1
|
Kumar P, Rajput VD, Singh AK, Agrawal S, Das R, Minkina T, Shukla PK, Wong MH, Kaushik A, Albukhaty S, Tiwari KN, Mishra SK. Nano-assisted delivery tools for plant genetic engineering: a review on recent developments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35806-1. [PMID: 39708181 DOI: 10.1007/s11356-024-35806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Conventional approaches like Agrobacterium-mediated transformation, viral transduction, biolistic particle bombardment, and polyethylene glycol (PEG)-facilitated delivery methods have been optimized for transporting specific genes to various plant cells. These conventional approaches in genetically modified crops are dependent on several factors like plant types, cell types, and genotype requirements, as well as numerous disadvantages such as time-consuming, untargeted distribution of genes, and high cost of cultivation. Therefore, it is suggested to develop novel techniques for the transportation of genes in crop plants using tailored nanoparticles (NPs) of manipulative and controlled high-performance features synthesized using green and chemical routes. It is observed that site-specific delivery of genes exhibits high efficacy in species-independent circumstances which leads to an increased level of productivity. Therefore, to achieve these outcomes, NPs can be utilized as gene nano-carriers for excellent delivery inside crops (i.e., cotton, tobacco, rice, wheat, okra, and maize) for desired genetic engineering modifications. As outcomes, this review provides an outline of the conventional techniques and current application of numerous nano-enabled gene delivery needed for crop gene manipulation, the benefits, and drawbacks associated with state-of-the-art techniques, which serve as a roadmap for the possible applicability of nanomaterials in plant genomic engineering as well as crop improvement in the future.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia.
| | - Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Richa Das
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Praveen Kumar Shukla
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia
- Consortium On Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ajeet Kaushik
- Department of Environmental Engineering, Florida Polytechnic University, Lakeland, USA
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Amarah, Maysan, 62001, Iraq
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, UP, India
| |
Collapse
|
2
|
Bahl E, Jyoti A, Singh A, Siddqui A, Upadhyay SK, Jain D, Shah MP, Saxena J. Nanomaterials for intelligent CRISPR-Cas tools: improving environment sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67479-67495. [PMID: 38291210 DOI: 10.1007/s11356-024-32101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a desirable gene modification tool covering a wide area in various sectors of medicine, agriculture, and microbial biotechnology. The role of this incredible genetic engineering technology has been extensively investigated; however, it remains formidable with cargo choices, nonspecific delivery, and insertional mutagenesis. Various nanomaterials including lipid, polymeric, and inorganic are being used to deliver the CRISPR-Cas system. Progress in nanomaterials could potentially address these challenges by accelerating precision targeting, cost-effectiveness, and one-step delivery. In this review, we highlighted the advances in nanotechnology and nanomaterials as smart delivery systems for CRISPR-Cas so as to ameliorate applications for environmental remediation including biomedical research and healthcare, strategies for mitigating antimicrobial resistance, and to be used as nanofertilizers for enhancing crop growth, and reducing the environmental impact of traditional fertilizers. The timely co-evolution of nanotechnology and CRISPR technologies has contributed to smart novel nanostructure hybrids for improving the onerous tasks of environmental remediation and biological sustainability.
Collapse
Affiliation(s)
- Ekansh Bahl
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Arif Siddqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Ankleshwar, India
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India.
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
3
|
Yadav V, Pal D, Poonia AK. A Study on Genetically Engineered Foods: Need, Benefits, Risk, and Current Knowledge. Cell Biochem Biophys 2024; 82:1931-1946. [PMID: 39020085 DOI: 10.1007/s12013-024-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Food requirements have always been a top priority, and with the exponential growth of the human population, there is an increasing need for large quantities of food. Traditional cultivation methods are not able to meet the current demand for food products. One significant challenge is the shortened shelf-life of naturally occurring food items, which directly contributes to food scarcity. Contaminating substances such as weeds and pests play a crucial role in this issue. In response, researchers have introduced genetically engineered (GE) food as a potential solution. These food products are typically created by adding or replacing genes in the DNA of naturally occurring foods. GE foods offer various advantages, including increased quality and quantity of food production, adaptability to various climatic conditions, modification of vitamin and mineral levels, and prolonged shelf life. They address the major concerns of global food scarcity and food security. However, the techniques used in the production of GE foods may not be universally acceptable due to the genetic alteration of animal genes into plants or vice versa. Additionally, their unique nature necessitates further long-term studies. This study delves into the procedures and growth stages of DNA sequencing, covering the benefits, risks, industrial relevance, current knowledge, and future challenges of GE foods. GE foods have the potential to extend the shelf life of food items, alleviate food shortages, and fulfill the current nutritional food demand.
Collapse
Affiliation(s)
- Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| | - Anil Kumar Poonia
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
4
|
Pucci A, Rossetti M, Lenzi C, Buja ML. The cardiovascular pathologist in the aortic team. Cardiovasc Pathol 2024; 72:107649. [PMID: 38703970 DOI: 10.1016/j.carpath.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Aortic diseases require a multidisciplinary management for diagnosis, treatment and follow-up with better outcomes in referral centers using a team-based approach. The setting up of a multi-disciplinary aortic team for the discussion of complex cases has been already proposed; it is also supported by the ACC/AHA. Surgeons and radiologists, more or less other physicians such as cardiologists, geneticists, rheumatologists/internal medicine specialists and pathologists are involved into such a team. The role of the cardiovascular pathologist is to examine the aortic specimens, to diagnose and classify the aortic lesions. Herein, the role of the pathologist in the aortic team is discussed and the pathobiology of aortic diseases is reviewed for reference by pathologists. The aortic specimens are mainly obtained from emergency or elective surgical procedures on the thoracic aorta, less frequently from organ/tissue (including cardiac or heart valve) donors, post-mortem procedures or abdominal aortic surgery. In the last decade, together with the progress of medical sciences, the histological definitions and classifications of the aortic pathology are undergoing thorough revisions that are addressed to an etiopathogenetic approach because of possible clinico-pathological correlations, therapeutic and prognostic impact. Pathologists may also have an important role in research and teaching. Therefore, histological analyses of the aortic specimens require adequate sample processing and pathologist expertise because histology contributes to definite diagnosis, correct management of patients and even (in genetic diseases) families, but also to research in the challenging field of aortopathies.
Collapse
Affiliation(s)
- Angela Pucci
- Department of Histopathology, Pisa University Hospital, Pisa, Italy.
| | - Martina Rossetti
- Department of Histopathology, Pisa University Hospital, Pisa, Italy
| | - Chiara Lenzi
- Department of Histopathology, Pisa University Hospital, Pisa, Italy
| | - Maximilian L Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
5
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
6
|
Moulick D, Majumdar A, Choudhury A, Das A, Chowardhara B, Pattnaik BK, Dash GK, Murmu K, Bhutia KL, Upadhyay MK, Yadav P, Dubey PK, Nath R, Murmu S, Jana S, Sarkar S, Garai S, Ghosh D, Mondal M, Chandra Santra S, Choudhury S, Brahmachari K, Hossain A. Emerging concern of nano-pollution in agro-ecosystem: Flip side of nanotechnology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108704. [PMID: 38728836 DOI: 10.1016/j.plaphy.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Nanomaterials (NMs) have proven to be a game-changer in agriculture, showcasing their potential to boost plant growth and safeguarding crops. The agricultural sector has widely adopted NMs, benefiting from their small size, high surface area, and optical properties to augment crop productivity and provide protection against various stressors. This is attributed to their unique characteristics, contributing to their widespread use in agriculture. Human exposure from various components of agro-environmental sectors (soil, crops) NMs residues are likely to upsurge with exposure paths may stimulates bioaccumulation in food chain. With the aim to achieve sustainability, nanotechnology (NTs) do exhibit its potentials in various domains of agriculture also have its flip side too. In this review article we have opted a fusion approach using bibliometric based analysis of global research trend followed by a holistic assessment of pros and cons i.e. toxicological aspect too. Moreover, we have also tried to analyse the current scenario of policy associated with the application of NMs in agro-environment.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| | - Abir Choudhury
- Department of Agricultural Chemistry and Soil Science, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh, 792103, India.
| | - Binaya Kumar Pattnaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune-411043, Maharastra, India.
| | - Goutam Kumar Dash
- Department of Biochemistry and Crop Physiology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Gajapati, Odisha, India.
| | - Kanu Murmu
- Department of Agronomy, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Karma Landup Bhutia
- Deptt. Agri. Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848 125, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Pradeep Kumar Dubey
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, India.
| | - Sidhu Murmu
- Department of Agricultural Chemistry and Soil Science, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, Neotia University, Sarisha, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011, India.
| | - Koushik Brahmachari
- Department of Agronomy, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
| |
Collapse
|
7
|
Ma J, Hua Z, Zhu Y, Saleem MH, Zulfiqar F, Chen F, Abbas T, El-Sheikh MA, Yong JWH, Adil MF. Interaction of titanium dioxide nanoparticles with PVC-microplastics and chromium counteracts oxidative injuries in Trachyspermum ammi L. by modulating antioxidants and gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116181. [PMID: 38460406 DOI: 10.1016/j.ecoenv.2024.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221000, China
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Touqeer Abbas
- Department of Soil, Water and Climate, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; Department of Agronomy and Horticulture, University of Nebraska, 358 Keim Hall Lincoln, NE 68583-0915, USA
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Arjunan N, Thiruvengadam V, Sushil SN. Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review. Mol Biol Rep 2024; 51:355. [PMID: 38400844 DOI: 10.1007/s11033-023-09187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.
Collapse
Affiliation(s)
- Nareshkumar Arjunan
- Division of Molecular Entomology, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India.
| | - S N Sushil
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India
| |
Collapse
|
9
|
Sembada AA, Lenggoro IW. Transport of Nanoparticles into Plants and Their Detection Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:131. [PMID: 38251096 PMCID: PMC10819755 DOI: 10.3390/nano14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Nanoparticle transport into plants is an evolving field of research with diverse applications in agriculture and biotechnology. This article provides an overview of the challenges and prospects associated with the transport of nanoparticles in plants, focusing on delivery methods and the detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the use of roots and leaves as introduction sites, are discussed, along with their respective advantages and limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells. Investigations into the uptake pathways and translocation mechanisms within plants have revealed nuanced responses to different types of nanoparticles. Additionally, this article delves into the importance of detection methods for studying nanoparticle localization and quantification within plant tissues. Various techniques are presented as valuable tools for comprehensively understanding nanoparticle-plant interactions. The reliance on multiple detection methods for data validation is emphasized to enhance the reliability of the research findings. The future outlooks of this field are explored, including the potential use of alternative introduction sites, such as stems, and the continued development of nanoparticle formulations that improve adhesion and penetration. By addressing these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants is poised to make significant contributions to sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - I. Wuled Lenggoro
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
10
|
Sahu A, Verma R, Gupta U, Kashyap S, Sanyal I. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants. Mol Biotechnol 2024; 66:11-25. [PMID: 37061991 DOI: 10.1007/s12033-023-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/11/2023] [Indexed: 04/17/2023]
Abstract
Anti-nutrients are substances either found naturally or are of synthetic origin, which leads to the inactivation of nutrients and limits their utilization in metabolic processes. Phytic acid is classified as an anti-nutrient, as it has a strong binding affinity with most minerals like Fe, Zn, Mg, Ca, Mn, and Cd and impairs their proper metabolism. Removing anti-nutrients from cereal grains may enable the bioavailability of both macro- and micronutrients which is the desired goal of genetic engineering tools for the betterment of agronomic traits. Several strategies have been adopted to minimize phytic acid content in plants. Pursuing the molecular strategies, there are several studies, which result in the decrement of the total phytic acid content in grains of major as well as minor crops. Biosynthesis of phytic acid mainly takes place in the seed comprising lipid-dependent and lipid-independent pathways, involving various enzymes. Furthermore, some studies show that interruption of these enzymes may involve the pleiotropic effect. However, using modern biotechnological approaches, undesirable agronomic traits can be removed. This review presents an overview of different genes encoding the various enzymes involved in the biosynthetic pathway of phytic acid which is being targeted for its reduction. It also, highlights and enumerates the variety of potential applications of genome editing tools such as TALEN, ZFN, and CRISPR/Cas9 to knock out the desired genes, and RNAi for their silencing.
Collapse
Affiliation(s)
- Anshu Sahu
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Rita Verma
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Uma Gupta
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Shashi Kashyap
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India.
| |
Collapse
|
11
|
Ciobotaru IC, Oprea D, Ciobotaru CC, Enache TA. Low-Cost Plant-Based Metal and Metal Oxide Nanoparticle Synthesis and Their Use in Optical and Electrochemical (Bio)Sensors. BIOSENSORS 2023; 13:1031. [PMID: 38131791 PMCID: PMC10741781 DOI: 10.3390/bios13121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Technological progress has led to the development of analytical tools that promise a huge socio-economic impact on our daily lives and an improved quality of life for all. The use of plant extract synthesized nanoparticles in the development and fabrication of optical or electrochemical (bio)sensors presents major advantages. Besides their low-cost fabrication and scalability, these nanoparticles may have a dual role, serving as a transducer component and as a recognition element, the latter requiring their functionalization with specific components. Different approaches, such as surface modification techniques to facilitate precise biomolecule attachment, thereby augmenting recognition capabilities, or fine tuning functional groups on nanoparticle surfaces are preferred for ensuring stable biomolecule conjugation while preserving bioactivity. Size optimization, maximizing surface area, and tailored nanoparticle shapes increase the potential for robust interactions and enhance the transduction. This article specifically aims to illustrate the adaptability and effectiveness of these biosensing platforms in identifying precise biological targets along with their far-reaching implications across various domains, spanning healthcare diagnostics, environmental monitoring, and diverse bioanalytical fields. By exploring these applications, the article highlights the significance of prioritizing the use of natural resources for nanoparticle synthesis. This emphasis aligns with the worldwide goal of envisioning sustainable and customized biosensing solutions, emphasizing heightened sensitivity and selectivity.
Collapse
Affiliation(s)
- Iulia Corina Ciobotaru
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| | - Daniela Oprea
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
- Faculty of Physics, University of Bucharest, 405 Atomistilor, 077125 Magurele, Romania
| | | | - Teodor Adrian Enache
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| |
Collapse
|
12
|
Khanna K, Ohri P, Bhardwaj R. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118049-118064. [PMID: 36973619 DOI: 10.1007/s11356-023-26482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), a genome editing tool, has gained a tremendous position due to its therapeutic efficacy, ability to counteract abiotic/biotic stresses in plants, environmental remediation and sustainable agriculture with the aim of food security. This is mainly due to their potential of precised genome modification and numerous genetic engineering protocols with versatility as well as simplicity. This technique is quite useful for crop refinement and overcoming the agricultural losses and regaining the soil fertility hampered by hazardous chemicals. Since CRISPR/Cas9 has been widely accepted in genome editing in plants, however, their revolutionised nature and progress enable genetic engineers to face numerous challenges in plant biotechnology. Therefore, nanoparticles have addressed these challenges and improved cargo delivery and genomic editing processes. Henceforth, this barrier prevents CRISPR-based genetic engineering in plants in order to show efficacy in full potential and eliminate all the barriers. This advancement accelerates the genome editing process and its applications in plant biotechnology enable us to sustain and feed the massive population under varying environments. Genome editing tools using CRISPR/Cas9 and nanotechnology are advantageous that produce transgenic-free plants that overcome global food demands. Here, in this review, we have aimed towards the mechanisms/delivery systems linked with CRISPR/Cas9 system. We have elaborated on the applications of CRISPR/Cas9 and nanotechnology-based systems for sustainable agriculture. Moreover, the challenges and limitations associated with genome editing and delivery systems have also been discussed with a special emphasis on crop improvement.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
13
|
Wu K, Xu C, Li T, Ma H, Gong J, Li X, Sun X, Hu X. Application of Nanotechnology in Plant Genetic Engineering. Int J Mol Sci 2023; 24:14836. [PMID: 37834283 PMCID: PMC10573821 DOI: 10.3390/ijms241914836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The ever-increasing food requirement with globally growing population demands advanced agricultural practices to improve grain yield, to gain crop resilience under unpredictable extreme weather, and to reduce production loss caused by insects and pathogens. To fulfill such requests, genome engineering technology has been applied to various plant species. To date, several generations of genome engineering methods have been developed. Among these methods, the new mainstream technology is clustered regularly interspaced short palindromic repeats (CRISPR) with nucleases. One of the most important processes in genome engineering is to deliver gene cassettes into plant cells. Conventionally used systems have several shortcomings, such as being labor- and time-consuming procedures, potential tissue damage, and low transformation efficiency. Taking advantage of nanotechnology, the nanoparticle-mediated gene delivery method presents technical superiority over conventional approaches due to its high efficiency and adaptability in different plant species. In this review, we summarize the evolution of plant biomolecular delivery methods and discussed their characteristics as well as limitations. We focused on the cutting-edge nanotechnology-based delivery system, and reviewed different types of nanoparticles, preparation of nanomaterials, mechanism of nanoparticle transport, and advanced application in plant genome engineering. On the basis of established methods, we concluded that the combination of genome editing, nanoparticle-mediated gene transformation and de novo regeneration technologies can accelerate crop improvement efficiently in the future.
Collapse
Affiliation(s)
- Kexin Wu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Changbin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Tong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Xiaoli Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| |
Collapse
|
14
|
Kocsisova Z, Coneva V. Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. Front Genome Ed 2023; 5:1209586. [PMID: 37545761 PMCID: PMC10398581 DOI: 10.3389/fgeed.2023.1209586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.
Collapse
|
15
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
16
|
Kumari R, Suman K, Karmakar S, Mishra V, Lakra SG, Saurav GK, Mahto BK. Regulation and safety measures for nanotechnology-based agri-products. Front Genome Ed 2023; 5:1200987. [PMID: 37415849 PMCID: PMC10320728 DOI: 10.3389/fgeed.2023.1200987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
There is a wide range of application for nanotechnology in agriculture, including fertilizers, aquaculture, irrigation, water filtration, animal feed, animal vaccines, food processing, and packaging. In recent decades, nanotechnology emerged as a prospective and promising approach for the advancement of Agri-sector such as pest/disease prevention, fertilizers, agrochemicals, biofertilizers, bio-stimulants, post-harvest storage, pheromones-, and nutrient-delivery, and genetic manipulation in plants for crop improvement by using nanomaterial as a carrier system. Exponential increase in global population has enhanced food demand, so to fulfil the demand markets already included nano-based product likewise nano-encapsulated nutrients/agrochemicals, antimicrobial and packaging of food. For the approval of nano-based product, applicants for a marketing approval must show that such novel items can be used safely without endangering the consumer and environment. Several nations throughout the world have been actively looking at whether their regulatory frameworks are suitable for handling nanotechnologies. As a result, many techniques to regulate nano-based products in agriculture, feed, and food have been used. Here, we have contextualized different regulatory measures of several countries for nano-based products in agriculture, from feed to food, including guidance and legislation for safety assessment worldwide.
Collapse
Affiliation(s)
- Ritika Kumari
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | - Kalpana Suman
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, India
- Department of Environmental Studies, Ram Lal Anand College, University of Delhi, Delhi, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, India
| | | | - Gunjan Kumar Saurav
- Department of Zoology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Binod Kumar Mahto
- University Department of Botany, Ranchi University, Ranchi, Jharkhand, India
| |
Collapse
|
17
|
Law SSY, Miyamoto T, Numata K. Organelle-targeted gene delivery in plants by nanomaterials. Chem Commun (Camb) 2023. [PMID: 37183975 DOI: 10.1039/d3cc00962a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic engineering of plants has revolutionized agriculture and has had a significant impact on our everyday life. It has allowed for the production of crops with longer shelf lives, enhanced yields and resistance to pests and disease. The application of nanomaterials in plant genetic engineering has further augmented these programs with higher delivery efficiencies, biocompatibility and the potential for plant regeneration. In particular, subcellular targeting using nanomaterials has recently become possible with the cutting-edge developments within nanomaterials, but remains challenging despite the promise in organellar engineering for the introduction of useful traits and the elucidation of subcellular interactions. This feature article provides an overview of nanomaterial delivery within plants and highlights the application of recent progress in nanomaterials for subcellular organelle-targeted delivery.
Collapse
Affiliation(s)
- Simon Sau Yin Law
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
18
|
Mou DF, Kundu P, Pingault L, Puri H, Shinde S, Louis J. Monocot crop-aphid interactions: plant resilience and aphid adaptation. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101038. [PMID: 37105496 DOI: 10.1016/j.cois.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Globally, aphids cause immense economic damage to several crop plants. In addition, aphids vector several plant viral diseases that accelerate crop yield losses. While feeding, aphids release saliva that contains effectors, which modulate plant defense responses. Although there are many studies that describe the mechanisms that contribute to dicot plant-aphid interactions, our understanding of monocot crop defense mechanisms against aphids is limited. In this review, we focus on the interactions between monocot crops and aphids and report the recently characterized aphid effectors and their functions in aphid adaptation to plant immunity. Recent studies on plant defense against aphids in monocot-resistant and -tolerant crop lines have exploited various 'omic' approaches to understand the roles of early signaling molecules, phytohormones, and secondary metabolites in plant response to aphid herbivory. Unraveling key regulatory mechanisms underlying monocot crop resistance to aphids will lead to deeper understanding of sap-feeding insect management strategies for increased food security and sustainable agriculture.
Collapse
Affiliation(s)
- De-Fen Mou
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Pritha Kundu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
19
|
Vithanage M, Zhang X, Gunarathne V, Zhu Y, Herath L, Peiris K, Solaiman ZM, Bolan N, Siddique KHM. Plant nanobionics: Fortifying food security via engineered plant productivity. ENVIRONMENTAL RESEARCH 2023; 229:115934. [PMID: 37080274 DOI: 10.1016/j.envres.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India.
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lasantha Herath
- Sri Lanka Institute of Nano Technology, Pitipana, Homagama, Sri Lanka
| | - Kanchana Peiris
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
20
|
Zhao Y, Yu Y, Guo J, Zhang Y, Huang L. Rapid and Efficient Optimization Method for a Genetic Transformation System of Medicinal Plants Erigeron breviscapus. Int J Mol Sci 2023; 24:ijms24065611. [PMID: 36982685 PMCID: PMC10058539 DOI: 10.3390/ijms24065611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Erigeron breviscapus is an important medicinal plant with high medicinal and economic value. It is currently the best natural biological drug for the treatment of obliterative cerebrovascular disease and the sequela of cerebral hemorrhage. Therefore, to solve the contradiction between supply and demand, the study of genetic transformation of E. breviscapus is essential for targeted breeding. However, establishing an efficient genetic transformation system is a lengthy process. In this study, we established a rapid and efficient optimized protocol for genetic transformation of E. breviscapus using the hybrid orthogonal method. The effect of different concentrations of selection pressure (Hygromycin B) on callus induction and the optimal pre-culture time of 7 days were demonstrated. The optimal transformation conditions were as follows: precipitant agents MgCl2 + PEG, target tissue distance 9 cm, helium pressure 650 psi, bombardment once, plasmid DNA concentration 1.0 μg·μL−1, and chamber vacuum pressure 27 mmHg. Integration of the desired genes was verified by amplifying 1.02 kb of htp gene from the T0 transgenic line. Genetic transformation of E. breviscapus was carried out by particle bombardment under the optimized conditions, and a stable transformation efficiency of 36.7% was achieved. This method will also contribute to improving the genetic transformation rate of other medicinal plants.
Collapse
Affiliation(s)
- Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
| | - Yifan Yu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
| | - Yifeng Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Z.)
- Correspondence: ; Tel.: +86-010-6408-7469
| |
Collapse
|
21
|
Salehi H, Cheheregani Rad A, Raza A, Djalovic I, Prasad PVV. The comparative effects of manganese nanoparticles and their counterparts (bulk and ionic) in Artemisia annua plants via seed priming and foliar application. FRONTIERS IN PLANT SCIENCE 2023; 13:1098772. [PMID: 36743542 PMCID: PMC9893273 DOI: 10.3389/fpls.2022.1098772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The world has experienced an unprecedented boom in nanotechnology. Nanoparticles (NPs) are likely to act as biostimulants in various plants due to having high surface/volume value. However, understanding the actual effect of NPs is essential to discriminate them from other counterparts in terms of being applicable, safe and cost-effective. This study aimed to assay the impact of manganese(III) oxide (Mn2O3)-NPs via seed-priming (SP) and a combination of SP and foliar application (SP+F) on Artemisia. annua performance at several times intervals and comparison with other available manganese (Mn) forms. Our findings indicate that SP with MnSO4 and Mn2O3-NPs stimulates the processes that occur prior to germination and thus reduces the time for radicle emergence. In both applications (i.e., SP and +F), none of the Mn treatments did show adverse phytotoxic on A. annua growth at morpho-physio and biochemical levels except for Mn2O3, which delayed germination and further plant growth, subsequently. Besides, from physio-biochemical data, it can be inferred that the general mechanism mode of action of Mn is mainly attributed to induce the photosynthetic processes, stimulate the superoxide dismutase (SOD) activity, and up-regulation of proline and phenolic compounds. Therefore, our results showed that both enzymatic and non-enzymatic antioxidants could be influenced by the application of Mn treatments in a type-dependent manner. In general, this study revealed that Mn2O3-NPs at the tested condition could be used as biostimulants to improve germination, seedling development and further plant growth. However, they are not as effective as MnSO4 treatments. Nonetheless, these findings can be used to consider and develop Mn2O3-NPs priming in future studies to improve seed germination and seedling quality in plants.
Collapse
Affiliation(s)
- Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | | | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
22
|
Heinemann JA, Clark K, Hiscox TC, McCabe AW, Agapito-Tenfen SZ. Are null segregants new combinations of heritable material and should they be regulated? Front Genome Ed 2023; 4:1064103. [PMID: 36704579 PMCID: PMC9871356 DOI: 10.3389/fgeed.2022.1064103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Through genome editing and other techniques of gene technology, it is possible to create a class of organism called null segregants. These genetically modified organisms (GMOs) are products of gene technology but are argued to have no lingering vestige of the technology after the segregation of chromosomes or deletion of insertions. From that viewpoint regulations are redundant because any unique potential for the use of gene technology to cause harm has also been removed. We tackle this question of international interest by reviewing the early history of the purpose of gene technology regulation. The active ingredients of techniques used for guided mutagenesis, e.g., site-directed nucleases, such as CRISPR/Cas, are promoted for having a lower potential per reaction to create a hazard. However, others see this as a desirable industrial property of the reagents that will lead to genome editing being used more and nullifying the promised hazard mitigation. The contest between views revolves around whether regulations could alter the risks in the responsible use of gene technology. We conclude that gene technology, even when used to make null segregants, has characteristics that make regulation a reasonable option for mitigating potential harm. Those characteristics are that it allows people to create more harm faster, even if it creates benefits as well; the potential for harm increases with increased use of the technique, but safety does not; and regulations can control harm scaling.
Collapse
Affiliation(s)
- Jack A. Heinemann
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katrin Clark
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tessa C. Hiscox
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew W. McCabe
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sarah Z. Agapito-Tenfen
- Climate and Environment Division, NORCE Norwegian Research Centre AS, Tromsø, Norway,*Correspondence: Sarah Z. Agapito-Tenfen,
| |
Collapse
|
23
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
24
|
Sharma KK, Palakolanu SR, Bhattacharya J, Shankhapal AR, Bhatnagar-Mathur P. CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Front Genet 2022; 13:999207. [PMID: 36276961 PMCID: PMC9582247 DOI: 10.3389/fgene.2022.999207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
Technologies and innovations are critical for addressing the future food system needs where genetic resources are an essential component of the change process. Advanced breeding tools like "genome editing" are vital for modernizing crop breeding to provide game-changing solutions to some of the "must needed" traits in agriculture. CRISPR/Cas-based tools have been rapidly repurposed for editing applications based on their improved efficiency, specificity and reduced off-target effects. Additionally, precise gene-editing tools such as base editing, prime editing, and multiplexing provide precision in stacking of multiple traits in an elite variety, and facilitating specific and targeted crop improvement. This has helped in advancing research and delivery of products in a short time span, thereby enhancing the rate of genetic gains. A special focus has been on food security in the drylands through crops including millets, teff, fonio, quinoa, Bambara groundnut, pigeonpea and cassava. While these crops contribute significantly to the agricultural economy and resilience of the dryland, improvement of several traits including increased stress tolerance, nutritional value, and yields are urgently required. Although CRISPR has potential to deliver disruptive innovations, prioritization of traits should consider breeding product profiles and market segments for designing and accelerating delivery of locally adapted and preferred crop varieties for the drylands. In this context, the scope of regulatory environment has been stated, implying the dire impacts of unreasonable scrutiny of genome-edited plants on the evolution and progress of much-needed technological advances.
Collapse
Affiliation(s)
- Kiran K. Sharma
- Sustainable Agriculture Programme, The Energy and Resources Institute (TERI), India Habitat Center, New Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R. Shankhapal
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- International Maize and Wheat Improvement Center (CIMMYT), México, United Kingdom
| |
Collapse
|
25
|
Jones MGK, Fosu-Nyarko J, Iqbal S, Adeel M, Romero-Aldemita R, Arujanan M, Kasai M, Wei X, Prasetya B, Nugroho S, Mewett O, Mansoor S, Awan MJA, Ordonio RL, Rao SR, Poddar A, Hundleby P, Iamsupasit N, Khoo K. Enabling Trade in Gene-Edited Produce in Asia and Australasia: The Developing Regulatory Landscape and Future Perspectives. PLANTS 2022; 11:plants11192538. [PMID: 36235403 PMCID: PMC9571430 DOI: 10.3390/plants11192538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Genome- or gene-editing (abbreviated here as ‘GEd’) presents great opportunities for crop improvement. This is especially so for the countries in the Asia-Pacific region, which is home to more than half of the world’s growing population. A brief description of the science of gene-editing is provided with examples of GEd products. For the benefits of GEd technologies to be realized, international policy and regulatory environments must be clarified, otherwise non-tariff trade barriers will result. The status of regulations that relate to GEd crop products in Asian countries and Australasia are described, together with relevant definitions and responsible regulatory bodies. The regulatory landscape is changing rapidly: in some countries, the regulations are clear, in others they are developing, and some countries have yet to develop appropriate policies. There is clearly a need for the harmonization or alignment of GEd regulations in the region: this will promote the path-to-market and enable the benefits of GEd technologies to reach the end-users.
Collapse
Affiliation(s)
- Michael G. K. Jones
- Crop Biotechnology Research Group, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: ; Tel.: +61-(0)4-1423-9428
| | - John Fosu-Nyarko
- Crop Biotechnology Research Group, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Sadia Iqbal
- Crop Biotechnology Research Group, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Muhammad Adeel
- Crop Biotechnology Research Group, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Rhodora Romero-Aldemita
- ISAAA—BioTrust Global Knowledge Center on Biotechnology, International Service for the Acquisition of Agri-Biotech Applications (ISAAA), IRRI, Los Banos 4031, Philippines
| | - Mahaletchumy Arujanan
- Malaysian Biotechnology Information Centre, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mieko Kasai
- Japan Plant Factory Association, 6-2-1 Kashiwanoha Kashiwa, Chiba 277-0012, Japan
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Bambang Prasetya
- National Biosafety Committee of Genetically Engineered Products (KKH-PRG), Research Center for Testing Technology and Standards, National Research and Innovation Agency (BRIN), Central Jakarta 10340, Indonesia
| | - Satya Nugroho
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Central Jakarta 10340, Indonesia
| | - Osman Mewett
- Australian Seed Federation, 20 Napier Cl, Deakin, Canberra, ACT 2600, Australia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan
| | - Muhammad J. A. Awan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan
| | - Reynante L. Ordonio
- Crop Biotech Center, Philippine Rice Research Institute, Munoz 3119, Philippines
| | - S. R. Rao
- Sri Balaji Vidyapeeth University, Pondicherry 607402, India
| | - Abhijit Poddar
- MGM Advanced Research Institute, Pondicherry 607402, India
| | - Penny Hundleby
- John Innes Centre, Norwich, Research Park, Norwich NR4 7UH, UK
| | | | - Kay Khoo
- Regulatory Affairs Manager, Seeds Asia-Pacific, BASF Australia Ltd., 12/28 Freshwater Pl, Southbank, VIC 3006, Australia
| |
Collapse
|
26
|
Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, Devarumath R, Appunu C. Advances in Crop Breeding Through Precision Genome Editing. Front Genet 2022; 13:880195. [PMID: 35910205 PMCID: PMC9329802 DOI: 10.3389/fgene.2022.880195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The global climate change and unfavourable abiotic and biotic factors are limiting agricultural productivity and therefore intensifying the challenges for crop scientists to meet the rising demand for global food supply. The introduction of applied genetics to agriculture through plant breeding facilitated the development of hybrid varieties with improved crop productivity. However, the development of new varieties with the existing gene pools poses a challenge for crop breeders. Genetic engineering holds the potential to broaden genetic diversity by the introduction of new genes into crops. But the random insertion of foreign DNA into the plant's nuclear genome often leads to transgene silencing. Recent advances in the field of plant breeding include the development of a new breeding technique called genome editing. Genome editing technologies have emerged as powerful tools to precisely modify the crop genomes at specific sites in the genome, which has been the longstanding goal of plant breeders. The precise modification of the target genome, the absence of foreign DNA in the genome-edited plants, and the faster and cheaper method of genome modification are the remarkable features of the genome-editing technology that have resulted in its widespread application in crop breeding in less than a decade. This review focuses on the advances in crop breeding through precision genome editing. This review includes: an overview of the different breeding approaches for crop improvement; genome editing tools and their mechanism of action and application of the most widely used genome editing technology, CRISPR/Cas9, for crop improvement especially for agronomic traits such as disease resistance, abiotic stress tolerance, herbicide tolerance, yield and quality improvement, reduction of anti-nutrients, and improved shelf life; and an update on the regulatory approval of the genome-edited crops. This review also throws a light on development of high-yielding climate-resilient crops through precision genome editing.
Collapse
Affiliation(s)
- Gauri Nerkar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Suman Devarumath
- Vidya Pratishthan's College of Agricultural Biotechnology, Baramati, India
| | - Madhavi Purankar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Atul Kumar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - R Valarmathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Rachayya Devarumath
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - C Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
27
|
García-Fernández A, Vivo-Llorca G, Sancho M, García-Jareño AB, Ramírez-Jiménez L, Barber-Cano E, Murguía JR, Orzáez M, Sancenón F, Martínez-Máñez R. Nanodevices for the Efficient Codelivery of CRISPR-Cas9 Editing Machinery and an Entrapped Cargo: A Proposal for Dual Anti-Inflammatory Therapy. Pharmaceutics 2022; 14:pharmaceutics14071495. [PMID: 35890389 PMCID: PMC9322049 DOI: 10.3390/pharmaceutics14071495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
In this article, we report one of the few examples of nanoparticles capable of simultaneously delivering CRISPR-Cas9 gene-editing machinery and releasing drugs for one-shot treatments. Considering the complexity of inflammation in diseases, the synergistic effect of nanoparticles for gene-editing/drug therapy is evaluated in an in vitro inflammatory model as proof of concept. Mesoporous silica nanoparticles (MSNs), able to deliver the CRISPR/Cas9 machinery to edit gasdermin D (GSDMD), a key protein involved in inflammatory cell death, and the anti-inflammatory drug VX-765 (GSDMD45CRISPR-VX-MSNs), were prepared. Nanoparticles allow high cargo loading and CRISPR-Cas9 plasmid protection and, thus, achieve the controlled codelivery of CRISPR-Cas9 and the drug in cells. Nanoparticles exhibit GSDMD gene editing by downregulating inflammatory cell death and achieving a combined effect on decreasing the inflammatory response by the codelivery of VX-765. Taken together, our results show the potential of MSNs as a versatile platform by allowing multiple combinations for gene editing and drug therapy to prepare advanced nanodevices to meet possible biomedical needs.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| | - Gema Vivo-Llorca
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Alicia Belén García-Jareño
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Laura Ramírez-Jiménez
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Eloísa Barber-Cano
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, UPV-IIS La Fe, 46026 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, UPV-IIS La Fe, 46026 Valencia, Spain
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| |
Collapse
|
28
|
Ishwarya Lakshmi VG, Sreedhar M, JhansiLakshmi V, Gireesh C, Rathod S, Bohar R, Deshpande S, Laavanya R, Kiranmayee KNSU, Siddi S, Vanisri S. Development and Validation of Diagnostic KASP Markers for Brown Planthopper Resistance in Rice. Front Genet 2022; 13:914131. [PMID: 35899197 PMCID: PMC9309266 DOI: 10.3389/fgene.2022.914131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Rice (Oryza sativa L.) is an important source of nutrition for the world's burgeoning population that often faces yield loss due to infestation by the brown planthopper (BPH, Nilaparvata lugens (Stål)). The development of rice cultivars with BPH resistance is one of the crucial precedences in rice breeding programs. Recent progress in high-throughput SNP-based genotyping technology has made it possible to develop markers linked to the BPH more quickly than ever before. With this view, a genome-wide association study was undertaken for deriving marker-trait associations with BPH damage scores and SNPs from genotyping-by-sequencing data of 391 multi-parent advanced generation inter-cross (MAGIC) lines. A total of 23 significant SNPs involved in stress resistance pathways were selected from a general linear model along with 31 SNPs reported from a FarmCPU model in previous studies. Of these 54 SNPs, 20 were selected in such a way to cover 13 stress-related genes. Kompetitive allele-specific PCR (KASP) assays were designed for the 20 selected SNPs and were subsequently used in validating the genotypes that were identified, six SNPs, viz, snpOS00912, snpOS00915, snpOS00922, snpOS00923, snpOS00927, and snpOS00929 as efficient in distinguishing the genotypes into BPH-resistant and susceptible clusters. Bph17 and Bph32 genes that are highly effective against the biotype 4 of the BPH have been validated by gene specific SNPs with favorable alleles in M201, M272, M344, RathuHeenati, and RathuHeenati accession. These identified genotypes could be useful as donors for transferring BPH resistance into popular varieties with marker-assisted selection using these diagnostic SNPs. The resistant lines and the significant SNPs unearthed from our study can be useful in developing BPH-resistant varieties after validating them in biparental populations with the potential usefulness of SNPs as causal markers.
Collapse
Affiliation(s)
- V. G. Ishwarya Lakshmi
- Department of Genetics and Plant Breeding, College of Agriculture, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - M. Sreedhar
- Administrative Office, PJTSAU, Hyderabad, India
| | | | - C. Gireesh
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Santosha Rathod
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Rajaguru Bohar
- CGIAR Excellence in Breeding (EiB), CIMMYT-ICRISAT, Hyderabad, India
| | - Santosh Deshpande
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - R. Laavanya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Sreedhar Siddi
- Agricultural Research Station, PJTSAU, Peddapalli, India
| | - S. Vanisri
- Institute of Biotechnology, PJTSAU, Hyderabad, India
| |
Collapse
|
29
|
Thomson MJ, Biswas S, Tsakirpaloglou N, Septiningsih EM. Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. Int J Mol Sci 2022; 23:ijms23126565. [PMID: 35743007 PMCID: PMC9223900 DOI: 10.3390/ijms23126565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in molecular technologies over the past few decades, such as high-throughput DNA marker genotyping, have provided more powerful plant breeding approaches, including marker-assisted selection and genomic selection. At the same time, massive investments in plant genetics and genomics, led by whole genome sequencing, have led to greater knowledge of genes and genetic pathways across plant genomes. However, there remains a gap between approaches focused on forward genetics, which start with a phenotype to map a mutant locus or QTL with the goal of cloning the causal gene, and approaches using reverse genetics, which start with large-scale sequence data and work back to the gene function. The recent establishment of efficient CRISPR-Cas-based gene editing promises to bridge this gap and provide a rapid method to functionally validate genes and alleles identified through studies of natural variation. CRISPR-Cas techniques can be used to knock out single or multiple genes, precisely modify genes through base and prime editing, and replace alleles. Moreover, technologies such as protoplast isolation, in planta transformation, and the use of developmental regulatory genes promise to enable high-throughput gene editing to accelerate crop improvement.
Collapse
|
30
|
Chen H, Neubauer M, Wang JP. Enhancing HR Frequency for Precise Genome Editing in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:883421. [PMID: 35592579 PMCID: PMC9113527 DOI: 10.3389/fpls.2022.883421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Gene-editing tools, such as Zinc-fingers, TALENs, and CRISPR-Cas, have fostered a new frontier in the genetic improvement of plants across the tree of life. In eukaryotes, genome editing occurs primarily through two DNA repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is the primary mechanism in higher plants, but it is unpredictable and often results in undesired mutations, frameshift insertions, and deletions. Homology-directed repair (HDR), which proceeds through HR, is typically the preferred editing method by genetic engineers. HR-mediated gene editing can enable error-free editing by incorporating a sequence provided by a donor template. However, the low frequency of native HR in plants is a barrier to attaining efficient plant genome engineering. This review summarizes various strategies implemented to increase the frequency of HDR in plant cells. Such strategies include methods for targeting double-strand DNA breaks, optimizing donor sequences, altering plant DNA repair machinery, and environmental factors shown to influence HR frequency in plants. Through the use and further refinement of these methods, HR-based gene editing may one day be commonplace in plants, as it is in other systems.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Matthew Neubauer
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
31
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
32
|
Sharma P, Lew TTS. Principles of Nanoparticle Design for Genome Editing in Plants. Front Genome Ed 2022; 4:846624. [PMID: 35330692 PMCID: PMC8940305 DOI: 10.3389/fgeed.2022.846624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Precise plant genome editing technologies have provided new opportunities to accelerate crop improvement and develop more sustainable agricultural systems. In particular, the prokaryote-derived CRISPR platforms allow precise manipulation of the crop genome, enabling the generation of high-yielding and stress-tolerant crop varieties. Nanotechnology has the potential to catalyze the development of a novel molecular toolbox even further by introducing the possibility of a rapid, universal delivery method to edit the plant genome in a species-independent manner. In this Perspective, we highlight how nanoparticles can help unlock the full potential of CRISPR/Cas technology in targeted manipulation of the plant genome to improve agricultural output. We discuss current challenges hampering progress in nanoparticle-enabled plant gene-editing research and application in the field, and highlight how rational nanoparticle design can overcome them. Finally, we examine the implications of the regulatory frameworks and social acceptance for the future of nano-enabled precision breeding in the developing world.
Collapse
Affiliation(s)
- Pushkal Sharma
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Tedrick Thomas Salim Lew, , orcid.org/0000-0002-4815-9921
| |
Collapse
|
33
|
Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology Strategies for Plant Genetic Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106945. [PMID: 34699644 DOI: 10.1002/adma.202106945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Plant genetic engineering is essential for improving crop yield, quality, and resistance to abiotic/biotic stresses for sustainable agriculture. Agrobacterium-, biolistic bombardment-, electroporation-, and poly(ethylene glycol) (PEG)-mediated genetic-transformation systems are extensively used in plant genetic engineering. However, these systems have limitations, including species dependency, destruction of plant tissues, low transformation efficiency, and high cost. Recently, nanotechnology-based gene-delivery methods have been developed for plant genetic transformation. This nanostrategy shows excellent transformation efficiency, good biocompatibility, adequate protection of exogenous nucleic acids, and the potential for plant regeneration. However, the nanomaterial-mediated gene-delivery system in plants is still in its infancy, and there are many challenges for its broad applications. Herein, the conventional genetic transformation techniques used in plants are briefly discussed. After that, the progress in the development of nanomaterial-based gene-delivery systems is considered. CRISPR-Cas-mediated genome editing and its combined applications with plant nanotechnology are also discussed. The conceptual innovations, methods, and practical applications of nanomaterial-mediated genetic transformation summarized herein will be beneficial for promoting plant genetic engineering in modern agriculture.
Collapse
Affiliation(s)
- Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xiaojun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
34
|
Gong Z, Cheng M, Botella JR. Non-GM Genome Editing Approaches in Crops. Front Genome Ed 2022; 3:817279. [PMID: 34977860 PMCID: PMC8715957 DOI: 10.3389/fgeed.2021.817279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas-based genome editing technologies have the potential to fast-track large-scale crop breeding programs. However, the rigid cell wall limits the delivery of CRISPR/Cas components into plant cells, decreasing genome editing efficiency. Established methods, such as Agrobacterium tumefaciens-mediated or biolistic transformation have been used to integrate genetic cassettes containing CRISPR components into the plant genome. Although efficient, these methods pose several problems, including 1) The transformation process requires laborious and time-consuming tissue culture and regeneration steps; 2) many crop species and elite varieties are recalcitrant to transformation; 3) The segregation of transgenes in vegetatively propagated or highly heterozygous crops, such as pineapple, is either difficult or impossible; and 4) The production of a genetically modified first generation can lead to public controversy and onerous government regulations. The development of transgene-free genome editing technologies can address many problems associated with transgenic-based approaches. Transgene-free genome editing have been achieved through the delivery of preassembled CRISPR/Cas ribonucleoproteins, although its application is limited. The use of viral vectors for delivery of CRISPR/Cas components has recently emerged as a powerful alternative but it requires further exploration. In this review, we discuss the different strategies, principles, applications, and future directions of transgene-free genome editing methods.
Collapse
Affiliation(s)
- Zheng Gong
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ming Cheng
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
González-Grandío E, Demirer GS, Jackson CT, Yang D, Ebert S, Molawi K, Keller H, Landry MP. Carbon nanotube biocompatibility in plants is determined by their surface chemistry. J Nanobiotechnology 2021; 19:431. [PMID: 34930290 PMCID: PMC8686619 DOI: 10.1186/s12951-021-01178-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. RESULTS Herein, we characterize the response of Arabidopsis thaliana to single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. CONCLUSIONS While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement.
Collapse
Affiliation(s)
- Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Gözde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.,Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Christopher T Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Sophia Ebert
- BASF, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Kian Molawi
- BASF, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Harald Keller
- BASF, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute (IGI), Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA. .,Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
36
|
Jiang M, Song Y, Kanwar MK, Ahammed GJ, Shao S, Zhou J. Phytonanotechnology applications in modern agriculture. J Nanobiotechnology 2021; 19:430. [PMID: 34930275 PMCID: PMC8686395 DOI: 10.1186/s12951-021-01176-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
With the rapidly changing global climate, the agricultural systems are confronted with more unpredictable and harsh environmental conditions than before which lead to compromised food production. Thus, to ensure safer and sustainable crop production, the use of advanced nanotechnological approaches in plants (phytonanotechnology) is of great significance. In this review, we summarize recent advances in phytonanotechnology in agricultural systems that can assist to meet ever-growing demands of food sustainability. The application of phytonanotechnology can change traditional agricultural systems, allowing the target-specific delivery of biomolecules (such as nucleotides and proteins) and cater the organized release of agrochemicals (such as pesticides and fertilizers). An amended comprehension of the communications between crops and nanoparticles (NPs) can improve the production of crops by enhancing tolerance towards environmental stresses and optimizing the utilization of nutrients. Besides, approaches like nanoliposomes, nanoemulsions, edible coatings, and other kinds of NPs offer numerous selections in the postharvest preservation of crops for minimizing food spoilage and thus establishing phtonanotechnology as a sustainable tool to architect modern agricultural practices.
Collapse
Affiliation(s)
- Meng Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
- Institute of Crop Sciences, National Key Laboratory of Rice Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
| | - Yue Song
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
- Institute of Crop Sciences, National Key Laboratory of Rice Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
| | - Mukesh Kumar Kanwar
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Shujun Shao
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
| | - Jie Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China.
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
37
|
Bellido AM, Souza Canadá ED, Permingeat HR, Echenique V. Genetic Transformation of Apomictic Grasses: Progress and Constraints. FRONTIERS IN PLANT SCIENCE 2021; 12:768393. [PMID: 34804102 PMCID: PMC8602796 DOI: 10.3389/fpls.2021.768393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 05/17/2023]
Abstract
The available methods for plant transformation and expansion beyond its limits remain especially critical for crop improvement. For grass species, this is even more critical, mainly due to drawbacks in in vitro regeneration. Despite the existence of many protocols in grasses to achieve genetic transformation through Agrobacterium or biolistic gene delivery, their efficiencies are genotype-dependent and still very low due to the recalcitrance of these species to in vitro regeneration. Many plant transformation facilities for cereals and other important crops may be found around the world in universities and enterprises, but this is not the case for apomictic species, many of which are C4 grasses. Moreover, apomixis (asexual reproduction by seeds) represents an additional constraint for breeding. However, the transformation of an apomictic clone is an attractive strategy, as the transgene is immediately fixed in a highly adapted genetic background, capable of large-scale clonal propagation. With the exception of some species like Brachiaria brizantha which is planted in approximately 100 M ha in Brazil, apomixis is almost non-present in economically important crops. However, as it is sometimes present in their wild relatives, the main goal is to transfer this trait to crops to fix heterosis. Until now this has been a difficult task, mainly because many aspects of apomixis are unknown. Over the last few years, many candidate genes have been identified and attempts have been made to characterize them functionally in Arabidopsis and rice. However, functional analysis in true apomictic species lags far behind, mainly due to the complexity of its genomes, of the trait itself, and the lack of efficient genetic transformation protocols. In this study, we review the current status of the in vitro culture and genetic transformation methods focusing on apomictic grasses, and the prospects for the application of new tools assayed in other related species, with two aims: to pave the way for discovering the molecular pathways involved in apomixis and to develop new capacities for breeding purposes because many of these grasses are important forage or biofuel resources.
Collapse
Affiliation(s)
- Andrés M. Bellido
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | | | | | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
38
|
Del Mar Martínez-Prada M, Curtin SJ, Gutiérrez-González JJ. Potato improvement through genetic engineering. GM CROPS & FOOD 2021; 12:479-496. [PMID: 34991415 PMCID: PMC9208627 DOI: 10.1080/21645698.2021.1993688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Potato (Solanum tuberosum L.) is the third most important crop worldwide and a staple food for many people worldwide. Genetically, it poses many challenges for traditional breeding due to its autotetraploid nature and its tendency toward inbreeding depression. Breeding programs have focused on productivity, nutritional quality, and disease resistance. Some of these traits exist in wild potato relatives but their introgression into elite cultivars can take many years and, for traits such as pest resistance, their effect is often short-lasting. These problems can be addressed by genetic modification (GM) or gene editing (GE) and open a wide horizon for potato crop improvement. Current genetically modified and gene edited varieties include those with Colorado potato beetle and late blight resistance, reduction in acrylamide, and modified starch content. RNAi hairpin technology can be used to silence the haplo-alleles of multiple genes simultaneously, whereas optimization of newer gene editing technologies such as base and prime editing will facilitate the routine generation of advanced edits across the genome. These technologies will likely gain further relevance as increased target specificity and decreased off-target effects are demonstrated. In this Review, we discuss recent work related to these technologies in potato improvement.
Collapse
Affiliation(s)
- María Del Mar Martínez-Prada
- Departamento De Biología Molecular, Facultad De Ciencias Biológicas Y Ambientales, Universidad De León, León, España
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, Minnesota, USA.,Department of Agronomy and Plant Genetics, University of Minnesota, Minnesota, USA.,Center for Plant Precision Genomics, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Juan J Gutiérrez-González
- Departamento De Biología Molecular, Facultad De Ciencias Biológicas Y Ambientales, Universidad De León, León, España
| |
Collapse
|