sustainable protein production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4095-4121. [PMID: 36239765 PMCID: PMC9561314 DOI: 10.1007/s00122-022-04222-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Genetic resources contributes to the sustainable protein production in soybean. Soybean is an important crop for food, oil, and forage and is the main source of edible vegetable oil and vegetable protein. It plays an important role in maintaining balanced dietary nutrients for human health. The soybean protein content is a quantitative trait mainly controlled by gene additive effects and is usually negatively correlated with agronomic traits such as the oil content and yield. The selection of soybean varieties with high protein content and high yield to secure sustainable protein production is one of the difficulties in soybean breeding. The abundant genetic variation of soybean germplasm resources is the basis for overcoming the obstacles in breeding for soybean varieties with high yield and high protein content. Soybean has been cultivated for more than 5000 years and has spread from China to other parts of the world. The rich genetic resources play an important role in promoting the sustainable production of soybean protein worldwide. In this paper, the origin and spread of soybean and the current status of soybean production are reviewed; the genetic characteristics of soybean protein and the distribution of resources are expounded based on phenotypes; the discovery of soybean seed protein-related genes as well as transcriptomic, metabolomic, and proteomic studies in soybean are elaborated; the creation and utilization of high-protein germplasm resources are introduced; and the prospect of high-protein soybean breeding is described.
Collapse
Affiliation(s)
- Bingfu Guo
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Sun
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Siqi Jiang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rujian Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyan Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Xiaoyan Luan
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jun Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Donghe Xu
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agriculture University, Harbin, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA KeyLab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
33
|
Hoffmann B, Aubry E, Marmagne A, Dinant S, Chardon F, Le Hir R. Impairment of sugar transport in the vascular system acts on nitrogen remobilization and nitrogen use efficiency in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13830. [PMID: 36437708 DOI: 10.1111/ppl.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Carbon (C) and nitrogen (N) metabolisms have long been known to be coupled, and this is required for adjusting nitrogen use efficiency (NUE). Despite this intricate relationship, it is still unclear how deregulation of sugar transport impacts N allocation. Here, we investigated in Arabidopsis the consequences of the simultaneous downregulation of the genes coding for the sugar transporters SWEET11, SWEET12, SWEET16, and SWEET17 on various anatomical and physiological traits ranging from the stem's vascular system development to plant biomass production, seed yield, and N remobilization and use efficiency. Our results show that intracellular sugar exchanges mediated by SWEET16 and SWEET17 proteins specifically impact vascular development but do not play a significant role in the distribution of N. Most importantly, we showed that the double mutant swt11 swt12, which has an impacted vascular development, displays an improved NUE and nitrogen remobilization to the seeds. In addition, a significant negative correlation between sugar and amino acids contents and the inflorescence stem radial growth exists, highlighting the complex interaction between the maintenance of C/N homeostasis and the inflorescence stem development. Our results thus deepen the link between sugar transport, C/N allocation, and vascular system development.
Collapse
Affiliation(s)
- Beate Hoffmann
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Emilie Aubry
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
34
|
Wang B, Zhou G, Guo S, Li X, Yuan J, Hu A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life (Basel) 2022; 12:1653. [PMID: 36295087 PMCID: PMC9605605 DOI: 10.3390/life12101653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrogen (N) is an important nutrient for the growth and development of rice. The application of N fertilizer has become one of the inevitable ways to increase rice yield due to insufficient soil N content. However, in order to achieve stable and high yield, farmers usually increase N fertilizer input without hesitation, resulting in a series of problems such as environmental pollution, energy waste and low production efficiency. For sustainable agriculture, improving the nitrogen use efficiency (NUE) to decrease N fertilizer input is imperative. In the present review, we firstly demonstrate the role of N in mediating root architecture, photosynthesis, metabolic balance, and yield components in rice. Furthermore, we further summarize the current agronomic practices for enhancing rice NUE, including balanced fertilization, the use of nitrification inhibitors and slow-release N fertilizers, the split application of N fertilizer, root zone fertilization, and so on. Finally, we discuss the recent advances of N efficiency-related genes with potential breeding value. These genes will contribute to improving the N uptake, maintain the N metabolism balance, and enhance the NUE, thereby breeding new varieties against low N tolerance to improve the rice yield and quality. Moreover, N-efficient varieties also need combine with precise N fertilizer management and advanced cultivation techniques to realize the maximum exploitation of their biological potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Genyou Zhou
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Shiyang Guo
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| | - Xiaohui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiaqi Yuan
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Anyong Hu
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
35
|
Chai S, Chen J, Yue X, Li C, Zhang Q, de Dios VR, Yao Y, Tan W. Interaction of BES1 and LBD37 transcription factors modulates brassinosteroid-regulated root forging response under low nitrogen in arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998961. [PMID: 36247555 PMCID: PMC9555238 DOI: 10.3389/fpls.2022.998961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteriod (BR) plays important roles in regulation of plant growth, development and environmental responses. BR signaling regulates multiple biological processes through controlling the activity of BES1/BZR1 regulators. Apart from the roles in the promotion of plant growth, BR is also involved in regulation of the root foraging response under low nitrogen, however how BR signaling regulate this process remains unclear. Here we show that BES1 and LBD37 antagonistically regulate root foraging response under low nitrogen conditions. Both the transcriptional level and dephosphorylated level of BES1, is significant induced by low nitrogen, predominantly in root. Phenotypic analysis showed that BES1 gain-of-function mutant or BES1 overexpression transgenic plants exhibits progressive outgrowth of lateral root in response to low nitrogen and BES1 negatively regulates repressors of nitrate signaling pathway and positively regulates several key genes required for NO3 - uptake and signaling. In contrast, BES1 knock-down mutant BES1-RNAi exhibited a dramatical reduction of lateral root elongation in response to low N. Furthermore, we identified a BES1 interacting protein, LBD37, which is a negative repressor of N availability signals. Our results showed that BES1 can inhibit LBD37 transcriptional repression on N-responsive genes. Our results thus demonstrated that BES1-LBD37 module acts critical nodes to integrate BR signaling and nitrogen signaling to modulate the root forging response at LN condition.
Collapse
Affiliation(s)
- Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Junhua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaolan Yue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chenlin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qiang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
36
|
Chattha MS, Ali Q, Haroon M, Afzal MJ, Javed T, Hussain S, Mahmood T, Solanki MK, Umar A, Abbas W, Nasar S, Schwartz-Lazaro LM, Zhou L. Enhancement of nitrogen use efficiency through agronomic and molecular based approaches in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:994306. [PMID: 36237509 PMCID: PMC9552886 DOI: 10.3389/fpls.2022.994306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 05/22/2023]
Abstract
Cotton is a major fiber crop grown worldwide. Nitrogen (N) is an essential nutrient for cotton production and supports efficient crop production. It is a crucial nutrient that is required more than any other. Nitrogen management is a daunting task for plants; thus, various strategies, individually and collectively, have been adopted to improve its efficacy. The negative environmental impacts of excessive N application on cotton production have become harmful to consumers and growers. The 4R's of nutrient stewardship (right product, right rate, right time, and right place) is a newly developed agronomic practice that provides a solid foundation for achieving nitrogen use efficiency (NUE) in cotton production. Cropping systems are equally crucial for increasing production, profitability, environmental growth protection, and sustainability. This concept incorporates the right fertilizer source at the right rate, time, and place. In addition to agronomic practices, molecular approaches are equally important for improving cotton NUE. This could be achieved by increasing the efficacy of metabolic pathways at the cellular, organ, and structural levels and NUE-regulating enzymes and genes. This is a potential method to improve the role of N transporters in plants, resulting in better utilization and remobilization of N in cotton plants. Therefore, we suggest effective methods for accelerating NUE in cotton. This review aims to provide a detailed overview of agronomic and molecular approaches for improving NUE in cotton production, which benefits both the environment and growers.
Collapse
Affiliation(s)
- Muhammad Sohaib Chattha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qurban Ali
- Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Tahir Mahmood
- Department of Plant Breeding & Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Manoj K. Solanki
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shanza Nasar
- Department of Botany, University of Gujrat Hafiz Hayat Campus, Gujrat, Pakistan
| | - Lauren M. Schwartz-Lazaro
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
37
|
Effects of Fermented Seaweed Fertilizer Treatment on Paddy Amino Acid Content and Rhizosphere Microbiome Community. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed has often been reported on for it potential bioresources for fertilizers to improve crop productivity and reduce the use of chemical fertilizers (CF). However, little is known about the nutritional status of the crop grown with the implementation of seaweed fertilizers (SF). In this study, the amino acid content of rice produced by SF implementation was evaluated. Furthermore, the rhizosphere bacterial community was also investigated. The paddy seedlings were divided into five groups, control (C0), chemical fertilizer (CF), seaweed fertilizer (SF), chemical and seaweed fertilizer combination 25:75 (CFSF1), and chemical and fertilizer combination 50:50 (CFSF2). The CFSF2 group shown significantly better growth characteristics compared to other groups. Based on the concentration of macronutrients (N, P, K) in paddy leaf, CFSF2 also shown the best results. This also correlates with the abundant amino acid composition in CFSF2 in almost all tested amino acids, namely, serine, phenylalanine, isoleucine, valine, glycine, tyrosine, proline, threonine, histidine, and arginine. Interestingly, beneficial bacteria Rhizobiales were significantly higher in CFSF2-treated soil (58%) compared to CF (29%). Another important group, Vicinamibacterales, was also significantly higher in CFSF2 (58%) compared to CF (7%). Hence, these potentially contributed to the high rice amino acid content and yield in the CFSF2-treated paddy. However, further field-scale studies are needed to confirm the bioindustrial application of seaweed in agricultural systems.
Collapse
|
38
|
Ganugi P, Fiorini A, Rocchetti G, Bonini P, Tabaglio V, Lucini L. A response surface methodology approach to improve nitrogen use efficiency in maize by an optimal mycorrhiza-to- Bacillus co-inoculation rate. FRONTIERS IN PLANT SCIENCE 2022; 13:956391. [PMID: 36035726 PMCID: PMC9404334 DOI: 10.3389/fpls.2022.956391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Co-inoculation of arbuscular mycorrhizal fungi (AMF) and bacteria can synergically and potentially increase nitrogen use efficiency (NUE) in plants, thus, reducing nitrogen (N) fertilizers use and their environmental impact. However, limited research is available on AMF-bacteria interaction, and the definition of synergisms or antagonistic effects is unexplored. In this study, we adopted a response surface methodology (RSM) to assess the optimal combination of AMF (Rhizoglomus irregulare and Funneliformis mosseae) and Bacillus megaterium (a PGPR-plant growth promoting rhizobacteria) formulations to maximize agronomical and chemical parameters linked to N utilization in maize (Zea mays L.). The fitted mathematical models, and also 3D response surface and contour plots, allowed us to determine the optimal AMF and bacterial doses, which are approximately accorded to 2.1 kg ha-1 of both formulations. These levels provided the maximum values of SPAD, aspartate, and glutamate. On the contrary, agronomic parameters were not affected, except for the nitrogen harvest index (NHI), which was slightly affected (p-value of < 0.10) and indicated a higher N accumulation in grain following inoculation with 4.1 and 0.1 kg ha-1 of AMF and B. megaterium, respectively. Nonetheless, the identification of the saddle points for asparagine and the tendency to differently allocate N when AMF or PGPR were used alone, pointed out the complexity of microorganism interaction and suggests the need for further investigations aimed at unraveling the mechanisms underlying this symbiosis.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
39
|
Ahmad N, Su B, Ibrahim S, Kuang L, Tian Z, Wang X, Wang H, Dun X. Deciphering the Genetic Basis of Root and Biomass Traits in Rapeseed (Brassica napus L.) through the Integration of GWAS and RNA-Seq under Nitrogen Stress. Int J Mol Sci 2022; 23:ijms23147958. [PMID: 35887301 PMCID: PMC9323118 DOI: 10.3390/ijms23147958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE). The current study evaluated the natural variations in 13 root- and biomass-related traits under a low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed significant correlations with each other. The genome-wide association study (GWAS) found 51 significant and 30 suggestive trait–SNP associations that integrated into 14 valid quantitative trait loci (QTL) clusters and explained 5.7–21.2% phenotypic variance. In addition, RNA sequencing was performed at two time points to examine the differential expression of genes (DEGs) between high and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed root development under LN stress. Previous studies have reported that the homologs of seven out of sixteen potential genes control root growth and NUE. These findings revealed the genetic basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic improvement of NUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Bin Su
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Ze Tian
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (H.W.); (X.D.)
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Correspondence: (H.W.); (X.D.)
| |
Collapse
|
40
|
Waqar M, Habib-Ur-Rahman M, Hasnain MU, Iqbal S, Ghaffar A, Iqbal R, Hussain MI, Sabagh AE. Effect of slow release nitrogenous fertilizers and biochar on growth, physiology, yield, and nitrogen use efficiency of sunflower under arid climate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52520-52533. [PMID: 35262889 PMCID: PMC9343301 DOI: 10.1007/s11356-022-19289-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 04/15/2023]
Abstract
Sunflower plants need nitrogen consistently and in higher amount for optimum growth and development. However, nitrogen use efficiency (NUE) of sunflower crop is low due to various nitrogen (N) losses. Therefore, it is necessary to evaluate the advanced strategies to minimize N losses and also improve sunflower productivity under arid climatic conditions. A field trial was conducted with four slow release nitrogenous fertilizers [SRNF (bacterial, neem, and sulfur-coated urea and N loaded biochar)] and three N levels (100% = 148 kg N ha-1, 80% = 118 kg N ha-1, and 60% = 89 kg N ha-1) of recommended application (100%) for sunflower crop under arid climatic conditions. Results showed that neem-coated urea at 148 kg N ha-1 significantly enhanced crop growth rate (CGR) (19.16 g m-2 d-1) at 60-75 days after sowing (DAS); leaf area index (2.12, 3.62, 5.97, and 3.00) at 45, 60, 75, and 90 DAS; and total dry matter (14.27, 26.29, 122.67, 410, and 604.33 g m-2) at 30, 45, 60, 75, and 90 DAS. Furthermore, higher values of net leaf photosynthetic rate (25.2 µmol m-2 s-1), transpiration rate (3.66 mmol s-1), and leaf stomatal conductance (0.39 mol m-2 s-1) were recorded for the same treatment. Similarly, neem-coated urea produced maximum achene yield (2322 kg ha-1), biological yield (9000 kg ha-1), and harvest index (25.8%) of the sunflower crop. Among various N fertilizers, neem-coated urea showed maximum NUE (20.20 kg achene yield kg-1 N applied) in comparison to other slow release N fertilizers. Similarly, nitrogen increment N60 showed maximum NUE (22.40 kg grain yield kg-1 N applied) in comparison to N80 and N100. In conclusion, neem-coated urea with 100% and 80% of recommended N would be recommended for farmers to get better sunflower productivity with sustainable production and to reduce the environmental nitrogen losses.
Collapse
Affiliation(s)
- Muhammad Waqar
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Habib-Ur-Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan.
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Usama Hasnain
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan, Pakistan
| | - Shahid Iqbal
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Abdul Ghaffar
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Iftikhar Hussain
- Department of Plant Biology and Soil Science, Universidad de Vigo, Campus Lagoas Marcosende, 36310, Vigo, Spain
| | - Ayman El Sabagh
- Siirt University, Faculty of Agriculture, Department of Field Crops, Siirt, 56100, Turkey
| |
Collapse
|
41
|
Tripodi P, Figàs MR, Leteo F, Soler S, Díez MJ, Campanelli G, Cardi T, Prohens J. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. FRONTIERS IN PLANT SCIENCE 2022; 13:fpls-13-936596. [PMID: 35845687 PMCID: PMC9277548 DOI: 10.3389/fpls.2022.936596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The agricultural scenario of the upcoming decades will face major challenges for the increased and sustainable agricultural production and the optimization of the efficiency of water and fertilizer inputs. Considering the current and foreseen water scarcity in several marginal and arid areas and the need for a more sustainable farming production, the selection and development of cultivars suitable to grow under low-input conditions is an urgent need. In this study, we assayed 42 tomato genotypes for thirty-two morpho-physiological and agronomic traits related to plant, fruit, and root characteristics under standard (control) and no-nitrogen fertilization or water deficit (30% of the amount given to non-stressed trials) treatments in two sites (environments), which corresponded to organic farms located in Italy and Spain. A broad range of variation was found for all traits, with significant differences between the applied treatments and the cultivation sites. Dissection of genotypic (G), environmental (E), and treatment (T) factors revealed that the three main factors were highly significant for many traits, although G was the main source of variation in most cases. G × E interactions were also important, while G × T and E × T were less relevant. Only fruit weight and blossom end rot were highly significant for the triple interaction (G × E × T). Reduction of water supply significantly increased the soluble solid content in both locations, whereas both nitrogen and water stress led to a general decrease in fruit weight and total yield. Despite so, several accessions exhibited better performances than the control when cultivated under stress. Among the accessions evaluated, hybrids were promising in terms of yield performance, while overall landraces and heirlooms exhibited a better quality. This suggests the possibility of exploiting both the variation within ancient varieties and the heterosis for yield of hybrids to select and breed new varieties with better adaptation to organic farming conditions, both under optimal and suboptimal conditions. The results shed light on the strategies to develop novel varieties for organic farming, giving hints into the management of inputs to adopt for a more sustainable tomato cultivation.
Collapse
Affiliation(s)
- Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Maria R. Figàs
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Fabrizio Leteo
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, Italy
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, Italy
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
42
|
Sharma N, Kumari S, Jaiswal DK, Raghuram N. Comparative Transcriptomic Analyses of Nitrate-Response in Rice Genotypes With Contrasting Nitrogen Use Efficiency Reveals Common and Genotype-Specific Processes, Molecular Targets and Nitrogen Use Efficiency-Candidates. FRONTIERS IN PLANT SCIENCE 2022; 13:881204. [PMID: 35774823 PMCID: PMC9237547 DOI: 10.3389/fpls.2022.881204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 05/05/2023]
Abstract
The genetic basis for nitrogen (N)-response and N use efficiency (NUE) must be found in N-responsive gene expression or protein regulation. Our transcriptomic analysis of nitrate response in two contrasting rice genotypes of Oryza sativa ssp. Indica (Nidhi with low NUE and Panvel1 with high NUE) revealed the processes/functions underlying differential N-response/NUE. The microarray analysis of low nitrate response (1.5 mM) relative to normal nitrate control (15 mM) used potted 21-days old whole plants. It revealed 1,327 differentially expressed genes (DEGs) exclusive to Nidhi and 666 exclusive to Panvel1, apart from 70 common DEGs, of which 10 were either oppositely expressed or regulated to different extents. Gene ontology analyses revealed that photosynthetic processes were among the very few processes common to both the genotypes in low N response. Those unique to Nidhi include cell division, nitrogen utilization, cytoskeleton, etc. in low N-response, whereas those unique to Panvel1 include signal transduction, protein import into the nucleus, and mitochondria. This trend of a few common but mostly unique categories was also true for transporters, transcription factors, microRNAs, and post-translational modifications, indicating their differential involvement in Nidhi and Panvel1. Protein-protein interaction networks constructed using DEG-associated experimentally validated interactors revealed subnetworks involved in cytoskeleton organization, cell wall, etc. in Nidhi, whereas in Panvel1, it was chloroplast development. NUE genes were identified by selecting yield-related genes from N-responsive DEGs and their co-localization on NUE-QTLs revealed the differential distribution of NUE-genes between genotypes but on the same chromosomes 1 and 3. Such hotspots are important for NUE breeders.
Collapse
Affiliation(s)
| | | | | | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
43
|
zmm28 transgenic maize increases both N uptake- and N utilization-efficiencies. Commun Biol 2022; 5:555. [PMID: 35672405 PMCID: PMC9174173 DOI: 10.1038/s42003-022-03501-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Biotechnology has emerged as a valuable tool in the development of maize (Zea mays L.) hybrids with enhanced nitrogen (N) use efficiency. Recent work has described the positive effects of an increased and extended expression of the zmm28 transcription factor (Event DP202216) on maize yield productivity. In this study, we expand on the previous findings studying maize N uptake and utilization in DP202216 transgenic hybrids compared to wild-type (WT) controls. Isotope 15N labeling demonstrates that DP202216 hybrids have an improved N uptake during late-vegetative stages (inducing N storage in lower leaves of the canopy) and, thus, N uptake efficiency (N uptake to applied N ratio) relative to WT. Through both greater N harvest index and reproductive N remobilization, transgenic plants were able to achieve better N utilization efficiency (yield to N uptake ratio). Our findings suggest the DP202216 trait could open new avenues for improving N uptake and utilization efficiencies in maize.
Collapse
|
44
|
Yuan T, Zhu C, Li G, Liu Y, Yang K, Li Z, Song X, Gao Z. An Integrated Regulatory Network of mRNAs, microRNAs, and lncRNAs Involved in Nitrogen Metabolism of Moso Bamboo. Front Genet 2022; 13:854346. [PMID: 35651936 PMCID: PMC9149284 DOI: 10.3389/fgene.2022.854346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is a key macronutrient essential for plant growth and development, and its availability has a strong influence on biological processes. Nitrogen fertilizer has been widely applied in bamboo forests in recent decades; however, the mechanism of nitrogen metabolism in bamboo is not fully elucidated. Here, we characterized the morphological, physiological, and transcriptome changes of moso bamboo in response to different schemes for nitrogen addition to illuminate the regulation mechanism of nitrogen metabolism. The appropriate addition of nitrogen improved the chlorophyll content and Pn (net photosynthetic rate) of leaves, the nitrogen and ammonium contents of the seedling roots, the biomass of the whole seedling, the number of lateral roots, and the activity of enzymes involved in nitrogen metabolism in the roots. Based on the whole transcriptome data of the roots, a total of 8,632 differentially expressed mRNAs (DEGs) were identified under different nitrogen additions, such as 52 nitrate transporter genes, 6 nitrate reductase genes, 2 nitrite reductase genes, 2 glutamine synthase genes, 2 glutamate synthase genes (GOGAT), 3 glutamate dehydrogenase genes, and 431 TFs belonging to 23 families. Meanwhile, 123 differentially expressed miRNAs (DEMs) and 396 differentially expressed lncRNAs (DELs) were characterized as nitrogen responsive, respectively. Furthermore, 94 DEM-DEG pairs and 23 DEL-DEG pairs involved in nitrogen metabolism were identified. Finally, a predicted regulatory network of nitrogen metabolism was initially constructed, which included 17 nitrogen metabolic pathway genes, 15 TFs, 4 miRNAs, and 10 lncRNAs by conjoint analysis of DEGs, DEMs, and DELs and their regulatory relationships, which was supported by RNA-seq data and qPCR results. The lncRNA-miRNA-mRNA network provides new insights into the regulation mechanism of nitrogen metabolism in bamboo, which facilitates further genetic improvement for bamboo to adapt to the fluctuating nitrogen environment.
Collapse
Affiliation(s)
- Tingting Yuan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Guangzhu Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Yan Liu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Zhen Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| |
Collapse
|
45
|
Silva AA, Carvalho M, Coutinho J, Vasconcelos E, Fangueiro D. Can Dairy Slurry Application to Stubble, without Incorporation into the Soil, Be Sustainable? PLANTS (BASEL, SWITZERLAND) 2022; 11:1473. [PMID: 35684246 PMCID: PMC9183105 DOI: 10.3390/plants11111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
In many countries, livestock slurry must be injected or incorporated into the soil to reduce nitrogen losses. However, when the injection is not feasible, farmers adopting conservation practices discard the use of slurry as fertilizer. New approaches related to slurry treatment or application management can stimulate the use of slurry in conservation agriculture (CA). This study aimed to evaluate the agronomic effects of some new management strategies to use dairy slurry for fertilization of ryegrass grown on stubble-covered soil, using as reference standard practices (slurry injection and mineral fertilizer application). The following treatments were considered: (i) bare soil: control (CB), mineral fertilizer (MB), injection (IN); (ii) stubble: control (CS), acidified dairy slurry (ADS), raw dairy slurry (RDS), irrigation following RDS (IR), mineral fertilizer (MS), RDS placed under the stubble (US), raw slurry applied 16 days after sowing (RDS T16). Effects on ryegrass yield, apparent nutrient recovery (ANR) and soil chemical properties were assessed. ADS reached 94% equivalence to MS and performed similarly to IN for productivity, ANR and soil parameters showing to be a sustainable alternative to replace mineral nitrogen and a potential solution to enable dairy slurry application in CA without injection or incorporation into the soil.
Collapse
Affiliation(s)
- Arejacy A. Silva
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Avenida Professor Celso Ferreira da Silva 1333, Avare 18707-150, Brazil
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | | | - João Coutinho
- Centro de Química, Universidade de Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal;
| | - Ernesto Vasconcelos
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - David Fangueiro
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| |
Collapse
|
46
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
47
|
Fernández de Simón B, Cadahía E, Aranda I. Aerial and underground organs display specific metabolic strategies to cope with water stress under rising atmospheric CO 2 in Fagus sylvatica L. PHYSIOLOGIA PLANTARUM 2022; 174:e13711. [PMID: 35570621 PMCID: PMC9321914 DOI: 10.1111/ppl.13711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Beech is known to be a moderately drought-sensitive tree species, and future increases in atmospheric concentrations of CO2 ([CO2 ]) could influence its ecological interactions, also with changes at the metabolic level. The metabolome of leaves and roots of drought-stressed beech seedlings grown under two different [CO2 ] (400 (aCO2 ) and 800 (eCO2 ) ppm) was analyzed together with gas exchange parameters and water status. Water stress estimated from predawn leaf water potential (Ψpd ) was similar under both [CO2 ], although eCO2 had a positive impact on net photosynthesis and intrinsic water use efficiency. The aerial and underground organs showed different metabolomes. Leaves mainly stored C metabolites, while those of N and P accumulated differentially in roots. Drought triggered the proline and N-rich amino acids biosynthesis in roots through the activation of arginine and proline pathways. Besides the TCA cycle, polyols and soluble sugar biosynthesis were activated in roots, with no clear pattern seen in the leaves, prioritizing the root functioning as metabolites sink. eCO2 slightly altered this metabolic acclimation to drought, reflecting mitigation of its effect. The leaves showed only minor changes, investing C surplus in secondary metabolites and malic acid. The TCA cycle metabolites and osmotically active substances increased in roots, but many other metabolites decreased as if the water stress was dampened. Above- and belowground plant metabolomes were differentially affected by two drivers of climate change, water scarcity and high [CO2 ], showing different chemical responsiveness that could modulate the tree adaptation to future climatic scenarios.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Estrella Cadahía
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Ismael Aranda
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| |
Collapse
|
48
|
Niu J, Chen Z, Yu S, Wang Q. Ascorbic acid regulates nitrogen, energy, and gas exchange metabolisms of alfalfa in response to high-nitrate stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24085-24097. [PMID: 34820759 DOI: 10.1007/s11356-021-17672-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The effects of exogenous ascorbic acid (AsA) on the growth parameters, nitrogen metabolism, energy status, and photosynthetic gas exchange in alfalfa under high-nitrate stress were studied. The seedlings treated with the control, 200 mmol L-1 nitrates (HN) or 200 mmol L-1 nitrate + 0.1 mmol L-1 AsA (HN + AsA), were sampled on days 0 and 10 after treatments. AsA was sprayed on the leaves, while HN was conducted by watering. Both of them were performed once every other day for three times in total. The results revealed that in the HN treatment, the growth parameters were the lowest; total phosphorus (TP), nitrogen-related enzyme activities, soluble protein (SP), adenosine triphosphate (ATP), and energy charge (EC) were reduced; and photosynthetic rate (Photo), conductance to H2O (Cond), transpiration rate (Trmmol), instantaneous water use efficiency (WUE), and apparent CO2 use efficiency (CUE) were also inhibited; and total nitrogen (TN), nitrate-nitrogen (NO3¯-N), ammonium-nitrogen (NH4+-N), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and intercellular CO2 concentration (Ci) were increased compared with the control. However, these parameters changed conversely in the HN + AsA treatment. In addition, there was a good curve regression equation relationship between TN and NO3¯-N, TN and NH4+-N, NO3¯-N and NH4+-N, respectively. It indicates that AsA improves the growth parameters, nitrogen-related enzyme activities, energy metabolism, and photosynthesis, whereas it inhibits the toxicity of excess NO3¯-N and NH4+-N accumulations, thereby promoting the growth of alfalfa under high-nitrate stress. These metabolisms are closely related to each other during the regulatory process in alfalfa. Hence, AsA has potential to be applied to improve the growth of alfalfa under high-nitrate stress.
Collapse
Affiliation(s)
- Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China
| | - Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China
| | - Su Yu
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China.
| |
Collapse
|
49
|
Garneau MG, Lu MZ, Grant J, Tegeder M. Role of source-to-sink transport of methionine in establishing seed protein quantity and quality in legumes. PLANT PHYSIOLOGY 2021; 187:2134-2155. [PMID: 34618032 PMCID: PMC8644406 DOI: 10.1093/plphys/kiab238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 05/16/2023]
Abstract
Grain legumes such as pea (Pisum sativum L.) are highly valued as a staple source of protein for human and animal nutrition. However, their seeds often contain limited amounts of high-quality, sulfur (S) rich proteins, caused by a shortage of the S-amino acids cysteine and methionine. It was hypothesized that legume seed quality is directly linked to the amount of organic S transported from leaves to seeds, and imported into the growing embryo. We expressed a high-affinity yeast (Saccharomyces cerevisiae) methionine/cysteine transporter (Methionine UPtake 1) in both the pea leaf phloem and seed cotyledons and found source-to-sink transport of methionine but not cysteine increased. Changes in methionine phloem loading triggered improvements in S uptake and assimilation and long-distance transport of the S compounds, S-methylmethionine and glutathione. In addition, nitrogen and carbon assimilation and source-to-sink allocation were upregulated, together resulting in increased plant biomass and seed yield. Further, methionine and amino acid delivery to individual seeds and uptake by the cotyledons improved, leading to increased accumulation of storage proteins by up to 23%, due to both higher levels of S-poor and, most importantly, S-rich proteins. Sulfate delivery to the embryo and S assimilation in the cotyledons were also upregulated, further contributing to the improved S-rich storage protein pools and seed quality. Overall, this work demonstrates that methionine transporter function in source and sink tissues presents a bottleneck in S allocation to seeds and that its targeted manipulation is essential for overcoming limitations in the accumulation of high-quality seed storage proteins.
Collapse
Affiliation(s)
- Matthew G Garneau
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Ming-Zhu Lu
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Jan Grant
- New Zealand Institute for Plant and Food Research Ltd, Christchurch 8140, New Zealand
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
50
|
Lebedev VG, Popova AA, Shestibratov KA. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells 2021; 10:cells10123303. [PMID: 34943810 PMCID: PMC8699818 DOI: 10.3390/cells10123303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Low nitrogen availability is one of the main limiting factors for plant growth and development, and high doses of N fertilizers are necessary to achieve high yields in agriculture. However, most N is not used by plants and pollutes the environment. This situation can be improved by enhancing the nitrogen use efficiency (NUE) in plants. NUE is a complex trait driven by multiple interactions between genetic and environmental factors, and its improvement requires a fundamental understanding of the key steps in plant N metabolism—uptake, assimilation, and remobilization. This review summarizes two decades of research into bioengineering modification of N metabolism to increase the biomass accumulation and yield in crops. The expression of structural and regulatory genes was most often altered using overexpression strategies, although RNAi and genome editing techniques were also used. Particular attention was paid to woody plants, which have great economic importance, play a crucial role in the ecosystems and have fundamental differences from herbaceous species. The review also considers the issue of unintended effects of transgenic plants with modified N metabolism, e.g., early flowering—a research topic which is currently receiving little attention. The future prospects of improving NUE in crops, essential for the development of sustainable agriculture, using various approaches and in the context of global climate change, are discussed.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Correspondence:
| | - Anna A. Popova
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| | - Konstantin A. Shestibratov
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| |
Collapse
|