1
|
Peña-Ponton C, Diez-Rodriguez B, Perez-Bello P, Becker C, McIntyre LM, van der Putten WH, De Paoli E, Heer K, Opgenoorth L, Verhoeven KJF. High-resolution methylome analysis uncovers stress-responsive genomic hotspots and drought-sensitive transposable element superfamilies in the clonal Lombardy poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5839-5856. [PMID: 38836523 PMCID: PMC11427840 DOI: 10.1093/jxb/erae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation is environment-sensitive and can mediate stress responses. In trees, changes in the environment might cumulatively shape the methylome landscape over time. However, because high-resolution methylome studies usually focus on single environmental cues, the stress-specificity and long-term stability of methylation responses remain unclear. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone widely distributed across Europe. Adult trees from different geographic locations were clonally propagated in a common garden experiment and exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Whole-genome bisulfite sequencing revealed stress-induced and naturally occurring DNA methylation variants. In CG/CHG contexts, the same genomic regions were often affected by multiple stresses, suggesting a generic methylome response. Moreover, these variants showed striking overlap with naturally occurring methylation variants between trees from different locations. Drought treatment triggered CHH hypermethylation of transposable elements, affecting entire superfamilies near drought-responsive genes. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and identified stress-specific hypermethylation of entire transposon superfamilies with possible functional consequences. Our results underscore the importance of studying multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.
Collapse
Affiliation(s)
- Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Barbara Diez-Rodriguez
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
- Natural Resources and Climate Area, CARTIF Technology Centre, 47151 Boecillo, Valladolid, Spain
| | - Paloma Perez-Bello
- IGA Technology Services Srl. Via Jacopo Linussio 51, 33100 Udine UD, Italy
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, The Netherlands
| | - Emanuele De Paoli
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Katrin Heer
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
| | - Lars Opgenoorth
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Wang L, Liu Y, Song X, Wang S, Zhang M, Lu J, Xu S, Wang H. Ozone stress-induced DNA methylation variations and their transgenerational inheritance in foxtail millet. FRONTIERS IN PLANT SCIENCE 2024; 15:1463584. [PMID: 39385991 PMCID: PMC11461238 DOI: 10.3389/fpls.2024.1463584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Elevated near-surface ozone (O3) concentrations have surpassed the tolerance limits of plants, significantly impacting crop growth and yield. To mitigate ozone pollution, plants must evolve a rapid and effective defense mechanism to alleviate ozone-induced damage. DNA methylation, as one of the most crucial epigenetic modifications, plays a pivotal role in maintaining gene stability, regulating gene expression, and enhancing plant resilience to environmental stressors. However, the epigenetic response of plants to O3 stress, particularly DNA methylation variations and their intergenerational transmission, remains poorly understood. This study aims to explore the epigenetic mechanisms underlying plant responses to ozone stress across generations and to identify potential epigenetic modification sites or genes crucial in response to ozone stress. Using Open Top Chambers (OTCs), we simulated ozone conditions and subjected foxtail millet to continuous ozone stress at 200 nmol mol-1 for two consecutive generations (S0 and S1). Results revealed that under high-concentration ozone stress, foxtail millet leaves exhibited symptoms ranging from yellowing and curling to desiccation, but the damage in the S1 generation was not more severe than that in the S0 generation. Methylation Sensitive Amplified Polymorphism (MSAP) analysis of the two generations indicated that ozone stress-induced methylation variations ranging from 10.82% to 13.59%, with demethylation events ranged from 0.52% to 5.58%, while hypermethylation occurred between 0.35% and 2.76%. Reproductive growth stages were more sensitive to ozone than vegetative stages. Notably, the S1 generation exhibited widespread demethylation variations, primarily at CNG sites, compared to S0 under similar stress conditions. The inheritance pattern between S0 and S1 generations was mainly of the A-A-B-A type. By recovering and sequencing methylation variant bands, we identified six stress-related differential amplification sequences, implicating these variants in various biological processes. These findings underscore the potential significance of DNA methylation variations as a critical mechanism in plants' response to ozone stress, providing theoretical insights and references for a comprehensive understanding of plant adaptation mechanisms to ozone stress and the epigenetic role of DNA methylation in abiotic stress regulation.
Collapse
Affiliation(s)
- Long Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Yang Liu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Institute of Broomcorn Millet, Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, China
| | - Xiaohan Song
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Shiji Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Meichun Zhang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Jiayi Lu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Sheng Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
3
|
Kuźniak E, Gajewska E. Lipids and Lipid-Mediated Signaling in Plant-Pathogen Interactions. Int J Mol Sci 2024; 25:7255. [PMID: 39000361 PMCID: PMC11241471 DOI: 10.3390/ijms25137255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.
Collapse
Affiliation(s)
- Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| |
Collapse
|
4
|
Gravot A, Liégard B, Quadrana L, Veillet F, Aigu Y, Bargain T, Bénéjam J, Lariagon C, Lemoine J, Colot V, Manzanares-Dauleux MJ, Jubault M. Two adjacent NLR genes conferring quantitative resistance to clubroot disease in Arabidopsis are regulated by a stably inherited epiallelic variation. PLANT COMMUNICATIONS 2024; 5:100824. [PMID: 38268192 PMCID: PMC11121752 DOI: 10.1016/j.xplc.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassicaceae. Using a combination of quantitative trait locus (QTL) fine mapping, CRISPR-Cas9 validation, and extensive analyses of DNA sequence and methylation patterns, we revealed that the two adjacent neighboring NLR (nucleotide-binding and leucine-rich repeat) genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P. brassicae in Arabidopsis and that they are epigenetically regulated. The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited. Variations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and correlate negatively with variations in expression of the two genes. Our study demonstrates that natural, stable, and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.
Collapse
Affiliation(s)
- Antoine Gravot
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Benjamin Liégard
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 75005 Paris, France
| | - Florian Veillet
- IGEPP INRAE, Institut Agro, Université de Rennes, 29260 Ploudaniel, France
| | - Yoann Aigu
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Tristan Bargain
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Juliette Bénéjam
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | | | - Jocelyne Lemoine
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 75005 Paris, France
| | | | - Mélanie Jubault
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France.
| |
Collapse
|
5
|
Kovalchuk I. Heritable responses to stress in plants. QUANTITATIVE PLANT BIOLOGY 2023; 4:e15. [PMID: 38156078 PMCID: PMC10753343 DOI: 10.1017/qpb.2023.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/30/2023]
Abstract
Most plants are adapted to their environments through generations of exposure to all elements. The adaptation process involves the best possible response to fluctuations in the environment based on the genetic and epigenetic make-up of the organism. Many plant species have the capacity to acclimate or adapt to certain stresses, allowing them to respond more efficiently, with fewer resources diverted from growth and development. However, plants can also acquire protection against stress across generations. Such a response is known as an intergenerational response to stress; typically, plants lose most of the tolerance in the subsequent generation when propagated without stress. Occasionally, the protection lasts for more than one generation after stress exposure and such a response is called transgenerational. In this review, we will summarize what is known about inter- and transgenerational responses to stress, focus on phenotypic and epigenetic events, their mechanisms and ecological and evolutionary meaning.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
6
|
Erofeeva EA. Environmental hormesis in living systems: The role of hormetic trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166022. [PMID: 37541518 DOI: 10.1016/j.scitotenv.2023.166022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Hormesis (low-dose stimulation and high-dose inhibition) can be accompanied by hormetic trade-offs, that is, stimulation of some traits and inhibition (trade-off 1) or invariability (trade-off 2) of others. Currently, trade-off options and their biological significance are insufficiently studied. Therefore, the review analyses trade-off types, their relationship with asynchronous stress responses of indicators, the importance of trade-offs for preconditioning, hormesis transgenerational effects, fitness, and evolution. The analysis has shown that hormetic trade-offs 1 and 2 can be observed in evolutionarily distant groups of organisms and at different biological levels (cells, individuals, populations, and communities) with abiotic and biotic stressors, as well as various pollutants. Trade-offs 1 and 2 are found both between different functional traits (e.g., self-maintenance and reproduction in animals, growth and defense in plants), and between the endpoints of the same functional trait (e.g., seed weight and seed number in plants). Asynchronous responses of indicators to a low-dose stressor can lead to hormetic trade-offs in two cases: 1) these indicators have different responses (hormesis, inhibition or zero reaction) in the same dose range; 2) these indicators have hormetic responses with different hormetic zones. Trade-offs can have a positive, negative or zero effect on preconditioning, offspring, and fitness of the population. Trade-offs can potentially affect evolution in two ways: 1) the creation of trends in genotype selection; 2) participation in the assimilation of phenotypic adaptations in the genotype through the Baldwin effect (selection of mutations copying adaptive phenotypes).
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
7
|
Meijer A, Atighi MR, Demeestere K, De Meyer T, Vandepoele K, Kyndt T. Dicer-like 3a mediates intergenerational resistance against root-knot nematodes in rice via hormone responses. PLANT PHYSIOLOGY 2023; 193:2071-2085. [PMID: 37052181 DOI: 10.1093/plphys/kiad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
In a continuously changing and challenging environment, passing down the memory of encountered stress factors to offspring could provide an evolutionary advantage. In this study, we demonstrate the existence of "intergenerational acquired resistance" in the progeny of rice (Oryza sativa) plants attacked by the belowground parasitic nematode Meloidogyne graminicola. Transcriptome analyses revealed that genes involved in defense pathways are generally downregulated in progeny of nematode-infected plants under uninfected conditions but show a stronger induction upon nematode infection. This phenomenon was termed "spring loading" and depends on initial downregulation by the 24-nucleotide (nt) siRNA biogenesis gene dicer-like 3a (dcl3a) involved in the RNA-directed DNA methylation pathway. Knockdown of dcl3a led to increased nematode susceptibility and abolished intergenerational acquired resistance, as well as jasmonic acid/ethylene spring loading in the offspring of infected plants. The importance of ethylene signaling in intergenerational resistance was confirmed by experiments on a knockdown line of ethylene insensitive 2 (ein2b), which lacks intergenerational acquired resistance. Taken together, these data indicate a role for DCL3a in regulating plant defense pathways during both within-generation and intergenerational resistance against nematodes in rice.
Collapse
Affiliation(s)
- Anikó Meijer
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| | - Mohammad Reza Atighi
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336 Tehran, Iran
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Research group EnVOC, Ghent University, Ghent 9000, Belgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent 9000, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent 9052, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
8
|
Godínez-Mendoza PL, Rico-Chávez AK, Ferrusquía-Jimenez NI, Carbajal-Valenzuela IA, Villagómez-Aranda AL, Torres-Pacheco I, Guevara-González RG. Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164883. [PMID: 37348730 DOI: 10.1016/j.scitotenv.2023.164883] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon. Sustainable crop production requires a better understanding of hormesis, its basic concepts, and the input variables to make its management feasible. This implies that acknowledging hormesis in plant research could allow specifying beneficial effects to effectively manage environmental stressors according to cultivation goals. Several factors have been useful in this regard, which at low doses show beneficial eustressing effects (biostimulant/elicitor), while at higher doses, they show distressing toxic effects. These insights highlight biostimulants/elicitors as tools to be included in integrated crop management strategies for reaching sustainability in plant science and agricultural studies. In addition, compelling evidence on the inheritance of elicited traits in plants unfolds the possibility of implementing stressors as a tool in plant breeding.
Collapse
Affiliation(s)
- Pablo L Godínez-Mendoza
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Amanda K Rico-Chávez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Noelia I Ferrusquía-Jimenez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ireri A Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana L Villagómez-Aranda
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| | - Ramon G Guevara-González
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| |
Collapse
|
9
|
Furci L, Pascual‐Pardo D, Tirot L, Zhang P, Hannan Parker A, Ton J. Heritable induced resistance in Arabidopsis thaliana: Tips and tools to improve effect size and reproducibility. PLANT DIRECT 2023; 7:e523. [PMID: 37638230 PMCID: PMC10457550 DOI: 10.1002/pld3.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Over a decade ago, three independent studies reported that pathogen- and herbivore-exposed Arabidopsis thaliana produces primed progeny with increased resistance. Since then, heritable induced resistance (h-IR) has been reported across numerous plant-biotic interactions, revealing a regulatory function of DNA (de)methylation dynamics. However, the identity of the epi-alleles controlling h-IR and the mechanisms by which they prime defense genes remain unknown, while the evolutionary significance of the response requires confirmation. Progress has been hampered by the relatively high variability, low effect size, and sometimes poor reproducibility of h-IR, as is exemplified by a recent study that failed to reproduce h-IR in A. thaliana by Pseudomonas syringae pv. tomato (Pst). This study aimed to improve h-IR effect size and reproducibility in the A. thaliana-Pst interaction. We show that recurrent Pst inoculations of seedlings result in stronger h-IR than repeated inoculations of older plants and that disease-related growth repression in the parents is a reliable marker for h-IR effect size in F1 progeny. Furthermore, RT-qPCR-based expression profiling of genes controlling DNA methylation maintenance revealed that the elicitation of strong h-IR upon seedling inoculations is marked by reduced expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) gene, which is maintained in the apical meristem and transmitted to F1 progeny. Two additional genes, MET1 and CHROMOMETHYLASE3 (CMT3), displayed similar transcriptional repression in progeny from seedling-inoculated plants. Thus, reduced expression of DDM1, MET1, and CMT3 can serve as a marker of robust h-IR in F1 progeny. Our report offers valuable information and markers to improve the effect size and reproducibility of h-IR in the A. thaliana-Pst model interaction.
Collapse
Affiliation(s)
- L. Furci
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
- Plant Epigenetics UnitOkinawa Institute of Science and TechnologyOnnaOkinawaJapan
| | - D. Pascual‐Pardo
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - L. Tirot
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - P. Zhang
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - A. Hannan Parker
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - J. Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| |
Collapse
|
10
|
Auge G, Hankofer V, Groth M, Antoniou-Kourounioti R, Ratikainen I, Lampei C. Plant environmental memory: implications, mechanisms and opportunities for plant scientists and beyond. AOB PLANTS 2023; 15:plad032. [PMID: 37415723 PMCID: PMC10321398 DOI: 10.1093/aobpla/plad032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant's environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world.
Collapse
Affiliation(s)
| | - Valentin Hankofer
- Institute of Biochemical Plant Pathology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Martin Groth
- Institute of Functional Epigenetics, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, University of Glasgow, Sir James Black Building, University Ave, Glasgow G12 8QQ, UK
| | - Irja Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Christian Lampei
- Department of Biology (FB17), Plant Ecology and Geobotany Group, University of Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
11
|
Albanova IA, Zagorchev LI, Teofanova DR, Odjakova MK, Kutueva LI, Ashapkin VV. Host Resistance to Parasitic Plants-Current Knowledge and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1447. [PMID: 37050073 PMCID: PMC10096732 DOI: 10.3390/plants12071447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Parasitic flowering plants represent a diverse group of angiosperms, ranging from exotic species with limited distribution to prominent weeds, causing significant yield losses in agricultural crops. The major damage caused by them is related to the extraction of water and nutrients from the host, thus decreasing vegetative growth, flowering, and seed production. Members of the root parasites of the Orobanchaceae family and stem parasites of the genus Cuscuta are among the most aggressive and damaging weeds, affecting both monocotyledonous and dicotyledonous crops worldwide. Their control and eradication are hampered by the extreme seed longevity and persistence in soil, as well as their taxonomic position, which makes it difficult to apply selective herbicides not damaging to the hosts. The selection of resistant cultivars is among the most promising approaches to deal with this matter, although still not widely employed due to limited knowledge of the molecular mechanisms of host resistance and inheritance. The current review aims to summarize the available information on host resistance with a focus on agriculturally important parasitic plants and to outline the future perspectives of resistant crop cultivar selection to battle the global threat of parasitic plants.
Collapse
Affiliation(s)
- Ivanela A. Albanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyuben I. Zagorchev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Denitsa R. Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Mariela K. Odjakova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyudmila I. Kutueva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vasily V. Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
12
|
De Kesel J, Bonneure E, Frei M, De Meyer T, Mangelinckx S, Kyndt T. Diproline-induced resistance to parasitic nematodes in the same and subsequent rice generations: Roles of iron, nitric oxide and ethylene. FRONTIERS IN PLANT SCIENCE 2023; 14:1112007. [PMID: 36824193 PMCID: PMC9941634 DOI: 10.3389/fpls.2023.1112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Induced resistance (IR) is a plant phenotype characterized by lower susceptibility to biotic challenges upon elicitation by so-called IR stimuli. Earlier, we identified diproline (cyclo(l-Pro-l-Pro)) as IR stimulus that protects rice (Oryza sativa) against the root-knot nematode Meloidogyne graminicola (Mg). In the current study, detailed transcriptome analyses at different time points, and under uninfected and nematode-infected conditions revealed that this rice IR phenotype is correlated with induction of genes related to iron (Fe), ethylene (ET) and reactive oxygen species (ROS)/reactive nitrogen species (RNS) metabolism. An infection experiment under Fe limiting conditions confirmed that diproline-IR is only effective under optimal Fe supply. Although total root Fe levels were not affected in diproline-treated plants, phytosiderophore secretion was found to be induced by this treatment. Experiments on mutant and transgenic rice lines impaired in ET or ROS/RNS metabolism confirmed that these metabolites are involved in diproline-IR. Finally, we provide evidence for transgenerational inheritance of diproline-IR (diproline-TIR), as two successive generations of diproline-treated ancestors exhibited an IR phenotype while themselves never being exposed to diproline. Transcriptome analyses on the offspring plants revealed extensive overlap between the pathways underpinning diproline-IR and diproline-TIR. Although diproline induces significant systemic changes in global DNA methylation levels early after treatment, such changes in DNA methylation were not detected in the descendants of these plants. To our knowledge, this is the first report of TIR in rice and the first transcriptional assessment of TIR in monocots.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eli Bonneure
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sven Mangelinckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Transgenerational Tolerance to Salt and Osmotic Stresses Induced by Plant Virus Infection. Int J Mol Sci 2022; 23:ijms232012497. [PMID: 36293354 PMCID: PMC9604408 DOI: 10.3390/ijms232012497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Following pathogen infection, plants have developed diverse mechanisms that direct their immune systems towards more robust induction of defense responses against recurrent environmental stresses. The induced resistances could be inherited by the progenies, rendering them more tolerant to stressful events. Although within-generational induction of tolerance to abiotic stress is a well-documented phenomenon in virus-infected plants, the transgenerational inheritance of tolerance to abiotic stresses in their progenies has not been explored. Here, we show that infection of Nicotiana benthamiana plants by Potato virus X (PVX) and by a chimeric Plum pox virus (PPV) expressing the P25 pathogenicity protein of PVX (PPV-P25), but not by PPV, conferred tolerance to both salt and osmotic stresses to the progeny, which correlated with the level of virulence of the pathogen. This transgenerational tolerance to abiotic stresses in the progeny was partially sustained even if the plants experience a virus-free generation. Moreover, progenies from a Dicer-like3 mutant mimicked the enhanced tolerance to abiotic stress observed in progenies of PVX-infected wild-type plants. This phenotype was shown irrespective of whether Dicer-like3 parents were infected, suggesting the involvement of 24-nt small interfering RNAs in the transgenerational tolerance to abiotic stress induced by virus infection. RNAseq analysis supported the upregulation of genes related to protein folding and response to stress in the progeny of PVX-infected plants. From an environmental point of view, the significance of virus-induced transgenerational tolerance to abiotic stress could be questionable, as its induction was offset by major reproductive costs arising from a detrimental effect on seed production.
Collapse
|
14
|
Chen YH, Wei GW, Cui Y, Luo FL. Nutrient Inputs Alleviate Negative Effects of Early and Subsequent Flooding on Growth of Polygonum hydropiper With the Aid of Adventitious Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:919409. [PMID: 35937344 PMCID: PMC9355131 DOI: 10.3389/fpls.2022.919409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Riparian plants are exposed to harmful stress induced by flooding, which is often accompanied by eutrophication in the Three Gorges Reservoir Region. The phenomenon is mainly caused by domestic sewage discharges, slow water flow, and agricultural fertilizer pollution. Simulating abiotic stress, such as flooding at the initial period, can act as a signal and induce positive responses of plants to subsequent severe stress. In addition, eutrophication supplies nutrients, provides a favorable environment in the early stages of plant, and facilitates good performance in later development. However, whether early flooding (with or without eutrophication) acts as positive cue or as stress on plants at different developmental stages remains unclear. To address this question, seeds of Polygonum hydropiper were collected from low and high elevations in the hydro-fluctuation belt of the Three Gorges Reservoir Region. Plants germinated from these seeds were subjected to shallower and shorter early flooding treatments with or without eutrophication. Subsequently, plants were subjected to deeper and longer flooding treatments with or without eutrophication. Early flooding and eutrophic flooding significantly induced generation of adventitious roots, suggesting morphological adaptation to flooding. Although early flooding and eutrophic flooding treatments did not increase plant biomass in subsequent treatments compared with control, stem length, length and width of the 1st fully expanded leaf, and biomass of plants in the early eutrophic treatment were higher than these of the early flooding treatment plants. These results suggest a negative lag-effect of early flooding, and also indicate that nutrient inputs can alleviate such effects. Similarly, subsequent eutrophic flooding also enhanced plant growth compared with subsequent flooding, showing significantly higher values of leaf traits and adventitious root number. Plants originated from low elevation had significantly higher functional leaf length and stem biomass compared with those from high elevation. These results suggest that nutrient inputs can alleviate negative effects of early and subsequent flooding on growth of P. hydropiper with the generation of adventitious roots.
Collapse
Affiliation(s)
- Yu-Han Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Guan-Wen Wei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuan Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
15
|
Immune priming in plants: from the onset to transgenerational maintenance. Essays Biochem 2022; 66:635-646. [PMID: 35822618 PMCID: PMC9528079 DOI: 10.1042/ebc20210082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Enhancing plant resistance against pests and diseases by priming plant immunity is an attractive concept for crop protection because it provides long-lasting broad-spectrum protection against pests and diseases. This review provides a selected overview of the latest advances in research on the molecular, biochemical and epigenetic drivers of plant immune priming. We review recent findings about the perception and signalling mechanisms controlling the onset of priming by the plant stress metabolite β-aminobutyric acid. In addition, we review the evidence for epigenetic regulation of long-term maintenance of priming and discuss how stress-induced reductions in DNA hypomethylation at transposable elements can prime defence genes. Finally, we examine how priming can be exploited in crop protection and articulate the opportunities and challenges of translating research results from the Arabidopsis model system to crops.
Collapse
|
16
|
Catoni M, Alvarez-Venegas R, Worrall D, Holroyd G, Barraza A, Luna E, Ton J, Roberts MR. Long-Lasting Defence Priming by β-Aminobutyric Acid in Tomato Is Marked by Genome-Wide Changes in DNA Methylation. FRONTIERS IN PLANT SCIENCE 2022; 13:836326. [PMID: 35498717 PMCID: PMC9051511 DOI: 10.3389/fpls.2022.836326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 05/26/2023]
Abstract
Exposure of plants to stress conditions or to certain chemical elicitors can establish a primed state, whereby responses to future stress encounters are enhanced. Stress priming can be long-lasting and likely involves epigenetic regulation of stress-responsive gene expression. However, the molecular events underlying priming are not well understood. Here, we characterise epigenetic changes in tomato plants primed for pathogen resistance by treatment with β-aminobutyric acid (BABA). We used whole genome bisulphite sequencing to construct tomato methylomes from control plants and plants treated with BABA at the seedling stage, and a parallel transcriptome analysis to identify genes primed for the response to inoculation by the fungal pathogen, Botrytis cinerea. Genomes of plants treated with BABA showed a significant reduction in global cytosine methylation, especially in CHH sequence contexts. Analysis of differentially methylated regions (DMRs) revealed that CHH DMRs were almost exclusively hypomethylated and were enriched in gene promoters and in DNA transposons located in the chromosome arms. Genes overlapping CHH DMRs were enriched for a small number of stress response-related gene ontology terms. In addition, there was significant enrichment of DMRs in the promoters of genes that are differentially expressed in response to infection with B. cinerea. However, the majority of genes that demonstrated priming did not contain DMRs, and nor was the overall distribution of methylated cytosines in primed genes altered by BABA treatment. Hence, we conclude that whilst BABA treatment of tomato seedlings results in characteristic changes in genome-wide DNA methylation, CHH hypomethylation appears only to target a minority of genes showing primed responses to pathogen infection. Instead, methylation may confer priming via in-trans regulation, acting at a distance from defence genes, and/or by targeting a smaller group of regulatory genes controlling stress responses.
Collapse
Affiliation(s)
- Marco Catoni
- School of Bioscience, University of Birmingham, Birmingham, United Kingdom
| | - Raul Alvarez-Venegas
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Geoff Holroyd
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Aarón Barraza
- CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Estrella Luna
- School of Bioscience, University of Birmingham, Birmingham, United Kingdom
| | - Jurriaan Ton
- School of Biosciences, Institute of Sustainable Food, University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
17
|
Huang CY, Jin H. Coordinated Epigenetic Regulation in Plants: A Potent Managerial Tool to Conquer Biotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:795274. [PMID: 35046981 PMCID: PMC8762163 DOI: 10.3389/fpls.2021.795274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plants have evolved variable phenotypic plasticity to counteract different pathogens and pests during immobile life. Microbial infection invokes multiple layers of host immune responses, and plant gene expression is swiftly and precisely reprogramed at both the transcriptional level and post-transcriptional level. Recently, the importance of epigenetic regulation in response to biotic stresses has been recognized. Changes in DNA methylation, histone modification, and chromatin structures have been observed after microbial infection. In addition, epigenetic modifications may be preserved as transgenerational memories to allow the progeny to better adapt to similar environments. Epigenetic regulation involves various regulatory components, including non-coding small RNAs, DNA methylation, histone modification, and chromatin remodelers. The crosstalk between these components allows precise fine-tuning of gene expression, giving plants the capability to fight infections and tolerant drastic environmental changes in nature. Fully unraveling epigenetic regulatory mechanisms could aid in the development of more efficient and eco-friendly strategies for crop protection in agricultural systems. In this review, we discuss the recent advances on the roles of epigenetic regulation in plant biotic stress responses.
Collapse
Affiliation(s)
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
18
|
Hannan Parker A, Wilkinson SW, Ton J. Epigenetics: a catalyst of plant immunity against pathogens. THE NEW PHYTOLOGIST 2022; 233:66-83. [PMID: 34455592 DOI: 10.1111/nph.17699] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/20/2021] [Indexed: 05/11/2023]
Abstract
The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution.
Collapse
Affiliation(s)
- Adam Hannan Parker
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Samuel W Wilkinson
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
19
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
20
|
Furci L, Pascual-Pardo D, Ton J. A rapid and non-destructive method for spatial-temporal quantification of colonization by Pseudomonas syringae pv. tomato DC3000 in Arabidopsis and tomato. PLANT METHODS 2021; 17:126. [PMID: 34903271 PMCID: PMC8667384 DOI: 10.1186/s13007-021-00826-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND The bacterial leaf pathogen Pseudomonas syringae pv tomato (Pst) is the most popular model pathogen for plant pathology research. Previous methods to study the plant-Pst interactions rely on destructive quantification of Pst colonisation, which can be labour- and time-consuming and does not allow for spatial-temporal monitoring of the bacterial colonisation. Here, we describe a rapid and non-destructive method to quantify and visualise spatial-temporal colonisation by Pst in intact leaves of Arabidopsis and tomato. RESULTS The method presented here uses a bioluminescent Pst DC3000 strain that constitutively expresses the luxCDABE operon from Photorhabdus luminescens (Pst::LUX) and requires a common gel documentation (Gel Doc) system with a sensitive CCD/CMOS camera and imaging software (Photoshop or Image J). By capturing bright field and bioluminescence images from Pst::LUX-infected leaves, we imaged the spatiotemporal dynamics of Pst infection. Analysis of bioluminescence from live Pst bacteria over a 5-day time course after spray inoculation of Arabidopsis revealed transition of the bacterial presence from the older leaves to the younger leaves and apical meristem. Colonisation by Pst:LUX bioluminescence was obtained from digital photos by calculating relative bioluminescence values, which is adjusted for bioluminescence intensity and normalised by leaf surface. This method detected statistically significant differences in Pst::LUX colonisation between Arabidopsis genotypes varying in basal resistance, as well as statistically significant reductions in Pst::LUX colonisation by resistance-inducing treatments in both Arabidopsis and tomato. Comparison of relative bioluminescence values to conventional colony counting on selective agar medium revealed a statistically significant correlation, which was reproducible between different Gel Doc systems. CONCLUSIONS We present a non-destructive method to quantify colonisation by bioluminescent Pst::LUX in plants. Using a common Gel Doc system and imaging software, our method requires less time and labour than conventional methods that are based on destructive sampling of infected leaf material. Furthermore, in contrast to conventional strategies, our method provides additional information about the spatial-temporal patterns of Pst colonisation.
Collapse
Affiliation(s)
- Leonardo Furci
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK.
- P3 Centre for Plant & Soil Biology, Institute for Sustainable Food, University of Sheffield, Sheffield, UK.
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan.
| | - David Pascual-Pardo
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
- P3 Centre for Plant & Soil Biology, Institute for Sustainable Food, University of Sheffield, Sheffield, UK
| | - Jurriaan Ton
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK.
- P3 Centre for Plant & Soil Biology, Institute for Sustainable Food, University of Sheffield, Sheffield, UK.
| |
Collapse
|
21
|
López Sánchez A, Hernández Luelmo S, Izquierdo Y, López B, Cascón T, Castresana C. Mitochondrial Stress Induces Plant Resistance Through Chromatin Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:704964. [PMID: 34630455 PMCID: PMC8493246 DOI: 10.3389/fpls.2021.704964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 05/10/2023]
Abstract
Plants respond more efficiently when confronted with previous similar stress. In the case of pathogens, this memory of a previous infection confers resistance to future ones, which possesses a high potential for agricultural purposes. Some of the defense elements involved in this resistance phenotype, as well as epigenetic mechanisms participating in the maintenance of the memory, are currently known. However, the intracellular cascade from pathogen perception until the establishment of the epigenetic memory is still unexplored. Here, through the induction of mitochondrial stress by exogenous applications of Antimycin A in Arabidopsis thaliana plants, we discovered and characterized a role of mitochondrial stress in plant-induced resistance. Mitochondrial stress-induced resistance (MS-IR) is effective locally, systemically, within generation and transgenerationally. Mechanistically, MS-IR seems to be mediated by priming of defense gene transcription caused by epigenetic changes. On one hand, we observed an increment in the deposition of H3K4me3 (a positive epigenetic mark) at the promoter region of the primed genes, and, on the other hand, the DNA (de)methylation machinery seems to be required for the transmission of MS-IR to the following generations. Finally, we observed that MS-IR is broad spectrum, restricting the colonization by pathogens from different kingdoms and lifestyles. Altogether, this evidence positions mitochondria as a prominent organelle in environment sensing, acting as an integrating platform to process external and internal signals, triggering the appropriate response, and inducing the epigenetic memory of the stress to better react against future stressful conditions.
Collapse
Affiliation(s)
- Ana López Sánchez
- Genética Molecular de Plantas, Centro Nacional de Biotecnología, Madrid, Spain
| | | | | | | | | | - Carmen Castresana
- Genética Molecular de Plantas, Centro Nacional de Biotecnología, Madrid, Spain
| |
Collapse
|
22
|
López Sánchez A, Hernández Luelmo S, Izquierdo Y, López B, Cascón T, Castresana C. Mitochondrial Stress Induces Plant Resistance Through Chromatin Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:704964. [PMID: 34630455 DOI: 10.3389/fpls.2021.704964/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 05/25/2023]
Abstract
Plants respond more efficiently when confronted with previous similar stress. In the case of pathogens, this memory of a previous infection confers resistance to future ones, which possesses a high potential for agricultural purposes. Some of the defense elements involved in this resistance phenotype, as well as epigenetic mechanisms participating in the maintenance of the memory, are currently known. However, the intracellular cascade from pathogen perception until the establishment of the epigenetic memory is still unexplored. Here, through the induction of mitochondrial stress by exogenous applications of Antimycin A in Arabidopsis thaliana plants, we discovered and characterized a role of mitochondrial stress in plant-induced resistance. Mitochondrial stress-induced resistance (MS-IR) is effective locally, systemically, within generation and transgenerationally. Mechanistically, MS-IR seems to be mediated by priming of defense gene transcription caused by epigenetic changes. On one hand, we observed an increment in the deposition of H3K4me3 (a positive epigenetic mark) at the promoter region of the primed genes, and, on the other hand, the DNA (de)methylation machinery seems to be required for the transmission of MS-IR to the following generations. Finally, we observed that MS-IR is broad spectrum, restricting the colonization by pathogens from different kingdoms and lifestyles. Altogether, this evidence positions mitochondria as a prominent organelle in environment sensing, acting as an integrating platform to process external and internal signals, triggering the appropriate response, and inducing the epigenetic memory of the stress to better react against future stressful conditions.
Collapse
Affiliation(s)
- Ana López Sánchez
- Genética Molecular de Plantas, Centro Nacional de Biotecnología, Madrid, Spain
| | | | - Yovanny Izquierdo
- Genética Molecular de Plantas, Centro Nacional de Biotecnología, Madrid, Spain
| | - Bran López
- Genética Molecular de Plantas, Centro Nacional de Biotecnología, Madrid, Spain
| | - Tomás Cascón
- Genética Molecular de Plantas, Centro Nacional de Biotecnología, Madrid, Spain
| | - Carmen Castresana
- Genética Molecular de Plantas, Centro Nacional de Biotecnología, Madrid, Spain
| |
Collapse
|
23
|
Yassin M, Ton J, Rolfe SA, Valentine TA, Cromey M, Holden N, Newton AC. The rise, fall and resurrection of chemical-induced resistance agents. PEST MANAGEMENT SCIENCE 2021; 77:3900-3909. [PMID: 33729685 DOI: 10.1002/ps.6370] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustafa Yassin
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- James Hutton Institute, Dundee, UK
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | | | - Matthew Cromey
- Department of Plant Health, Royal Horticultural Society, Woking, UK
| | - Nicola Holden
- Scotland's Rural Colleges, Craibstone Estate, Aberdeen, UK
| | | |
Collapse
|
24
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
25
|
Do Transgenerational Epigenetic Inheritance and Immune System Development Share Common Epigenetic Processes? J Dev Biol 2021; 9:jdb9020020. [PMID: 34065783 PMCID: PMC8162332 DOI: 10.3390/jdb9020020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications regulate gene expression for development, immune response, disease, and other processes. A major role of epigenetics is to control the dynamics of chromatin structure, i.e., the condensed packaging of DNA around histone proteins in eukaryotic nuclei. Key epigenetic factors include enzymes for histone modifications and DNA methylation, non-coding RNAs, and prions. Epigenetic modifications are heritable but during embryonic development, most parental epigenetic marks are erased and reset. Interestingly, some epigenetic modifications, that may be resulting from immune response to stimuli, can escape remodeling and transmit to subsequent generations who are not exposed to those stimuli. This phenomenon is called transgenerational epigenetic inheritance if the epigenetic phenotype persists beyond the third generation in female germlines and second generation in male germlines. Although its primary function is likely immune response for survival, its role in the development and functioning of the immune system is not extensively explored, despite studies reporting transgenerational inheritance of stress-induced epigenetic modifications resulting in immune disorders. Hence, this review draws from studies on transgenerational epigenetic inheritance, immune system development and function, high-throughput epigenetics tools to study those phenomena, and relevant clinical trials, to focus on their significance and deeper understanding for future research, therapeutic developments, and various applications.
Collapse
|