1
|
Ghorbani M, Amirahmadi E. Biochar and soil contributions to crop lodging and yield performance - A meta-analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109053. [PMID: 39159533 DOI: 10.1016/j.plaphy.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Applying biochar has beneficial effects on regulating plant growth by providing water and nutrient availability for plants due to its physicochemical characteristics. Nevertheless, it is still unclear how soil and biochar interactions strengthen crop lodging resistance. The objective of the current study was to find out how soil physicochemical conditions and alterations in biochar affect lodging resistance and crop productivity in cereals. To do this, a meta-analysis was carried out using nine groups of effective variables including type of feedstock, pyrolysis temperature, application rate, soil pH, total nitrogen, available phosphorus, potassium, organic matter (OM), and soil texture. Results showed that straw-derived biochar caused the highest positive effect size in the dry weight of biomass (20.5%) and grain yield (19.9%). Also, the lowest lodging index was observed from straw (-8.3%) and wood-based (-5.6%) biochars. Besides, the high application rate of biochar results in the highest positive effect sizes of plant cellulose (8.1%) and lignin content (7.6%). Soils that contain >20 g kg-1 OM, resulted in the highest positive effect size in dry biomass (27.9%), grain yield (30.2%), and plant height (4.7%). Also, fine-textured soil plays an important role in increasing polymers in the anatomical structure of plants. Overall, the strong connection between biochar and soil processes, particularly the availability of OM, could strengthen plants' ability to tolerate lodging stress and contribute to high nutrient efficiency in terms of crop output and cell wall thickening.
Collapse
Affiliation(s)
- Mohammad Ghorbani
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05, Ceske Budejovice, Czech Republic.
| | - Elnaz Amirahmadi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
2
|
Feng X, Ma D, Lei T, Hu S, Yu X, Gao J. Subsoil tillage improved the maize stalk lodging resistance under high planting density. FRONTIERS IN PLANT SCIENCE 2024; 15:1396182. [PMID: 39086917 PMCID: PMC11288881 DOI: 10.3389/fpls.2024.1396182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024]
Abstract
Lodging reduces maize yield and quality. The improvement in maize lodging resistance has proven to be instrumental in maximizing the yield potential of maize varieties under high-density planting. Tillage practices accommodate larger groups by enhancing soil conditions. This study aimed to elucidate the impact of subsoil tillage in reducing the maize stalk lodging rate. The maize cultivars Xianyu 335 (XY335) and Zhongdan2 (ZD2) were selected for field experiments including two tillage methods, shallow rotary (RT) and subsoil (SS), and two densities, 75,000 plants ha-1 (D1) and 105,000 plants ha-1 (D2), were set up to investigate and analyze the changes of maize lodging rate and the related indexes of lodging resistance under SS and RT conditions. The findings revealed that under high density, as compared to rotary tillage, SS tillage decreased the plant and ear height by 9.01-9.20 cm and 3.50-4.90 cm, respectively. The stalk dry matter accumulation was enhanced by 8.98%-24.98%, while stalk diameter between two and seven internodes increased by 0.47- 4.15 mm. Stalk cellulose increased by 11.83% -12.38%, hemicellulose increased by 6.7%-15.97%, and lignin increased by 9.86%-15.9%. The rind puncture and crushing strength improved by 3.11%-20.06% and 11.90%-27.07%, respectively. The bending strength increased by 6.25%-27.96% and the lodging rate decreased by 1.20%-6.04%. Yield increased by 7.58%-8.17%. At SS tillage when density increased, the index changes in ZD2 were mostly less than those in XY335. The rind penetration strength, bending strength, crushing strength, stalk diameter, and dry matter accumulation all had a negative correlation with the lodging rate. It suggested that SS tillage was beneficial to lodging resistance and, in combination with stalk lodging-resistant varieties, can effectively alleviate the problem of stalk lodging after increased planting density.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofang Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Julin Gao
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
Meng J, Li W, Qi F, Yang T, Li N, Wan J, Li X, Jiang Y, Wang C, Huang M, Zhang Y, Chen Y, Teotia S, Tang G, Zhang Z, Tang J. Knockdown of microRNA390 Enhances Maize Brace Root Growth. Int J Mol Sci 2024; 25:6791. [PMID: 38928499 PMCID: PMC11203754 DOI: 10.3390/ijms25126791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Brace root architecture is a critical determinant of maize's stalk anchorage and nutrition uptake, influencing root lodging resistance, stress tolerance, and plant growth. To identify the key microRNAs (miRNAs) in control of maize brace root growth, we performed small RNA sequencing using brace root samples at emergence and growth stages. We focused on the genetic modulation of brace root development in maize through manipulation of miR390 and its downstream regulated auxin response factors (ARFs). In the present study, miR167, miR166, miR172, and miR390 were identified to be involved in maize brace root growth in inbred line B73. Utilizing short tandem target mimic (STTM) technology, we further developed maize lines with reduced miR390 expression and analyzed their root architecture compared to wild-type controls. Our findings show that STTM390 maize lines exhibit enhanced brace root length and increased whorl numbers. Gene expression analyses revealed that the suppression of miR390 leads to upregulation of its downstream regulated ARF genes, specifically ZmARF11 and ZmARF26, which may significantly alter root architecture. Additionally, loss-of-function mutants for ZmARF11 and ZmARF26 were characterized to further confirm the role of these genes in brace root growth. These results demonstrate that miR390, ZmARF11, and ZmARF26 play crucial roles in regulating maize brace root growth; the involved complicated molecular mechanisms need to be further explored. This study provides a genetic basis for breeding maize varieties with improved lodging resistance and adaptability to diverse agricultural environments.
Collapse
Affiliation(s)
- Juan Meng
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Weiya Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Feiyan Qi
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Tianxiao Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA;
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Xiaoqi Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yajuan Jiang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Chenhui Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Meilian Huang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yuanyuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida 201306, India;
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA;
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
4
|
Wang Q, Guo Q, Shi Q, Yang H, Liu M, Niu Y, Quan S, Xu D, Chen X, Li L, Xu W, Kong F, Zhang H, Li P, Li B, Li G. Histological and single-nucleus transcriptome analyses reveal the specialized functions of ligular sclerenchyma cells and key regulators of leaf angle in maize. MOLECULAR PLANT 2024; 17:920-934. [PMID: 38720461 DOI: 10.1016/j.molp.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
Leaf angle (LA) is a crucial factor that affects planting density and yield in maize. However, the regulatory mechanisms underlying LA formation remain largely unknown. In this study, we performed a comparative histological analysis of the ligular region across various maize inbred lines and revealed that LA is significantly influenced by a two-step regulatory process involving initial cell elongation followed by subsequent lignification in the ligular adaxial sclerenchyma cells (SCs). Subsequently, we performed both bulk and single-nucleus RNA sequencing, generated a comprehensive transcriptomic atlas of the ligular region, and identified numerous genes enriched in the hypodermal cells that may influence their specialization into SCs. Furthermore, we functionally characterized two genes encoding atypical basic-helix-loop-helix (bHLH) transcription factors, bHLH30 and its homolog bHLH155, which are highly expressed in the elongated adaxial cells. Genetic analyses revealed that bHLH30 and bHLH155 positively regulate LA expansion, and molecular experiments demonstrated their ability to activate the transcription of genes involved in cell elongation and lignification of SCs. These findings highlight the specialized functions of ligular adaxial SCs in LA regulation by restricting further extension of ligular cells and enhancing mechanical strength. The transcriptomic atlas of the ligular region at single-nucleus resolution not only deepens our understanding of LA regulation but also enables identification of numerous potential targets for optimizing plant architecture in modern maize breeding.
Collapse
Affiliation(s)
- Qibin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Qiuyue Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Qingbiao Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hengjia Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Meiling Liu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yani Niu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Shuxuan Quan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Di Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaofeng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Laiyi Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Wenchang Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Fanying Kong
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Haisen Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Pinghua Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China.
| | - Gang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Zhang Y, Zhang X, Zhu L, Wang L, Zhang H, Zhang X, Xu S, Xue J. Identification of the Maize LEA Gene Family and Its Relationship with Kernel Dehydration. PLANTS (BASEL, SWITZERLAND) 2023; 12:3674. [PMID: 37960031 PMCID: PMC10647770 DOI: 10.3390/plants12213674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Maize, the most widely planted and highest yielding of the three major crops in the world, requires the development and breeding of new varieties to accommodate the shift towards mechanized harvesting. However, the moisture content of kernels during harvest poses a significant challenge to mechanized harvesting, leading to seed breakage and increased storage costs. Previous studies highlighted the importance of LEA (Late Embryogenesis Abundant) members in regulating kernel dehydration. In this study, we aimed to gain a better understanding of the relationship between the LEA family and grain dehydration in maize. Through expression pattern analysis of maize, we identified 52 LEA genes (ZmLEAs) distributed across 10 chromosomes, organized into seven subgroups based on phylogenetic analysis, gene structure, and conserved motifs. Evolutionary and selective pressure analysis revealed that the amplification of ZmLEA genes primarily resulted from whole-genome or fragment replication events, with strong purifying selection effects during evolution. Furthermore, the transcriptome data of kernels of two maize inbred lines with varying dehydration rates at different developmental stages showed that 14 ZmLEA genes were expressed differentially in the two inbreds. This suggested that the ZmLEA genes might participate in regulating the kernel dehydration rate (KDR) in maize. Overall, this study enhances our understanding of the ZmLEA family and provides a foundation for further research into its role in regulating genes associated with grain dehydration in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.Z.); (L.Z.); (L.W.); (H.Z.); (X.Z.)
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.Z.); (L.Z.); (L.W.); (H.Z.); (X.Z.)
| |
Collapse
|
6
|
Tang Q, Ren J, Du X, Niu S, Liu S, Wei D, Zhang Y, Bian D, Cui Y, Gao Z. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. FRONTIERS IN PLANT SCIENCE 2022; 13:1035254. [PMID: 36340386 PMCID: PMC9632278 DOI: 10.3389/fpls.2022.1035254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Enhancing maize lodging resistance with plant growth retardants (PGRs) is common in maize production. However, the underlying mechanisms of yield formation as affected by PGRs are still poorly understood. A field experiment contained PGR application (a mixture of ethephon and cycocel, EC) with normal (T1) and double (T2) doses and water control (CK) was conducted at four maize plant densities (4.5, 6.0, 7.5, and 9.0 plants m-2) in 2020 and 2021. In this two-year study, the grain yield and kernel number per ear (KNE) of EC treatments were reduced by 4.8-9.0% and 3.3-12.2%, respectively, compared with CK under densities of 4.5, 6.0, and 7.5 plants m-2 without lodging. However, under the density of 9.0 plants m-2, EC treatments had no pronounced effects on grain yield and yield components. Across all densities, EC significantly decreased the leaf area index (LAI), and the lowest LAI was recorded in T2. The concentrations of nonstructural carbohydrates (NSCs; starch and soluble sugar) in the stem were significantly decreased by 9.9-10.2% in T2 averaged all densities. The sucrose and starch concentrations in grains also declined in the EC treatments. The key enzymes (cell wall acid invertase, sucrose synthase, and adenosine diphosphate pyrophosphorylase) and grain polyamine concentrations showed a slight downward trend under EC treatments compared to CK. NSCs in stems and grains, kernel enzyme activities, and polyamines in grains presented significant positive correlations with KNE. Additionally, structural carbohydrate (SC; including cellulose, hemicellulose, and lignin) concentrations in stems were improved with enhanced lodging resistance by spraying EC. Significant negative relationships were observed between SC with kernel number m-2 (KNM) and yield, suggesting that improved SC in stems might affect the availability of NSCs for kernel set. Although the lowest kernel weight and KNE were obtained at 9.0 plant m-2, relatively high LAI still ensured high KNM and high yield. Collectively, EC treatment increased SC in stems, enhanced lodging resistance of maize and reduced NSC availability for kernels, ultimately presenting adverse effects on maize kernel number and yield under relative low density.
Collapse
Affiliation(s)
| | | | - Xiong Du
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| | | | | | | | | | | | - Yanhong Cui
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| | - Zhen Gao
- *Correspondence: Xiong Du, ; Yanhong Cui, ; Zhen Gao, ;
| |
Collapse
|
7
|
Nasar J, Wang GY, Ahmad S, Muhammad I, Zeeshan M, Gitari H, Adnan M, Fahad S, Khalid MHB, Zhou XB, Abdelsalam NR, Ahmed GA, Hasan ME. Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:988055. [PMID: 36119633 PMCID: PMC9478416 DOI: 10.3389/fpls.2022.988055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 06/01/2023]
Abstract
Photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE) are the two important factors affecting the photosynthesis and nutrient utilization of plant leaves. However, the effect of N fertilization combined with foliar application of Fe on the Pn and PNUE of the maize crops under different planting patterns (i.e., monocropping and intercropping) is elusive. Therefore, this experiment was conducted to determine the effect of N fertilization combined with foliar application of Fe on the photosynthetic characteristics, PNUE, and the associated enzymes of the maize crops under different planting patterns. The results of this study showed that under intercropping, maize treated with N fertilizer combined with foliar application of Fe had not only significantly (p < 0.05) improved physio-agronomic indices but also higher chlorophyll content, better photosynthetic characteristics, and related leaf traits. In addition, the same crops under such treatments had increased photosynthetic enzyme activity (i.e., rubisco activity) and nitrogen metabolism enzymes activities, such as nitrate reductase (NR activity), nitrite reductase (NiR activity), and glutamate synthase (GOGAT activity). Consequently, intercropping enhanced the PNUE and soluble sugar content of the maize crops, thus increasing its yield compared with monocropping. Thus, these findings suggest that intercropping under optimal N fertilizer application combined with Fe foliation can improve the chlorophyll content and photosynthetic characteristics of maize crops by regulating the associated enzymatic activities. Consequently, this results in enhanced PNUE, which eventually leads to better growth and higher yield in the intercropping system. Thus, practicing intercropping under optimal nutrient management (i.e., N and Fe) could be crucial for better growth and yield, and efficient nitrogen use efficiency of maize crops.
Collapse
Affiliation(s)
- Jamal Nasar
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Gui-Yang Wang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Muhammad Zeeshan
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Harun Gitari
- Department of Agricultural Sciences and Technology, Kenyatta University, Nairobi, Kenya
| | - Muhammad Adnan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | | | - Xun-Bo Zhou
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Gamal A. Ahmed
- Plant Pathology Department, Faculty of Agriculture, Moshtohor, Benha University, Benha, Egypt
| | - Mohamed E. Hasan
- Bioinformitics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
8
|
Wang X, Chen Y, Sun X, Li J, Zhang R, Jiao Y, Wang R, Song W, Zhao J. Characteristics and candidate genes associated with excellent stalk strength in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:957566. [PMID: 35968121 PMCID: PMC9367994 DOI: 10.3389/fpls.2022.957566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Lodging is a major problem in maize production, which seriously affects yield and hinders mechanized harvesting. Improving stalk strength is an effective way to improve lodging. The maize inbred line Jing2416 (J2416) was an elite germplasm in maize breeding which had strong stalk mechanical strength. To explore the characteristics its stalk strength, we conducted physiological, metabolic and transcriptomic analyses of J2416 and its parents Jing24 (J24) and 5237. At the kernel dent stage, the stalk rind penetrometer strength of J2416 was significantly higher than those of its two parents in multiple environments. The rind thickness, sclerenchyma tissue thickness, and cellulose, hemicellulose, and lignin contents of J2416 were significantly higher than those of its parents. Based on the significant differences between J2416 and 5237, we detected metabolites and gene transcripts showing differences in abundance between these two materials. A total of 212 (68.60%) metabolites and 2287 (43.34%) genes were up-regulated in J2416 compared with 5237. The phenylpropanoid and glycan synthesis/metabolism pathways were enriched in metabolites and genes that were up-regulated in J2416. Twenty-eight of the up-regulated genes in J2416 were involved in lignin, cellulose, and hemicellulose synthesis pathways. These analyses have revealed important physiological characteristics and candidate genes that will be useful for research and breeding of inbred lines with excellent stalk strength.
Collapse
|
9
|
Gheith EMS, El-Badry OZ, Lamlom SF, Ali HM, Siddiqui MH, Ghareeb RY, El-Sheikh MH, Jebril J, Abdelsalam NR, Kandil EE. Maize ( Zea mays L.) Productivity and Nitrogen Use Efficiency in Response to Nitrogen Application Levels and Time. FRONTIERS IN PLANT SCIENCE 2022; 13:941343. [PMID: 35845674 PMCID: PMC9284315 DOI: 10.3389/fpls.2022.941343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Productivity of maize (Zea mays L.) and nitrogen use efficiency (NUE) as affected by nitrogen application levels and timing were studied. The experimental design was a three-replication randomized complete block design (RCBD). The first factor was nitrogen levels (122, 240, 288 and 336 kg N/ha) and the second factor was nitrogen timing (50% of N at sowing and 50% of N before the first irrigation; T1, 50% of N at sowing and 50% of N before the second irrigation; T2 and 50% of N before the first irrigation and 50% of N before the second irrigation; T3). Results indicated that plant height, ear length, kernel weight, number of grains/rows, number of grains/ear and grain yields all increased significantly as nitrogen levels increased and the level of 336 kg N/ha significantly exhibiting the highest values in both seasons. In terms of nitrogen application time, maize yield parameters such as plant height, ear length, kernel weight/ear, number of grains/rows, number of grains/ear and grain yield were significantly affected by nitrogen timing, with the highest values obtained at T3 while the lowest values obtained at T1 in both seasons. The interaction had a significant impact on plant height and grain yield/ha, with the tallest plants, the highest yields and its components observed at 336 kg N/ha, with 50% of N applied during the first irrigation and 50% of N applied during the second. Furthermore, under the study conditions, NUE decreased dramatically as nitrogen levels increased and increased significantly as nitrogen application time changed.
Collapse
Affiliation(s)
- E. M. S. Gheith
- Agronomy Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ola Z. El-Badry
- Agronomy Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mohamed H. El-Sheikh
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Jebril Jebril
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Essam E. Kandil
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Chattha MU, Hassan MUU, Khan I, Nawaz M, Shah AN, Sattar A, Hashem M, Alamri S, Aslam MT, Alhaithloul HAS, Hassan MU, Qari SH. Hydrogen peroxide priming alleviates salinity induced toxic effect in maize by improving antioxidant defense system, ionic homeostasis, photosynthetic efficiency and hormonal crosstalk. Mol Biol Rep 2022; 49:5611-5624. [PMID: 35618939 DOI: 10.1007/s11033-022-07535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Salinity stress (SS) is a serious detrimental factor for crop growth and productivity and its intensity it is continuously increasing which is posing serious threat to global food security. Hydrogen peroxide (H2O2) priming has emerged as an excellent strategy to mitigate the adverse impacts of SS. However, the role of H2O2 priming in mitigating the salinity induced toxicity is not fully explored. METHODS AND RESULTS Therefore, in this context the present study was conducted in complete randomized design (CRD) in factorial combination to determine the impact of H2O2 priming on germination, growth, physiological and biochemical traits, osmo-regulating compounds, hormonal balance and ionic homeostasis. The experiment was based on different levels of SS; control, 6 and 12 dS m-1 SS and priming treatments, control and H2O2 priming (2%). Salinity stress significantly reduced the growth, leaf water status (- 15.55%), calcium (Ca2+), potassium (K+) and magnesium (Mg2+) accumulation and increased malondialdehyde (MDA: + 29.95%), H2O2 (+ 21.48%) contents, osmo-regulating compounds (proline, soluble sugars), indole acetic acid (IAA), anti-oxidant activities (ascorbate peroxidase: APX, catalase: CAT, peroxidase: POD and ascorbic acid: AsA) and accumulation of sodium (Na+) and chloride (Cl-.). H2O2 priming effectively reduced the effects of SS on germination and growth and strengthen the anti-oxidant activities through reduced MDA (- 12.36%) and H2O2 (- 21.13%) and increasing leaf water status (16.90%), soluble protein (+ 71.32%), free amino acids (+ 26.41%), proline (+ 49.18%), soluble sugars (+ 71.02%), IAA (+ 57.59%) and gibberlic acid (GA) (+ 21.11%). Above all, H2O2 priming reduced the massive entry of noxious ions (Na+ and Cl-) while increased the entry of Ca2+, K+ and Mg2+ thus improved the plant performance under SS. CONCLUSION In conclusion H2O2 priming was proved beneficial for improving maize growth under SS thorough enhanced anti-oxidant activities, photosynthetic pigments, leaf water status, accumulation of osmo-regulating compounds, hormonal balance and ionic homeostasis.
Collapse
Affiliation(s)
| | - Muhammad Uzair Ul Hassan
- Department of Seed Science and Technology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Abdul Sattar
- College of Agriculture, Bahauddin Zakariya University, Multan Bahadur Sub Campus, Layyah, Punjab, 31200, Pakistan
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | | | | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| |
Collapse
|
11
|
Omar M, Rabie HA, Mowafi SA, Othman HT, El-Moneim DA, Alharbi K, Mansour E, Ali MMA. Multivariate Analysis of Agronomic Traits in Newly Developed Maize Hybrids Grown under Different Agro-Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:1187. [PMID: 35567188 PMCID: PMC9102415 DOI: 10.3390/plants11091187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 05/12/2023]
Abstract
Developing high-yielding maize hybrids is essential under the fast-growing global population and abrupt global climate change. Planting density is one of the imperative components for enhancing maize productivity. This study assessed newly developed maize hybrids under three planting densities on two sowing dates. The evaluated hybrids were 40 maize genotypes comprised of 36 F1-developed hybrids and 4 commercial high-yielding check hybrids. The developed hybrids were generated from selected maize inbred lines according to their adaptive traits to high planting density, such as prolificacy, erect leaves, short plants, early silking, anthesis-silking interval, and small tassel size. The applied planting densities were high, intermediate, and low, with 95,000, 75,000, and 55,000 plants/ha, respectively, under timely and late sowing. The high planting density displayed the uppermost grain yield compared with the intermediate and low densities at both sowing dates. The developed hybrid G36 exhibited the highest agronomic performance under high planting density at timely and late sowing. Additionally, G38, G16, G37, G23, G5, G31, G18, G7, G2, G20, G29, and G17 displayed high agronomic traits at both sowing dates. Joint regression and AMMI analyses revealed significant genotype, agro-environment, and genotype × agro-environment interaction effects for grain yield. The AMMI biplot displayed that G39 was closest to the ideal stable hybrid, and the hybrids G36, G18, G38, G17, G2, and G37 were considered desirable stable hybrids. Moreover, the GGE biplot indicated that a high planting density at an optimal sowing date could be considered a representative environment for discriminating high-yielding maize hybrids. The designated promising hybrids are recommended for further inclusion in maize breeding due to their stability and high yields.
Collapse
Affiliation(s)
| | - Hassan A. Rabie
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| | - Saber A. Mowafi
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| | | | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| | - Mohamed M. A. Ali
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; (H.A.R.); (S.A.M.)
| |
Collapse
|
12
|
Abbas A, Shah AN, Shah AA, Nadeem MA, Alsaleh A, Javed T, Alotaibi SS, Abdelsalam NR. Genome-Wide Analysis of Invertase Gene Family, and Expression Profiling under Abiotic Stress Conditions in Potato. BIOLOGY 2022; 11:biology11040539. [PMID: 35453738 PMCID: PMC9032393 DOI: 10.3390/biology11040539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Invertase genes are among the important genes responsible for carbon metabolism in plants, significantly contributing to plant development and stress responses. In this study, for the first time, we performed genome-wide analysis for Invertase gene family in potato, identified and conducted expression profiling in different tissues by RNA seq analysis and validated it by Q-PCR. We also performed invertase family genes expression profiling under drought, salt and heat stress to elucidate their involvement in stress responses. Findings of this study will be helpful for future functional and genetic studies not only in potato but also in other plants. Abstract The potato is one of the most important and valuable crops in terms of consumption worldwide. However, abiotic stressors are the critical delimiters for the growth and productivity of potato. Invertase genes play key roles in carbon metabolism, plant development, and responses to stress stimuli. Therefore, a comprehensive genome-wide identification, characterization and expression analysis of invertase genes was performed in the potato. The current study identified 19 invertase genes, randomly distributed throughout the potato genome. To further elucidate their evolutionary, functional and structural relationship within family and with other plant species, we performed sequence and phylogenetic analysis, which segregated invertase genes into two main groups based on their sequence homology. A total of 11 genes are included in acidic invertases and 8 genes are in neutral or alkaline invertases, elucidating their functional divergence. Tissue specific expression analyses (RNA sequencing and qRT-PCR) of different plant tissues showed differential expression pattern. Invertase genes have higher expression in flower, leaf, root and shoot tissues, while under abiotic stress conditions, the expression of the invertase gene is significantly upregulated. Results of this study revealed that vacuolar and cell wall destined invertases are mainly the functional member genes of the invertase family. This study provides comprehensive data and knowledge about StINV genes in Solanum tuberosum for future genetic and epigenetic studies.
Collapse
Affiliation(s)
- Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China;
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
- Correspondence:
| | - Anis Ali Shah
- Department of Botany, University of Education Lahore, Lahore 54770, Pakistan;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Turkey;
| | - Ahmad Alsaleh
- Molecular Genetic Laboratory, Science and Technology Application and Research Center, Institute for Hemp Research, Yozgat Bozok University, Yozgat 66200, Turkey;
| | - Talha Javed
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| |
Collapse
|