1
|
Erdei AL, David AB, Savvidou EC, Džemedžionaitė V, Chakravarthy A, Molnár BP, Dekker T. The push-pull intercrop Desmodium does not repel, but intercepts and kills pests. eLife 2024; 13:e88695. [PMID: 38477562 PMCID: PMC11021049 DOI: 10.7554/elife.88695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push-pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop's constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize-Desmodium push-pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.
Collapse
Affiliation(s)
- Anna L Erdei
- Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarpSweden
- Department of Chemical Ecology, HUN-REN Centre for Agricultural Research Plant Protection InstituteBudapestHungary
| | - Aneth B David
- Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarpSweden
- Department of Molecular Biology and Biotechnology, University of Dar-es-Salaam (UDSM)SalaamUnited Republic of Tanzania
| | - Eleni C Savvidou
- Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarpSweden
- Department of Agriculture Crop Production and Rural Environment, University of ThessalyVolosGreece
| | - Vaida Džemedžionaitė
- Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarpSweden
| | - Advaith Chakravarthy
- Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarpSweden
| | - Béla P Molnár
- Department of Chemical Ecology, HUN-REN Centre for Agricultural Research Plant Protection InstituteBudapestHungary
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
2
|
Ul Haq I, Zhang KX, Gou Y, Hajjar D, Makki AA, Alkherb WAH, Ali H, Liu C. Transcriptomic and biochemical insights into fall armyworm ( Spodoptera frugiperda) responses on silicon-treated maize. PeerJ 2024; 12:e16859. [PMID: 38410805 PMCID: PMC10896081 DOI: 10.7717/peerj.16859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background The fall armyworm, Spodoptera frugiperda, is an agricultural pest of significant economic concern globally, known for its adaptability, pesticide resistance, and damage to key crops such as maize. Conventional chemical pesticides pose challenges, including the development of resistance and environmental pollution. The study aims to investigate an alternative solution: the application of soluble silicon (Si) sources to enhance plant resistance against the fall armyworm. Methods Silicon dioxide (SiO2) and potassium silicate (K2SiO3) were applied to maize plants via foliar spray. Transcriptomic and biochemical analyses were performed to study the gene expression changes in the fall armyworm feeding on Si-treated maize. Results Results indicated a significant impact on gene expression, with a large number of differentially expressed genes (DEGs) identified in both SiO2 and K2SiO3 treatments. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified critical DEGs involved in specific pathways, including amino acid, carbohydrate, lipid, energy, xenobiotics metabolisms, signal transduction, and posttranslational modification, significantly altered at both Si sources. Biochemical analyses further revealed that Si treatments inhibited several enzyme activities (glutamate dehydrogenase, trehalase, glucose-6-phosphate dehydrogenase, chitinase, juvenile hormone esterase, and cyclooxygenase while simultaneously inducing others (total protein, lipopolysaccharide, fatty acid synthase, ATPase, and cytochrome P450), thus suggesting a toxic effect on the fall armyworm. In conclusion, Si applications on maize influence the gene expression and biochemical activities of the fall armyworm, potentially offering a sustainable pest management strategy.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ke-Xin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dina Hajjar
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa A Makki
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Wafa A H Alkherb
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Biru FN, Cazzonelli CI, Elbaum R, Johnson SN. Silicon-mediated herbivore defence in a pasture grass under reduced and Anthropocene levels of CO 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1268043. [PMID: 38023935 PMCID: PMC10646432 DOI: 10.3389/fpls.2023.1268043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The uptake and accumulation of silicon (Si) in grass plants play a crucial role in alleviating both biotic and abiotic stresses. Si supplementation has been reported to increase activity of defence-related antioxidant enzyme, which helps to reduce oxidative stress caused by reactive oxygen species (ROS) following herbivore attack. Atmospheric CO2 levels are known to affect Si accumulation in grasses; reduced CO2 concentrations increase Si accumulation whereas elevated CO2 concentrations often decrease Si accumulation. This can potentially affect antioxidant enzyme activity and subsequently insect herbivory, but this remains untested. We examined the effects of Si supplementation and herbivory by Helicoverpa armigera on antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD; and ascorbate peroxidase, APX) activity in tall fescue grass (Festuca arundinacea) grown under CO2 concentrations of 200, 410, and 640 ppm representing reduced, ambient, and elevated CO2 levels, respectively. We also quantified foliar Si, carbon (C), and nitrogen (N) concentrations and determined how changes in enzymes and elemental chemistry affected H. armigera relative growth rates and plant consumption. Rising CO2 concentrations increased plant mass and foliar C but decreased foliar N and Si. Si supplementation enhanced APX and SOD activity under the ranging CO2 regimes. Si accumulation and antioxidant enzyme activity were at their highest level under reduced CO2 conditions and their lowest level under future levels of CO2. The latter corresponded with increased herbivore growth rates and plant consumption, suggesting that some grasses could become more susceptible to herbivory under projected CO2 conditions.
Collapse
Affiliation(s)
- Fikadu N. Biru
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
4
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Leroy N, Martin C, Arguelles Arias A, Cornélis JT, Verheggen FJ. If All Else Fails: Impact of Silicon Accumulation in Maize Leaves on Volatile Emissions and Oviposition Site Selection of Spodoptera exigua Hübner. J Chem Ecol 2022; 48:841-849. [PMID: 36302913 DOI: 10.1007/s10886-022-01386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Silicon (Si) fertilization alleviates biotic stresses in plants. Si enhances plant resistance against phytophagous insects through physical and biochemical mechanisms. In particular, Si modifies jasmonic acid levels and the emissions of herbivore-induced plant volatiles (HIPVs). Here, we investigated whether Si accumulation in the tissues of maize leaves modifies the emissions of constitutive and herbivore-induced plant volatiles, with cascade deterrent effects on oviposition site selection by Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Maize plants were cultivated in a hydroponic system under three Si concentrations, resulting in three groups of plants expressing different Si concentrations in their tissues (0.31 ± 0.04, 4.69 ± 0.49, and 9.56 ± 0.30 g Si. Kg- 1 DW). We collected volatiles from undamaged and caterpillar-infested plants, and found that Si concentration in plant tissues had no significant impact. Jasmonic acid content was high in insect-infested plants, but was similar across all Si treatments. Oviposition site selection bioassays using fertilized S. exigua females showed that Si concentration in plant tissues did not affect the number of eggs laid on Si-treated plants. In conclusion, our study shows that the Si content in maize tissues does not impact the semiochemical interactions with S. exigua.
Collapse
Affiliation(s)
- Nicolas Leroy
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Clément Martin
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Anthony Arguelles Arias
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Jean-Thomas Cornélis
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030, Gembloux, Belgium
| | - François J Verheggen
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium.
| |
Collapse
|
6
|
Mostafa S, Wang Y, Zeng W, Jin B. Plant Responses to Herbivory, Wounding, and Infection. Int J Mol Sci 2022; 23:ijms23137031. [PMID: 35806046 PMCID: PMC9266417 DOI: 10.3390/ijms23137031] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Plants have various self-defense mechanisms against biotic attacks, involving both physical and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs). Complex interactions between plants and herbivores occur. Plant responses to insect herbivory begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction, the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on early and late plant responses, including physical barriers, signal transduction, SM production as well as epigenetic regulation, and phytohormone responses.
Collapse
|
7
|
Detecting the Conspecific: Herbivory-Induced Olfactory Cues in the Fall Armyworm (Lepidoptera: Noctuidae). Metabolites 2021; 11:metabo11090583. [PMID: 34564399 PMCID: PMC8471698 DOI: 10.3390/metabo11090583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (Smith), is a polyphagous pest whose larval feeding threatens several economically important crops worldwide with especially severe damage to corn (Zea mays L.). Field-derived resistance to several conventional pesticides and Bt toxins have threatened the efficacy of current management strategies, necessitating the development of alternative pest management methods and technologies. One possible avenue is the use of volatile organic compounds (VOCs) and other secondary metabolites that are produced and sequestered by plants as a response to larval feeding. The effects of conspecific larval feeding on fall armyworm oviposition preferences and larval fitness were examined using two-choice oviposition experiments, larval feeding trials, targeted metabolomics, and VOC analyses. There was a significant preference for oviposition on corn plants that lacked larval feeding damage, and larvae fed tissue from damaged plants exhibited reduced weights and head capsule widths. All larval feeding promoted significantly increased metabolite and VOC concentrations compared to corn plants without any feeding. Metabolite differences were driven primarily by linoleic acid (which is directly toxic to fall armyworm) and tricarboxylic acids. Several VOCs with significantly increased concentrations in damaged corn plants were known oviposition deterrents that warrant further investigation in an integrated pest management context.
Collapse
|
8
|
Pereira P, Nascimento AM, de Souza BHS, Peñaflor MFGV. Silicon Supplementation of Maize Impacts Fall Armyworm Colonization and Increases Predator Attraction. NEOTROPICAL ENTOMOLOGY 2021; 50:654-661. [PMID: 34184235 DOI: 10.1007/s13744-021-00891-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Supplementation with Silicon (Si) is well-known for increasing resistance of grasses to insect herbivores. Although the exact underlying mechanism remains unknown, Si accumulation interacts with the jasmonic acid-signalling pathway, which modulates herbivore-induced plant defences. We examined whether Si supplementation alters direct and induced indirect defences in maize plants in ways that deter the initial infestation by the fall armyworm Spodoptera frugiperda (JE Smith). We assessed the herbivore's oviposition preference, neonate and third-instar larval performance as well as the recruitment of a predator of young larvae, the flower bug Orius insidiosus (Say), by herbivore-induced plant volatiles (HIPVs). In choice tests, S. frugiperda deposited about two times more eggs on -Si than on +Si maize. The mortality of neonate S. frugiperda larvae was about sixfold higher in +Si compared to -Si plants, even though they consumed similar leaf area on both treatments. Although there were no mortality differences, Si supplementation also impacted third-instar larvae that gained about twofold less weight than those fed on -Si maize. In olfactometer assays, O. insidiosus was not attracted to volatiles of uninfested maize plants with or without Si supplementation, but it was attracted to those emitted by fall armyworm-infested plants, irrespective of whether plants received Si supplementation. However, when the flower bug could choose between the volatiles released from -Si and +Si fall armyworm-infested plants, it preferentially oriented to +Si fall armyworm-infested plant. Our results show that Si supplementation in maize may deter fall armyworm colonization because of greater direct defences and attractiveness of HIPVs to the flower bug.
Collapse
Affiliation(s)
- Patrícia Pereira
- Dept of Entomology, Agrarian Sciences College of Lavras (ESAL), Lavras Federal University, Lavras, MG, Brazil
| | - Amanda Maria Nascimento
- Dept of Entomology, Agrarian Sciences College of Lavras (ESAL), Lavras Federal University, Lavras, MG, Brazil
| | | | | |
Collapse
|