1
|
Bates HJ, Pike J, Price RJ, Jenkins S, Connell J, Legg A, Armitage A, Harrison RJ, Clarkson JP. Comparative genomics and transcriptomics reveal differences in effector complement and expression between races of Fusarium oxysporum f.sp. lactucae. FRONTIERS IN PLANT SCIENCE 2024; 15:1415534. [PMID: 39450076 PMCID: PMC11499160 DOI: 10.3389/fpls.2024.1415534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
This study presents the first genome and transcriptome analyses for Fusarium oxysporum f. sp. lactucae (Fola) which causes Fusarium wilt disease of lettuce. Long-read genome sequencing of three race 1 (Fola1) and three race 4 (Fola4) isolates revealed key differences in putative effector complement between races and with other F. oxysporum ff. spp. following mimp-based bioinformatic analyses. Notably, homologues of Secreted in Xylem (SIX) genes, also present in many other F. oxysporum ff. spp, were identified in Fola, with both SIX9 and SIX14 (multiple copies with sequence variants) present in both Fola1 and Fola4. All Fola4 isolates also contained an additional single copy of SIX8. RNAseq of lettuce following infection with Fola1 and Fola4 isolates identified highly expressed effectors, some of which were homologues of those reported in other F. oxysporum ff. spp. including several in F. oxysporum f. sp. apii. Although SIX8, SIX9 and SIX14 were all highly expressed in Fola4, of the two SIX genes present in Fola1, only SIX9 was expressed as further analysis revealed that SIX14 gene copies were disrupted by insertion of a transposable element. Two variants of Fola4 were also identified based on different genome and effector-based analyses. This included two different SIX8 sequence variants which were divergently transcribed from a shared promoter with either PSE1 or PSL1 respectively. In addition, there was evidence of two independent instances of HCT in the different Fola4 variants. The involvement of helitrons in Fola genome rearrangement and gene expression is discussed.
Collapse
Affiliation(s)
| | - Jamie Pike
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | - Sascha Jenkins
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | - Andrew Legg
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| | | | | | - John P. Clarkson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, United Kingdom
| |
Collapse
|
2
|
Li G, Newman M, Yu H, Rashidzade M, Martínez-Soto D, Caicedo A, Allen KS, Ma LJ. Fungal effectors: past, present, and future. Curr Opin Microbiol 2024; 81:102526. [PMID: 39180827 PMCID: PMC11442010 DOI: 10.1016/j.mib.2024.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Fungal effector proteins function at the interfaces of diverse interactions between fungi and their plant and animal hosts, facilitating interactions that are pathogenic or mutualistic. Recent advancements in protein structure prediction have significantly accelerated the identification and functional predictions of these rapidly evolving effector proteins. This development enables scientists to generate testable hypotheses for functional validation using experimental approaches. Research frontiers in effector biology include understanding pathways through which effector proteins are secreted or translocated into host cells, their roles in manipulating host microbiomes, and their contribution to interacting with host immunity. Comparative effector repertoires among different fungal-host interactions can highlight unique adaptations, providing insights for the development of novel antifungal therapies and biocontrol strategies.
Collapse
Affiliation(s)
- Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Organismal and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Maryam Rashidzade
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Department of Biology, Centro de Investigación Científica y de Educación Superior de Ensenada, BC, Mexico
| | - Domingo Martínez-Soto
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, BC, Mexico
| | - Ana Caicedo
- Organismal and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Department of Biology, Centro de Investigación Científica y de Educación Superior de Ensenada, BC, Mexico
| | - Kelly S Allen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Organismal and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
3
|
Gajdošová Z, Caboň M, Kolaříková Z, Sudová R, Rydlová J, Turisová I, Turis P, Kučera J, Slovák M. Environmental heterogeneity structures root-associated fungal communities in Daphne arbuscula (Thymelaeaceae), a shrub adapted to extreme rocky habitats. Mol Ecol 2024; 33:e17441. [PMID: 38923648 DOI: 10.1111/mec.17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
Collapse
Affiliation(s)
- Zuzana Gajdošová
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Caboň
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Kolaříková
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Ingrid Turisová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Peter Turis
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | - Jaromír Kučera
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Plant Sciences and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
4
|
Sakane K, Ueno T, Shigyo M, Sasaki K, Ito SI. Pathogenicity Differentiation of Fusarium spp. Causing Fusarium Basal Rot and Wilt Disease in Allium spp. Pathogens 2024; 13:591. [PMID: 39057818 PMCID: PMC11279435 DOI: 10.3390/pathogens13070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Here, 12 Fusarium strains, previously described as F. oxysporum f. sp. cepae (Foc), were examined via multi-locus sequencing of calmodulin (cmdA), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1), to verify the taxonomic position of Foc in the newly established epitype of F. oxysporum. The strains in this study were divided into two clades: F. nirenbergiae and Fusarium sp. To further determine the host specifications of the strains, inoculation tests were performed on onion bulbs and Welsh onion seedlings as potential hosts. Four strains (AC145, AP117, Ru-13, and TA) isolated from diseased onions commonly possessed the secreted in xylem (SIX)-3, 5, 7, 9, 10, 12, and 14 genes and were pathogenic and highly aggressive to onion bulbs, whereas all strains except for one strain (AF97) caused significant inhibition of Welsh onion growth. The inoculation test also revealed that the strains harboring the SIX9 gene were highly aggressive to both onion and Welsh onion and the gene was expressed during infection of both onions and Welsh onions, suggesting the important role of the SIX9 gene in pathogenicity. This study provides insights into the evolutionary pathogenicity differentiation of Fusarium strains causing Fusarium basal rot and wilt diseases in Allium species.
Collapse
Affiliation(s)
- Kosei Sakane
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan;
| | - Takashi Ueno
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
| | - Masayoshi Shigyo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
| | - Kazunori Sasaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shin-ichi Ito
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (T.U.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
5
|
Sakane K, Akiyama M, Jogaiah S, Ito SI, Sasaki K. Pathogenicity chromosome of Fusarium oxysporum f. sp. cepae. Fungal Genet Biol 2024; 170:103860. [PMID: 38114016 DOI: 10.1016/j.fgb.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Fusarium oxysporum f. sp. cepae (Foc) is the causative agent of Fusarium basal rot disease in onions, which leads to catastrophic global crop production losses. Therefore, the interaction of Foc with its host has been actively investigated, and the pathogen-specific (PS) regions of the British strain Foc_FUS2 have been identified. However, it has not been experimentally determined whether the identified PS region plays a role in pathogenicity. To identify the pathogenicity chromosome in the Japanese strain Foc_TA, we initially screened effector candidates, defined as small proteins with a signal peptide that contain two or more cysteines, from genome sequence data. Twenty-one candidate effectors were identified, five of which were expressed during infection. Of the expressed effector candidates, four were located on the 4-Mb-sized chromosome in Foc_TA. To clarify the relationship between pathogenicity and the 4-Mb-sized chromosome in Foc_TA, nine putative 4-Mb-sized chromosome loss strains were generated by treatment with benomyl (a mitotic inhibitor drug). A pathogenicity test with putative 4-Mb-sized chromosome loss strains showed that these strains were impaired in their pathogenicity toward onions. Genome analysis of three putative 4-Mb-sized chromosome loss strains revealed that two strains lost a 4-Mb-sized chromosome in common, and another strain maintained a 0.9-Mb region of the 4-Mb-sized chromosome. Our findings show that the 4-Mb-sized chromosome is the pathogenicity chromosome in Foc_TA, and the 3.1-Mb region within the 4-Mb-sized chromosome is required for full pathogenicity toward onion.
Collapse
Affiliation(s)
- Kosei Sakane
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Mitsunori Akiyama
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Kasaragod 671316, India
| | - Shin-Ichi Ito
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunori Sasaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
6
|
Aalders TR, de Sain M, Gawehns F, Oudejans N, Jak YD, Dekker HL, Rep M, van den Burg HA, Takken FL. Specific members of the TOPLESS family are susceptibility genes for Fusarium wilt in tomato and Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:248-261. [PMID: 37822043 PMCID: PMC10754003 DOI: 10.1111/pbi.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Vascular wilt diseases caused by Fusarium oxysporum are a major threat to many agriculturally important crops. Genetic resistance is rare and inevitably overcome by the emergence of new races. To identify potentially durable and non-race-specific genetic resistance against Fusarium wilt diseases, we set out to identify effector targets in tomato that mediate susceptibility to the fungus. For this purpose, we used the SIX8 effector protein, an important and conserved virulence factor present in many pathogenic F. oxysporum isolates. Using protein pull-downs and yeast two-hybrid assays, SIX8 was found to interact specifically with two members of the tomato TOPLESS family: TPL1 and TPL2. Loss-of-function mutations in TPL1 strongly reduced disease susceptibility to Fusarium wilt and a tpl1;tpl2 double mutant exerted an even higher level of resistance. Similarly, Arabidopsis tpl;tpr1 mutants became significantly less diseased upon F. oxysporum inoculation as compared to wildtype plants. We conclude that TPLs encode susceptibility genes whose mutation can confer resistance to F. oxysporum.
Collapse
Affiliation(s)
- Thomas R. Aalders
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Mara de Sain
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Fleur Gawehns
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Nina Oudejans
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Yoran D. Jak
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Henk L. Dekker
- Mass Spectrometry of BiomoleculesSwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Martijn Rep
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Harrold A. van den Burg
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Frank L.W. Takken
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
7
|
Todorović I, Moënne-Loccoz Y, Raičević V, Jovičić-Petrović J, Muller D. Microbial diversity in soils suppressive to Fusarium diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1228749. [PMID: 38111879 PMCID: PMC10726057 DOI: 10.3389/fpls.2023.1228749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Fusarium species are cosmopolitan soil phytopathogens from the division Ascomycota, which produce mycotoxins and cause significant economic losses of crop plants. However, soils suppressive to Fusarium diseases are known to occur, and recent knowledge on microbial diversity in these soils has shed new lights on phytoprotection effects. In this review, we synthesize current knowledge on soils suppressive to Fusarium diseases and the role of their rhizosphere microbiota in phytoprotection. This is an important issue, as disease does not develop significantly in suppressive soils even though pathogenic Fusarium and susceptible host plant are present, and weather conditions are suitable for disease. Soils suppressive to Fusarium diseases are documented in different regions of the world. They contain biocontrol microorganisms, which act by inducing plants' resistance to the pathogen, competing with or inhibiting the pathogen, or parasitizing the pathogen. In particular, some of the Bacillus, Pseudomonas, Paenibacillus and Streptomyces species are involved in plant protection from Fusarium diseases. Besides specific bacterial populations involved in disease suppression, next-generation sequencing and ecological networks have largely contributed to the understanding of microbial communities in soils suppressive or not to Fusarium diseases, revealing different microbial community patterns and differences for a notable number of taxa, according to the Fusarium pathosystem, the host plant and the origin of the soil. Agricultural practices can significantly influence soil suppressiveness to Fusarium diseases by influencing soil microbiota ecology. Research on microbial modes of action and diversity in suppressive soils should help guide the development of effective farming practices for Fusarium disease management in sustainable agriculture.
Collapse
Affiliation(s)
- Irena Todorović
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Vera Raičević
- University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
| | | | - Daniel Muller
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
8
|
Wippel K. Plant and microbial features governing an endophytic lifestyle. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102483. [PMID: 37939457 DOI: 10.1016/j.pbi.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Beneficial microorganisms colonizing internal plant tissues, the endophytes, support their host through plant growth promotion, pathogen protection, and abiotic stress alleviation. Their efficient application in agriculture requires the understanding of the molecular mechanisms and environmental conditions that facilitate in planta accommodation. Accumulating evidence reveals that commensal microorganisms employ similar colonization strategies as their pathogenic counterparts. Fine-tuning of immune response, motility, and metabolic crosstalk accounts for their differentiation. For a holistic perspective, in planta experiments with microbial collections and comprehensive genome data exploration are crucial. This review describes the most recent findings on factors involved in endophytic colonization processes, focusing on bacteria and fungi, and discusses required methodological approaches to unravel their relevance within a community context.
Collapse
Affiliation(s)
- Kathrin Wippel
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Casado-del Castillo V, Benito EP, Díaz-Mínguez JM. The Role of the Fusarium oxysporum FTF2 Transcription Factor in Host Colonization and Virulence in Common Bean Plants (Phaseolus vulgaris L.). Pathogens 2023; 12:pathogens12030380. [PMID: 36986302 PMCID: PMC10054582 DOI: 10.3390/pathogens12030380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The FTF (Fusarium Transcription Factor) gene family is composed of two members (FTF1 and FTF2) with high-sequence homology that encode transcription factors involved in the modulation of virulence in the F. oxysporum species complex (FOSC). While FTF1 is a multicopy gene exclusive of highly virulent strains of FOSC and is located in the accessory genome, FTF2 is a single-copy gene, located in the core genome, and well-conserved in all filamentous ascomycete fungi, except yeast. The involvement of FTF1 in the colonization of the vascular system and regulation of the expression of SIX effectors has been stablished. To address the role of FTF2, we generated and characterized mutants defective in FTF2 in a F. oxysporum f. sp. phaseoli weakly virulent strain and analyzed them together with the equivalent mutants formerly obtained in a highly virulent strain. The results obtained highlight a role for FTF2 as a negative regulator of the production of macroconidia and demonstrate that it is required for full virulence and the positive regulation of SIX effectors. In addition, gene expression analyses provided compelling evidence that FTF2 is involved in the regulation of hydrophobins likely required for plant colonization.
Collapse
|
10
|
Dobbs JT, Kim MS, Reynolds GJ, Wilhelmi N, Dumroese RK, Klopfenstein NB, Fraedrich SW, Cram MM, Bronson J, Stewart JE. Fusarioid community diversity associated with conifer seedlings in forest nurseries across the contiguous USA. FRONTIERS IN PLANT SCIENCE 2023; 14:1104675. [PMID: 36818886 PMCID: PMC9930990 DOI: 10.3389/fpls.2023.1104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fusarioid fungi that cause damping-off and root diseases can result in significant losses to conifer crops produced in forest nurseries across the USA. These nurseries are vital to reforestation and forest restoration efforts. Understanding the diversity of Fusarioid fungi associated with damping-off and root diseases of conifer seedlings can provide an approach for targeted management techniques to limit seedling losses and pathogen spread to novel landscapes. METHODS This study identifies 26 Fusarium spp. (F. acuminatum, F. annulatum, F. avenaceum, F. brachygibbosum, F. clavus, F. commune, F. cugenangense, F. diversisporum, F. elaeagni, F. elaeidis, F. flocciferum, F. fredkrugeri, F. fujikuroi, F. grosmichelii, F. ipomoeae, F. lactis, F. languescens, F. luffae, F. odoratissimum, F. oxysporum, F. queenslandicum, F. redolens, F. torulosum, F. triseptatum, F. vanleeuwenii, & F. verticillioides), 15 potential species within Fusarium and Neocosmospora species complexes (two from F. fujikuroi species complex, nine from F. oxysporum species complex, three from F. tricinctum species complex, and one from Neocosmospora species complex), and four Neocosmospora spp. (N. falciforme, N. metavorans, N. pisi, & N. solani) and associated host information collected from conifer-producing nurseries across the contiguous USA. RESULTS Phylogenetic analyses identified Fusarioid fungi haplotypes that were associated with 1) host specificity, 2) localization to geographic regions, or 3) generalists found on multiple hosts across diverse geographic regions. DISCUSSION The haplotypes and novel species identified on conifer seedlings should be considered for further analysis to determine pathogenicity, pathogen spread, and assess management practices.
Collapse
Affiliation(s)
- J. T. Dobbs
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| | - M.-S. Kim
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - G. J. Reynolds
- USDA Forest Service, Forest Health Protection – Region 3, Albuquerque, NM, United States
| | - N. Wilhelmi
- USDA Forest Service, Forest Health Protection – Region 3, Flagstaff, AZ, United States
| | - R. K. Dumroese
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID, United States
| | - N. B. Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID, United States
| | - S. W. Fraedrich
- USDA Forest Service, Southern Research Station, Athens, GA, United States
| | - M. M. Cram
- USDA Forest Service, Forest Health Protection – Region 8, Athens, GA, United States
| | - J. Bronson
- USDA Forest Service, Forest Health Protection – Region 6, Medford, OR, United States
| | - J. E. Stewart
- Colorado State University, Department of Agricultural Biology, Fort Collins, CO, United States
| |
Collapse
|
11
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
12
|
Brenes Guallar MA, Fokkens L, Rep M, Berke L, van Dam P. Fusarium oxysporum effector clustering version 2: An updated pipeline to infer host range. FRONTIERS IN PLANT SCIENCE 2022; 13:1012688. [PMID: 36340405 PMCID: PMC9627151 DOI: 10.3389/fpls.2022.1012688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The fungus Fusarium oxysporum is infamous for its devastating effects on economically important crops worldwide. F. oxysporum isolates are grouped into formae speciales based on their ability to cause disease on different hosts. Assigning F. oxysporum strains to formae speciales using non-experimental procedures has proven to be challenging due to their genetic heterogeneity and polyphyletic nature. However, genetically diverse isolates of the same forma specialis encode similar repertoires of effectors, proteins that are secreted by the fungus and contribute to the establishment of compatibility with the host. Based on this observation, we previously designed the F. oxysporum Effector Clustering (FoEC) pipeline which is able to classify F. oxysporum strains by forma specialis based on hierarchical clustering of the presence of predicted putative effector sequences, solely using genome assemblies as input. Here we present the updated FoEC2 pipeline which is more user friendly, customizable and, due to multithreading, has improved scalability. It is designed as a Snakemake pipeline and incorporates a new interactive visualization app. We showcase FoEC2 by clustering 537 publicly available F. oxysporum genomes and further analysis of putative effector families as multiple sequence alignments. We confirm classification of isolates into formae speciales and are able to further identify their subtypes. The pipeline is available on github: https://github.com/pvdam3/FoEC2.
Collapse
Affiliation(s)
- Megan A. Brenes Guallar
- Bioinformatics and Software Development Team, Genetwister Technologies B.V., Wageningen, Netherlands
| | - Like Fokkens
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lidija Berke
- Bioinformatics and Software Development Team, Genetwister Technologies B.V., Wageningen, Netherlands
| | - Peter van Dam
- Bioinformatics and Software Development Team, Genetwister Technologies B.V., Wageningen, Netherlands
| |
Collapse
|
13
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
14
|
Redkar A, Sabale M, Schudoma C, Zechmann B, Gupta YK, López-Berges MS, Venturini G, Gimenez-Ibanez S, Turrà D, Solano R, Di Pietro A. Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. THE PLANT CELL 2022; 34:3214-3232. [PMID: 35689625 PMCID: PMC9421472 DOI: 10.1093/plcell/koac174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
Fungal interactions with plant roots, either beneficial or detrimental, have a crucial impact on agriculture and ecosystems. The cosmopolitan plant pathogen Fusarium oxysporum (Fo) provokes vascular wilts in more than a hundred different crops. Isolates of this fungus exhibit host-specific pathogenicity, which is conferred by lineage-specific Secreted In Xylem (SIX) effectors encoded on accessory genomic regions. However, such isolates also can colonize the roots of other plants asymptomatically as endophytes or even protect them against pathogenic strains. The molecular determinants of endophytic multihost compatibility are largely unknown. Here, we characterized a set of Fo candidate effectors from tomato (Solanum lycopersicum) root apoplastic fluid; these early root colonization (ERC) effectors are secreted during early biotrophic growth on main and alternative plant hosts. In contrast to SIX effectors, ERCs have homologs across the entire Fo species complex as well as in other plant-interacting fungi, suggesting a conserved role in fungus-plant associations. Targeted deletion of ERC genes in a pathogenic Fo isolate resulted in reduced virulence and rapid activation of plant immune responses, while ERC deletion in a nonpathogenic isolate led to impaired root colonization and biocontrol ability. Strikingly, some ERCs contribute to Fo infection on the nonvascular land plant Marchantia polymorpha, revealing an evolutionarily conserved mechanism for multihost colonization by root infecting fungi.
Collapse
Affiliation(s)
| | - Mugdha Sabale
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas 76798, USA
| | - Yogesh K Gupta
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologıa-CSIC (CNB-CSIC), 28049 Madrid, Spain
| | - David Turrà
- Department of Agriculture and Center for Studies on Bioinspired Agro-enviromental Technology, Università di Napoli Federico II, 80055 Portici, Italy
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnologıa-CSIC (CNB-CSIC), 28049 Madrid, Spain
| | | |
Collapse
|
15
|
Fungal endophytes in plants and their relationship to plant disease. Curr Opin Microbiol 2022; 69:102177. [PMID: 35870225 DOI: 10.1016/j.mib.2022.102177] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/26/2022]
Abstract
The enigmatic endophytic fungi are beginning to reveal their secrets. Like pathogens, they can manipulate the host for their own benefit to create their own optimal habitat. Some endophytic manipulations induce resistance or otherwise outcompete pathogens and can thus be exploited for biological control. Like pathogens and other symbionts, endophytes produce effector proteins and other molecules, ranging from specialised metabolites, phytohormones and microRNAs, to manipulate their hosts and other microorganisms they meet. There is a continuum from endophyte to pathogen: some organisms can infest or cause disease in some hosts, but not in others. Molecular genetics approaches coupled with functional characterisation have demonstrated their worth for understanding the biological phenomena underlying endophytic fungal interactions.
Collapse
|
16
|
Redkar A, Sabale M, Zuccaro A, Di Pietro A. Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102226. [PMID: 35526366 DOI: 10.1016/j.pbi.2022.102226] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Plant-fungal interactions in the soil crucially impact crop productivity and can range from highly beneficial to detrimental. Accumulating evidence suggests that some root-colonizing fungi shift between endophytic and pathogenic behaviour depending on the host species and that combinations of effector proteins collectively shape the fungal lifestyle on a given plant. In this review we discuss recent advances in our understanding of how fungal infection strategies on roots can lead to contrasting outcomes for the host. We highlight functional similarities and differences in compatibility determinants that control the colonization of specific-cell layers within plant roots, ultimately shaping the continuum between endophytic and pathogenic lifestyle.
Collapse
Affiliation(s)
- Amey Redkar
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain; Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | - Mugdha Sabale
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, D-50674, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), D-50674, Cologne, Germany
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|