1
|
Liyanage NS, Awwad F, Gonçalves dos Santos KC, Jayawardena TU, Mérindol N, Desgagné-Penix I. Navigating Amaryllidaceae alkaloids: bridging gaps and charting biosynthetic territories. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:16-34. [PMID: 38652148 PMCID: PMC11659181 DOI: 10.1093/jxb/erae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Amaryllidaceae alkaloid (AA) biosynthesis has garnered significant attention in recent years, particularly with the commercialization of galanthamine as a treatment for the symptoms of Alzheimer's disease. A significant amount of research work over the last eight decades has focused on the understanding of AA biosynthesis, starting from early radiolabelling studies to recent multi-omics analysis with modern biotechnological advancements. Those studies enabled the identification of hundreds of metabolites, the characterization of biochemical pathways, and an understanding of the environmental stimuli and of the molecular regulation of these pharmaceutically and agriculturally important metabolites. Despite numerous studies, there remain significant gaps in understanding the biosynthesis of AAs in Amaryllidaceae plants. As such, further research is needed to fully elucidate the metabolic pathways and facilitate their production. This review aims to provide a comprehensive summary of the current state of knowledge on AA biosynthesis, from elicitation of expression of transcription factors in the cell nucleus to alkaloid transport in the apoplast, and to highlight the challenges that need to be overcome for further advancement.
Collapse
Affiliation(s)
- Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Fatima Awwad
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Mérindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
2
|
Cao L, Teo D, Wang Y, Ye Q, Liu C, Ding C, Li X, Chang M, Han Y, Li Z, Sun X, Huang Q, Zhang CY, Foo JL, Wong A, Yu A. Advancements in Microbial Cell Engineering for Benzylisoquinoline Alkaloid Production. ACS Synth Biol 2024; 13:3842-3856. [PMID: 39579377 DOI: 10.1021/acssynbio.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a class of natural compounds found in plants of the Ranunculaceae family, known for their diverse pharmacological activities. However, the extraction yields of BIAs from plants are limited, and the cost of chemical synthesis is prohibitively high. Recent advancements in systems metabolic engineering and genomics have made it feasible to use microbes as bioreactors for BIAs production. This review explores recent progress in enhancing the production and yields of BIAs in two microbial systems: Escherichia coli and Saccharomyces cerevisiae. It covers various BIAs, including (S)-reticuline, morphinane, protoberberine, and aporphine alkaloids. The review provides strategies and technologies for BIAs synthesis, analyzes current challenges in BIAs research, and offers recommendations for future research directions.
Collapse
Affiliation(s)
- Liyan Cao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Desmond Teo
- Food Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 828608, Singapore
| | - Yuyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingqing Ye
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chen Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Xiangyu Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Mingxin Chang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Xu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingeng Huang
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan 500112, PR China
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Centre for Engineering Biology (NCEB), 119077Singapore, Singapore
| | - Adison Wong
- Food Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 828608, Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
3
|
Ramos-Valdivia AC, Cerda-García-Rojas CM. Biosynthesis of oxindole alkaloids: Recent advances and challenges. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102648. [PMID: 39366288 DOI: 10.1016/j.pbi.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
The monoterpenoid oxindole alkaloids (MOA) are specialized plant metabolites of pharmacological importance, whose biosynthesis is linked to a unique oxidative process of monoterpenoid indole alkaloids (MIA). These transformations arise from complex biosynthetic pathways defined by species, organs, tissues, and growth stages. Initial studies of their biosynthesis using labeled precursors date back more than five decades ago. This review shows the advances in this topic within the years 2022-2023, which highlight the research by integrative omics strategies, validating previously stated hypotheses. The MOA biosynthesis pathway is beginning to be elucidated, especially in the early and intermediate stages starting from MIA. Also, progress in the characterization of enzymes that regulate the process has been made. The discovery of a key enzyme in the formation of the spirooxindole scaffold represents a starting point for an enormous amount of work that remains to be done to clarify and understand the formation mechanisms of MOA.
Collapse
Affiliation(s)
- Ana C Ramos-Valdivia
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico.
| | - Carlos M Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| |
Collapse
|
4
|
Kamileen MO, Nakamura Y, Luck K, Heinicke S, Hong B, Colinas M, Lichman BR, O'Connor SE. Streamlined screening platforms lead to the discovery of pachysiphine synthase from Tabernanthe iboga. THE NEW PHYTOLOGIST 2024; 244:1437-1449. [PMID: 39285533 DOI: 10.1111/nph.20133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
Plant-specialized metabolism is largely driven by the oxidative tailoring of key chemical scaffolds catalyzed by cytochrome P450 (CYP450s) enzymes. Monoterpene indole alkaloids (MIAs) tabersonine and pseudo-tabersonine, found in the medicinal plant Tabernanthe iboga (commonly known as iboga), are tailored with oxidations, and the enzymes involved remain unknown. Here, we developed a streamlined screening strategy to test the activity of T. iboga CYP450s in Nicotiana benthamiana. Using multigene constructs encoding the biosynthesis of tabersonine and pseudo-tabersonine scaffolds, we aimed to uncover the CYP450s responsible for oxidative transformations in these scaffolds. Our approach identified two T. iboga cytochrome P450 enzymes: pachysiphine synthase (PS) and 16-hydroxy-tabersonine synthase (T16H). These enzymes catalyze an epoxidation and site-specific hydroxylation of tabersonine to produce pachysiphine and 16-OH-tabersonine, respectively. This work provides new insights into the biosynthetic pathways of MIAs and underscores the utility of N. benthamiana and Catharanthus roseus as platforms for the functional characterization of plant enzymes.
Collapse
Affiliation(s)
- Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- NMR and Natural Product Biosynthesis Group, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Katrin Luck
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benke Hong
- Department of Chemistry, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, China
| | - Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benjamin R Lichman
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| |
Collapse
|
5
|
Liao Y, Wu M, Fan J, Wan J, An X, Li X, Wei Y, Ouyang Z. Mining and characterization of a novel cytochrome P450 MaCYP71BG22 involved in the C4-stereoselective hydroxylation of 1-deoxynojirimycin biosynthesis in mulberry leaves. Int J Biol Macromol 2024; 282:136941. [PMID: 39490858 DOI: 10.1016/j.ijbiomac.2024.136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
1-Deoxynojirimycin (DNJ), a primary active component in mulberry leaves, has garnered significant attention due to its unique structure and notable pharmacological properties. Our previous investigations have elucidated the biosynthetic pathways of DNJ from lysine to 2-methylpiperidine. However, the hydroxylation process and its underlying mechanisms remain elusive. In this study, five CYP450s hydroxylase genes significantly correlated (P < 0.05) with DNJ content in mulberry leaves at various time were screened through transcriptome profile. MaCYP71BG22 was first cloned and functionally characterized. This gene was shown to specifically catalyze the stereoselective hydroxylation of (R)-2-methylpiperidine at the C4-position to produce (2R, 4R)-2-methylpiperidin-4-ol. In hairy roots of mulberry, overexpression of MaCYP71BG22 increased DNJ accumulation, while virus-induced gene silencing (VIGS) decreased its production. Furthermore, structural-function analysis pinpointed a critical residue, G460, in MaCYP71BG22, mutation of this residue to G460E enhanced the enzyme's catalytic efficiency. This study represents the first report of a CYP450 hydroxylase involved in the biosynthesis of piperidine alkaloids in mulberry leaves, and demonstrates that MaCYP71BG22 selectively catalyzes the C4-stereoselective hydroxylation of (R)-2-methylpiperidine in DNJ biosynthesis. These findings further elucidate the DNJ biosynthetic pathway and provide new insights into the stereo- and regio-selective hydroxylation abilities of CYP450s hydroxylase in DNJ biosynthesis.
Collapse
Affiliation(s)
- Yangzhen Liao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jiahe Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingqiong Wan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xin An
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Mehta N, Meng Y, Zare R, Kamenetsky-Goldstein R, Sattely E. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes. Cell 2024; 187:5620-5637.e10. [PMID: 39276773 DOI: 10.1016/j.cell.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 01/23/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A notable example is the >150 Amaryllidaceae alkaloids (AmAs), including galantamine, an FDA-approved treatment for Alzheimer's disease. We show that while AmAs accumulate to high levels in many daffodil tissues, biosynthesis is localized to nascent, growing tissue at the leaf base. A similar trend is found in the production of steroidal alkaloids (e.g., cyclopamine) in corn lily. This model of active biosynthesis enabled the elucidation of a complete set of biosynthetic genes that can be used to produce AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodils. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes, where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as above-ground tissue develops.
Collapse
Affiliation(s)
- Niraj Mehta
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yifan Meng
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Richard Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; HHMI, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Song J, Kong H, Yang J, Jing J, Li S, Ma N, Yang R, Cao Y, Wang Y, Hu T, Yang P. Genome assembly and multi-omic analyses reveal the mechanisms underlying flower color formation in Torenia fournieri. THE PLANT GENOME 2024; 17:e20439. [PMID: 38485674 DOI: 10.1002/tpg2.20439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 07/02/2024]
Abstract
Torenia fournieri Lind. is an ornamental plant that is popular for its numerous flowers and variety of colors. However, its genomic evolutionary history and the genetic and metabolic bases of flower color formation remain poorly understood. Here, we report the first T. fournieri reference genome, which was resolved to the chromosome scale and was 164.4 Mb in size. Phylogenetic analyses clarified relationships with other plant species, and a comparative genomic analysis indicated that the shared ancestor of T. fournieri and Antirrhinum majus underwent a whole genome duplication event. Joint transcriptomic and metabolomic analyses identified many metabolites related to pelargonidin, peonidin, and naringenin production in rose (TfR)-colored flowers. Samples with blue (TfB) and deep blue (TfD) colors contained numerous derivatives of petunidin, cyanidin, quercetin, and malvidin; differences in the abundances of these metabolites and expression levels of the associated genes were hypothesized to be responsible for variety-specific differences in flower color. Furthermore, the genes encoding flavonoid 3-hydroxylase, anthocyanin synthase, and anthocyanin reductase were differentially expressed between flowers of different colors. Overall, we successfully identified key genes and metabolites involved in T. fournieri flower color formation. The data provided by the chromosome-scale genome assembly establish a basis for understanding the differentiation of this species and will facilitate future genetic studies and genomic-assisted breeding.
Collapse
Affiliation(s)
- Jiaxing Song
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Haiming Kong
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jing Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jiaxian Jing
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Siyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Nan Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Barreda L, Brosse C, Boutet S, Perreau F, Rajjou L, Lepiniec L, Corso M. Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes. Nat Prod Rep 2024; 41:834-859. [PMID: 38323463 DOI: 10.1039/d3np00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Covering: up to 2023Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.
Collapse
Affiliation(s)
- Léa Barreda
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Céline Brosse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Stéphanie Boutet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - François Perreau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Loïc Lepiniec
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Massimiliano Corso
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| |
Collapse
|
9
|
Yang E, Yao Y, Su H, Sun Z, Gao SS, Sureram S, Kittakoop P, Fan K, Pan Y, Xu X, Sun ZH, Ma G, Liu G. Two Cytochrome P450 Enzymes Form the Tricyclic Nested Skeleton of Meroterpenoids by Sequential Oxidative Reactions. J Am Chem Soc 2024. [PMID: 38602511 DOI: 10.1021/jacs.4c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,β-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,β-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.
Collapse
Affiliation(s)
- Erlan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Zhaocui Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
| | - Sanya Sureram
- Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Zhong-Hao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,Beijing 100193, P.R. China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
10
|
Hao C, Yu Y, Liu Y, Liu A, Chen S. The CYP80A and CYP80G Are Involved in the Biosynthesis of Benzylisoquinoline Alkaloids in the Sacred Lotus ( Nelumbo nucifera). Int J Mol Sci 2024; 25:702. [PMID: 38255776 PMCID: PMC10815925 DOI: 10.3390/ijms25020702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Bisbenzylisoquinoline and aporphine alkaloids are the two main pharmacological compounds in the ancient sacred lotus (Nelumbo nucifera). The biosynthesis of bisbenzylisoquinoline and aporphine alkaloids has attracted extensive attention because bisbenzylisoquinoline alkaloids have been reported as potential therapeutic agents for COVID-19. Our study showed that NnCYP80A can catalyze C-O coupling in both (R)-N-methylcoclaurine and (S)-N-methylcoclaurine to produce bisbenzylisoquinoline alkaloids with three different linkages. In addition, NnCYP80G catalyzed C-C coupling in aporphine alkaloids with extensive substrate selectivity, specifically using (R)-N-methylcoclaurine, (S)-N-methylcoclaurine, coclaurine and reticuline as substrates, but the synthesis of C-ring alkaloids without hydroxyl groups in the lotus remains to be elucidated. The key residues of NnCYP80G were also studied using the 3D structure of the protein predicted using Alphafold 2, and six key amino acids (G39, G69, A211, P288, R425 and C427) were identified. The R425A mutation significantly decreased the catalysis of (R)-N-methylcoclaurine and coclaurine inactivation, which might play important role in the biosynthesis of alkaloids with new configurations.
Collapse
Affiliation(s)
| | | | | | - An Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China; (C.H.); (Y.Y.); (Y.L.)
| | - Sha Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China; (C.H.); (Y.Y.); (Y.L.)
| |
Collapse
|
11
|
Watkins JL, Li Q, Yeaman S, Facchini PJ. Elucidation of the mescaline biosynthetic pathway in peyote (Lophophora williamsii). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:635-649. [PMID: 37675639 DOI: 10.1111/tpj.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Peyote (Lophophora williamsii) is an entheogenic and medicinal cactus native to the Chihuahuan desert. The psychoactive and hallucinogenic properties of peyote are principally attributed to the phenethylamine derivative mescaline. Despite the isolation of mescaline from peyote over 120 years ago, the biosynthetic pathway in the plant has remained undiscovered. Here, we use a transcriptomics and homology-guided gene discovery strategy to elucidate a near-complete biosynthetic pathway from l-tyrosine to mescaline. We identified a cytochrome P450 that catalyzes the 3-hydroxylation of l-tyrosine to l-DOPA, a tyrosine/DOPA decarboxylase yielding dopamine, and four substrate-specific and regiospecific substituted phenethylamine O-methyltransferases. Biochemical assays with recombinant enzymes or functional analyses performed by feeding putative precursors to engineered yeast (Saccharomyces cerevisiae) strains expressing candidate peyote biosynthetic genes were used to determine substrate specificity, which served as the basis for pathway elucidation. Additionally, an N-methyltransferase displaying broad substrate specificity and leading to the production of N-methylated phenethylamine derivatives was identified, which could also function as an early step in the biosynthesis of tetrahydroisoquinoline alkaloids in peyote.
Collapse
Affiliation(s)
- Jacinta L Watkins
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Qiushi Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
12
|
Zamar DL, Papon N, Courdavault V. The Evolutionary Pattern of Cocaine and Hyoscyamine Biosynthesis Provides Strategies To Produce Tropane Alkaloids. Chembiochem 2023; 24:e202300234. [PMID: 37249120 DOI: 10.1002/cbic.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Cocaine and hyoscyamine are two tropane alkaloids (TA) from Erythroxylaceae and Solanaceae, respectively. These famous compounds possess anticholinergic properties that can be used to treat neuromuscular disorders. While the hyoscyamine biosynthetic pathway has been fully elucidated allowing its de novo synthesis in yeast, the cocaine pathway remained only partially elucidated. Recently, the Huang research group has completed the cocaine biosynthetic route by characterizing its two missing enzymes. This allowed the whole pathway to be transferring into Nicotiana benthamiana to achieve cocaine production. Here, besides highlighting the impact of this discovery, we discuss how TA biosynthesis evolved via the recruitment of two distinct and convergent pathways in Erythroxylaceae and Solanaceae. Finally, while enriching our knowledge on TA biosynthesis, this diversification of the molecular actors involved in cocaine and hyoscyamine biosynthesis opens perspectives in metabolic engineering by exploring enzyme biochemical plasticity that can ease and shorten TA pathway reconstitution in heterologous organisms.
Collapse
Affiliation(s)
- Duchesse-Lacours Zamar
- Université de Tours, Faculté de Pharmacie, EA2106 Biomolécules et Biotechnologies Végétales, 31, Avenue Monge, 37200, Tours, France
| | - Nicolas Papon
- Université d'Angers, Fungal Respiratory Infections Research Unit, University Hospital of Angers, 4 rue de Larrey, 49933, Angers Cedex 09, France
| | - Vincent Courdavault
- Université de Tours, Faculté de Pharmacie, EA2106 Biomolécules et Biotechnologies Végétales, 31, Avenue Monge, 37200, Tours, France
| |
Collapse
|
13
|
Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R. Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1248319. [PMID: 37771494 PMCID: PMC10522919 DOI: 10.3389/fpls.2023.1248319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Medicinal plants remain a valuable source for natural drug bioprospecting owing to their multi-target spectrum. However, their use as raw materials for novel drug synthesis has been greatly limited by unsustainable harvesting leading to decimation of their wild populations coupled with inherent low concentrations of constituent secondary metabolites per unit mass. Thus, adding value to the medicinal plants research dynamics calls for adequate attention. In light of this, medicinal plants harbour endophytes which are believed to be contributing towards the host plant survival and bioactive metabolites through series of physiological interference. Stimulating secondary metabolite production in medicinal plants by using endophytes as plant growth regulators has been demonstrated to be one of the most effective methods for increasing metabolite syntheses. Use of endophytes as plant growth promotors could help to ensure continuous supply of medicinal plants, and mitigate issues with fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants. It has been hypothesized that when medicinal plants are exposed to harsh conditions, associated endophytes are the primary signalling channels that induce defensive reactions. Endophytes go through different biochemical processes which lead to activation of defence mechanisms in the host plants. Thus, through signal transduction pathways, endophytic microorganisms influence genes involved in the generation of secondary metabolites by plant cells. Additionally, elucidating the role of gene clusters in production of secondary metabolites could expose factors associated with low secondary metabolites by medicinal plants. Promising endophyte strains can be manipulated for enhanced production of metabolites, hence, better probability of novel bioactive metabolites through strain improvement, mutagenesis, co-cultivation, and media adjustment.
Collapse
Affiliation(s)
- Sinawo Tsipinana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Samah Husseiny
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kazeem A. Alayande
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mai Raslan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Stephen Amoo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Agricultural Research Council – Vegetables, Industrial and Medicinal Plants, Roodeplaat, Pretoria, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Pu X, Wang M, Chen M, Lin X, Lei M, Zhang J, Yang S, Wang H, Liao J, Zhang L, Huang Q. Proteomics-Guided Mining and Characterization of Epoxidase Involved in Camptothecin Biosynthesis from Camptotheca acuminata. ACS Chem Biol 2023; 18:1772-1785. [PMID: 37523250 DOI: 10.1021/acschembio.3c00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The detailed metabolic map for camptothecin (CPT) biosynthesis in Camptotheca acuminata has been proposed according to our combined omics results. However, the CYP450-mediated epoxidation step in CPT biosynthesis remains unexplored. A proteomics-guided approach was used to identify and annotate the proteins enriched during the vigorous CPT metabolism period in mature C. acuminata and seedlings. Comparative analyses revealed that the CPT and flavonoid biosyntheses were vigorous in stems and all of the samples except the leaves, respectively. The CYP71BE genes were screened based on their enrichment patterns at the transcriptomic-proteomic level and biochemically characterized in Saccharomyces cerevisiae WAT11. Four CYP71BE proteins exhibited in vitro isoliquiritigenin epoxidase activity. Additionally, CYP71BE206 showed epoxidase activity toward strictosamide, the critical precursor for CPT biosynthesis, both in vitro and in Nicotiana benthamiana. In planta functional verification suggested that CYP71BE206 is involved in CPT biosynthesis. Their catalytic conditions were optimized, and the enzymatic parameters were determined. This study provides valuable insight into the CYP71BE-mediated epoxidation step for CPT biosynthesis and offers evidence to verify that the newly characterized epoxidase (CYP71BE206) is simultaneously responsible for the biosynthesis of CPT and the flavonoid in this plant. An evolution event probably happened on ancestral CYP71BE, resulting in the neofunctionalization of CYP71BE206.
Collapse
Affiliation(s)
- Xiang Pu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Minji Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Menghan Chen
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyu Lin
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ming Lei
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jiahua Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shengnan Yang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hanguang Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qianming Huang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
15
|
Mehta N, Meng Y, Zare R, Kamenetsky-Goldstein R, Sattely E. A developmental gradient reveals biosynthetic pathways to eukaryotic toxins in monocot geophytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540595. [PMID: 37214939 PMCID: PMC10197729 DOI: 10.1101/2023.05.12.540595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A lead example is the >150 Amaryllidaceae alkaloids (AmAs) including galantamine, an FDA-approved treatment for Alzheimer's disease. We show that while AmAs accumulate to high levels in many tissues in daffodils, biosynthesis is localized to nascent, growing tissue at the base of leaves. A similar trend is found for the production of steroidal alkaloids (e.g. cyclopamine) in corn lily. This model of active biosynthesis enabled elucidation of a complete set of biosynthetic genes for the production of AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodil. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as aboveground tissue develops.
Collapse
Affiliation(s)
- Niraj Mehta
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yifan Meng
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Richard Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | | | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
16
|
Park NI, Roy NS, Park Y, Choi BS, Jeon MJ, Oh JY, Kim BY, Kim YD, Kim YI, Um T, Kwak HJ, Kim NS, Kim S, Choi IY. Isolation and Characterization of the Genes Involved in the Berberine Synthesis Pathway in Asian Blue Cohosh, Caulophyllum robustum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1483. [PMID: 37050109 PMCID: PMC10096549 DOI: 10.3390/plants12071483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Caulophyllum robustum, commonly named Asian blue cohosh, is a perennial herb in the family Berberidaceae. It has traditionally been used for folk medicine in China. We isolated berberine from the leaves, stem, roots, and fruits of C. robustum, and this is the first report on berberine in this species. Transcriptome analysis was conducted for the characterization of berberine biosynthesis genes in C. robustum, in which, all the genes for berberine biosynthesis were identified. From 40,094 transcripts, using gene ontology (GO) analysis, 26,750 transcripts were assigned their functions in the categories of biological process, molecular function, and cellular component. In the analysis of genes expressed in different tissues, the numbers of genes in the categories of intrinsic component of membrane and transferase activity were up-regulated in leaves versus stem. The berberine synthesis genes in C. robustum were characterized by phylogenetic analysis with corresponding genes from other berberine-producing species. The co-existence of genes from different plant families in the deepest branch subclade implies that the differentiation of berberine synthesis genes occurred early in the evolution of berberine-producing plants. Furthermore, the copy number increment of the berberine synthesis genes was detected at the species level.
Collapse
Affiliation(s)
- Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Neha Samir Roy
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yeri Park
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Beom-Soon Choi
- Next Bio Information Technology, Bodeumkwan 504, Kangwon National University, Gangwondaehakgil-1, Chuncheon 24341, Republic of Korea
| | - Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Ji Yeon Oh
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Bo-Yun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Young-Dong Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yong-In Kim
- On Biological Resource Research Institute, Chuncheon 24239, Republic of Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hwan Jong Kwak
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nam-Soo Kim
- Next Bio Information Technology, Bodeumkwan 504, Kangwon National University, Gangwondaehakgil-1, Chuncheon 24341, Republic of Korea
| | - Soonok Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ik-Young Choi
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
17
|
Tian XC, Guo JF, Yan XM, Shi TL, Nie S, Zhao SW, Bao YT, Li ZC, Kong L, Su GJ, Mao JF, Lin J. Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1122549. [PMID: 36968354 PMCID: PMC10030967 DOI: 10.3389/fpls.2023.1122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wood decay resistance (WDR) is marking the value of wood utilization. Many trees of the Lauraceae have exceptional WDR, as evidenced by their use in ancient royal palace buildings in China. However, the genetics of WDR remain elusive. Here, through comparative genomics, we revealed the unique characteristics related to the high WDR in Lauraceae trees. We present a 1.27-Gb chromosome-level assembly for Lindera megaphylla (Lauraceae). Comparative genomics integrating major groups of angiosperm revealed Lauraceae species have extensively shared gene microsynteny associated with the biosynthesis of specialized metabolites such as isoquinoline alkaloids, flavonoid, lignins and terpenoid, which play significant roles in WDR. In Lauraceae genomes, tandem and proximal duplications (TD/PD) significantly expanded the coding space of key enzymes of biosynthesis pathways related to WDR, which may enhance the decay resistance of wood by increasing the accumulation of these compounds. Among Lauraceae species, genes of WDR-related biosynthesis pathways showed remarkable expansion by TD/PD and conveyed unique and conserved motifs in their promoter and protein sequences, suggesting conserved gene collinearity, gene expansion and gene regulation supporting the high WDR. Our study thus reveals genomic profiles related to biochemical transitions among major plant groups and the genomic basis of WDR in the Lauraceae.
Collapse
Affiliation(s)
- Xue-Chan Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Mei Yan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shuai Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Tao Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Chao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guang-Ju Su
- National Tree Breeding Station for Nanmu in Zhuxi, Forest Farm of Zhuxi County, Hubei, China
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Song X, Mei P, Dou T, Liu Q, Li L. Multi-Omics Analysis Reveals the Resistance Mechanism and the Pathogens Causing Root Rot of Coptis chinensis. Microbiol Spectr 2023; 11:e0480322. [PMID: 36809123 PMCID: PMC10101010 DOI: 10.1128/spectrum.04803-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Coptis chinensis is a traditional Chinese medicinal herb used for more than 2,000 years. Root rot in C. chinensis can cause brown discoloration (necrosis) in the fibrous roots and rhizomes, leading to plants wilting and dying. However, little information exists about the resistance mechanism and the potential pathogens of the root rot of C. chinensis plants. As a result, in order to investigate the relationship between the underlying molecular processes and the pathogenesis of root rot, transcriptome and microbiome analyses were performed on healthy and diseased C. chinensis rhizomes. This study found that root rot can lead to the significant reduction of medicinal components of Coptis, including thaliotrine, columbamine, epiberberin, coptisine, palmatine chloride, and berberine, affecting its efficacy quality. In the present study, Diaporthe eres, Fusarium avenaceum, and Fusarium solani were identified as the main pathogens causing root rot in C. chinensis. At the same time, the genes in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction, and alkaloid synthesis pathways were involved in the regulation of root rot resistance and medicinal component synthesis. In addition, harmful pathogens (D. eres, F. avenaceum and F. solani) also induce the expression of related genes in C. chinensis root tissues to reduce active medicinal ingredients. These results provide insights into the root rot tolerance study and pave the way for process disease resistance breeding and quality production of C. chinensis. IMPORTANCE Root rot disease significantly reduces the medicinal quality of Coptis chinensis. In the present study, results found that the C. chinensis fibrous and taproot have different tactics in response to rot pathogen infection. Diaporthe eres, Fusarium avenaceum, and Fusarium solani were isolated and identified to cause different degrees of C. chinensis root rot. These results are helpful for researchers to further explore the mechanism of resistance to rhizoma Coptis root rot.
Collapse
Affiliation(s)
- Xuhong Song
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Pengying Mei
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Tao Dou
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Qundong Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, People’s Republic of China
| |
Collapse
|
19
|
Liu X, Jiao X, Cheng Y, Ma Y, Bu J, Jin B, Li Q, Hu Z, Tang J, Lai C, Wang J, Cui G, Chen Y, Guo J, Huang L. Structure-function analysis of CYP719As involved in methylenedioxy bridge-formation in the biosynthesis of benzylisoquinoline alkaloids and its de novo production. Microb Cell Fact 2023; 22:23. [PMID: 36737755 PMCID: PMC9898898 DOI: 10.1186/s12934-023-02024-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a type of secondary metabolite with clinical application value. (S)-stylopine is a special BIA which contains methylenedioxy bridge structures. CYP719As could catalyze the methylenedioxy bridge-formation on the A or D rings of protoberberine alkaloids, while displaying significant substrate regiospecificity. To explore the substrate preference of CYP719As, we cloned and identified five CyCYP719A candidates from Corydalis yanhusuo. Two CyCYP719As (CyCYP719A39 and CyCYP719A42) with high catalytic efficiency for the methylenedioxy bridge-formation on the D or A rings were characterized, respectively. The residues (Leu 294 for CyCYP719A42 and Asp 289 for CyCYP719A39) were identified as the key to controlling the regioselectivity of CYP719As affecting the methylenedioxy bridge-formation on the A or D rings by homology modeling and mutation analysis. Furthermore, for de novo production of BIAs, CyCYP719A39, CyCYP719A42, and their mutants were introduced into the (S)-scoulerine-producing yeast to produce 32 mg/L (S)-stylopine. These results lay a foundation for understanding the structure-function relationship of CYP719A-mediated methylenedioxy bridge-formation and provide yeast strains for the BIAs production by synthetic biology.
Collapse
Affiliation(s)
- Xiuyu Liu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China ,grid.256922.80000 0000 9139 560XSchool of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046 China
| | - Xiang Jiao
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Yatian Cheng
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Ying Ma
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Junling Bu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Baolong Jin
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Qishuang Li
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Zhimin Hu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jinfu Tang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Changjiangsheng Lai
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Guanghong Cui
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Yun Chen
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Juan Guo
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| |
Collapse
|
20
|
Nguyen TAM, Grzech D, Chung K, Xia Z, Nguyen TD, Dang TTT. Discovery of a cytochrome P450 enzyme catalyzing the formation of spirooxindole alkaloid scaffold. FRONTIERS IN PLANT SCIENCE 2023; 14:1125158. [PMID: 36818833 PMCID: PMC9936145 DOI: 10.3389/fpls.2023.1125158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Spirooxindole alkaloids feature a unique scaffold of an oxindole ring sharing an atom with a heterocyclic moiety. These compounds display an extensive range of biological activities such as anticancer, antibiotics, and anti-hypertension. Despite their structural and functional significance, the establishment and rationale of the spirooxindole scaffold biosynthesis are yet to be elucidated. Herein, we report the discovery and characterization of a cytochrome P450 enzyme from kratom (Mitragyna speciosa) responsible for the formation of the spirooxindole alkaloids 3-epi-corynoxeine (3R, 7R) and isocorynoxeine (3S, 7S) from the corynanthe-type (3R)-secoyohimbane precursors. Expression of the newly discovered enzyme in Saccharomyces cerevisiae yeast allows for the efficient in vivo and in vitro production of spirooxindoles. This discovery highlights the versatility of plant cytochrome P450 enzymes in building unusual alkaloid scaffolds and opens a gateway to access the prestigious spirooxindole pharmacophore and its derivatives.
Collapse
Affiliation(s)
- Tuan-Anh M. Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Khoa Chung
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Zhicheng Xia
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Thu-Thuy T. Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
21
|
Malhotra K, Franke J. Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. Beilstein J Org Chem 2022; 18:1289-1310. [PMID: 36225725 PMCID: PMC9520826 DOI: 10.3762/bjoc.18.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
The cytochrome P450 monooxygenase (CYP) superfamily comprises hemethiolate enzymes that perform remarkable regio- and stereospecific oxidative chemistry. As such, CYPs are key agents for the structural and functional tailoring of triterpenoids, one of the largest classes of plant natural products with widespread applications in pharmaceuticals, food, cosmetics, and agricultural industries. In this review, we provide a full overview of 149 functionally characterised CYPs involved in the biosynthesis of triterpenoids and steroids in primary as well as in specialised metabolism. We describe the phylogenetic distribution of triterpenoid- and steroid-modifying CYPs across the plant CYPome, present a structure-based summary of their reactions, and highlight recent examples of particular interest to the field. Our review therefore provides a comprehensive up-to-date picture of CYPs involved in the biosynthesis of triterpenoids and steroids in plants as a starting point for future research.
Collapse
Affiliation(s)
- Karan Malhotra
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
22
|
Hong B, Grzech D, Caputi L, Sonawane P, López CER, Kamileen MO, Hernández Lozada NJ, Grabe V, O'Connor SE. Biosynthesis of strychnine. Nature 2022; 607:617-622. [PMID: 35794473 PMCID: PMC9300463 DOI: 10.1038/s41586-022-04950-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Strychnine is a natural product that, through isolation, structural elucidation and synthetic efforts, shaped the field of organic chemistry. Currently, strychnine is used as a pesticide to control rodents1 because of its potent neurotoxicity2,3. The polycyclic architecture of strychnine has inspired chemists to develop new synthetic transformations and strategies to access this molecular scaffold4, yet it is still unknown how plants create this complex structure. Here we report the biosynthetic pathway of strychnine, along with the related molecules brucine and diaboline. Moreover, we successfully recapitulate strychnine, brucine and diaboline biosynthesis in Nicotiana benthamiana from an upstream intermediate, thus demonstrating that this complex, pharmacologically active class of compounds can now be harnessed through metabolic engineering approaches.
Collapse
Affiliation(s)
- Benke Hong
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Prashant Sonawane
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos E Rodríguez López
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Mohamed Omar Kamileen
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Néstor J Hernández Lozada
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max-Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
23
|
Kurya B, Mia MS, Liu H, Yan G. Genomic Regions, Molecular Markers, and Flanking Genes of Metribuzin Tolerance in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:842191. [PMID: 35665179 PMCID: PMC9161082 DOI: 10.3389/fpls.2022.842191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetics of metribuzin (a group C herbicide) tolerance in wheat is vital in developing tolerant cultivars to improve wheat productivity in dryland farming systems. This study investigated metribuzin tolerance in wheat by conducting a Genome-wide Association Studies (GWAS) with a panel of 150 wheat genotypes of diverse genetic backgrounds and genotyped them with the wheat 90 K SNP genotyping assay. The phenotyping was conducted in a temperature-controlled glasshouse at the University of Western Australia (UWA). Genotypes were sprayed with a metribuzin dose of 400 grams of active ingredient (g. a.i.) ha-1 as pre-emergent in a specialized spraying cabinet and transferred to the glasshouse where the tolerance level of the genotypes was assessed by measuring the relative reduction in chlorophyll content of the leaves. The decrease in chlorophyll content of the treated plants compared to the control was regarded as the phytotoxic effects of metribuzin. GWAS analysis following a mixed linear model revealed 19 genomic regions with significant marker-trait associations (MTAs), including ten on chromosome 6A, three on chromosome 2B, and one on chromosomes 3A, 5B, 6B 6D, 7A, and 7B, respectively. Sequences of the significant markers were blasted against the wheat genome, IWGSC RefSeq V1.0, and candidate genes having annotations related to herbicide tolerance in wheat, especially in pathways reported to be involved in metribuzin tolerance, such as cytochrome P450 pathways and ATP Binding Cassette (ABC) superfamilies, were identified in these genomic regions. These included TraesCS6A01G028800, TraesCS6A02G353700, TraesCS6A01G326200, TraesCS7A02G331000, and TraesCS2B01G465200. These genomic regions were validated on 30 top tolerant and 30 most susceptible genotypes using the five closest SSR makers to the flanked SNPs. Sufficient polymorphism was detected on two markers (wms193 and barc1036) that were found to differentiate between the susceptible and tolerant alleles and a t-test analysis of the phenotypic data shows a significant (value of p < 0.001) difference suggesting that these markers can be used for marker-assisted selection (MAS) in metribuzin studies and wheat breeding programs.
Collapse
Affiliation(s)
- Benjamin Kurya
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Md Sultan Mia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Department of Primary Industries and Regional Development (DPIRD), South Perth, WA, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
24
|
Pu X, Gao HC, Wang MJ, Zhang JH, Shan JH, Chen MH, Zhang L, Wang HG, Wen AX, Luo YG, Huang QM. Integrative Analysis of Elicitor-Induced Camptothecin Biosynthesis in Camptotheca acuminata Plantlets Through a Combined Omics Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:851077. [PMID: 35401649 PMCID: PMC8987726 DOI: 10.3389/fpls.2022.851077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/03/2022] [Indexed: 05/31/2023]
Abstract
Treatments with abiotic elicitors can efficiently induce the accumulation of specialized metabolites in plants. We used a combined omics approach to analyze the elicitation effects of MeJa, AgNO3, and PEG on camptothecin (CPT) biosynthesis in Camptotheca acuminata plantlets. Untargeted analyses revealed that treatments with MeJa, AgNO3, and PEG significantly inhibited the photosynthetic pathway and promoted carbon metabolism and secondary metabolic pathways. The CPT levels increased by 78.6, 73.3, and 50.0% in the MeJa, AgNO3, and PEG treatment groups, respectively. Using C. acuminata plantlets after elicitation treatment, we mined and characterized 15 new alkaloids, 25 known CPT analogs and precursors, 9 iridoid biosynthetic precursors, and 15 tryptamine biosynthetic precursors based on their MS/MS fragmentation spectra. Using 32 characterized genes involved in CPT biosynthesis as bait, we mined 12 prioritized CYP450 genes from the 416 CYP450 candidates that had been identified based on co-expression analysis, conserved domain analysis, and their elicitation-associated upregulation patterns. This study provides a comprehensive perspective on CPT biosynthesis in C. acuminata plantlets after abiotic elicitation. The findings enable us to elucidate the previously unexplored CYP450-mediated oxidation steps for CPT biosynthesis.
Collapse
Affiliation(s)
- Xiang Pu
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Hu-Chuan Gao
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Min-Ji Wang
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Jia-Hua Zhang
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Jia-Heng Shan
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Meng-Han Chen
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - Han-Guang Wang
- College of Science, Sichuan Agricultural University, Ya’an, China
| | - An-Xiang Wen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Ying-Gang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qian-Ming Huang
- College of Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
25
|
Nguyen TAM, McConnachie M, Nguyen TD, Dang TTT. Discovery and Characterization of Oxidative Enzymes Involved in Monoterpenoid Indole Alkaloid Biosynthesis. Methods Mol Biol 2022; 2505:141-164. [PMID: 35732943 DOI: 10.1007/978-1-0716-2349-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monoterpene indole alkaloid (MIA) constitutes a structurally diverse plant natural product group with remarkable pharmacological activities. Many MIAs have been routinely used as potent drugs for several diseases, including leukemia (vinblastine), lung cancer (camptothecin), and malaria (quinine). Nevertheless, MIAs are biosynthesized at extremely low abundance in plants and, in many cases, require additional chemical functionalizations before their therapeutic uses. As oxygenations and oxidative rearrangements are critical throughout MIAs' structural scaffolding and modifications, the discovery and engineering of oxidative enzymes play essential roles in understanding and boosting the supplies of MIAs. Recent advances in omics technologies and synthetic biology have provided unprecedented amount of biochemical data and tools, paving a wide pathway for discovering, characterizing, and engineering enzymes involved in MIA biosynthesis. Here, we discuss the latest progress in understanding the roles of oxidative enzymes in MIA metabolism and describe a bioinformatic and biochemical pipeline to identify, characterize, and make use of these plant biocatalysts.
Collapse
Affiliation(s)
- Tuan-Anh Minh Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Matthew McConnachie
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
26
|
Discovering and harnessing oxidative enzymes for chemoenzymatic synthesis and diversification of anticancer camptothecin analogues. Commun Chem 2021; 4:177. [PMID: 36697859 PMCID: PMC9814082 DOI: 10.1038/s42004-021-00602-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/28/2023] Open
Abstract
Semi-synthetic derivatives of camptothecin, a quinoline alkaloid found in the Camptotheca acuminata tree, are potent anticancer agents. Here we discovered two C. acuminata cytochrome P450 monooxygenases that catalyze regio-specific 10- and 11-oxidations of camptothecin, and demonstrated combinatorial chemoenzymatic C-H functionalizations of the camptothecin scaffold using the new enzymes to produce a suite of anticancer drugs, including topotecan (Hycamtin®) and irinotecan (Camptosar®). This work sheds new light into camptothecin metabolism, and represents greener approaches for accessing clinically relevant camptothecin derivatives.
Collapse
|
27
|
Gracz-Bernaciak J, Mazur O, Nawrot R. Functional Studies of Plant Latex as a Rich Source of Bioactive Compounds: Focus on Proteins and Alkaloids. Int J Mol Sci 2021; 22:12427. [PMID: 34830309 PMCID: PMC8620047 DOI: 10.3390/ijms222212427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023] Open
Abstract
Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.
Collapse
Affiliation(s)
| | | | - Robert Nawrot
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (J.G.-B.); (O.M.)
| |
Collapse
|