1
|
Zhang D, Du L, Lin J, Wang L, Zheng P, Deng B, Zhang W, Su W, Liu Y, Lu Y, Qin Y, Wang X. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in passion fruit (Passiflora edulis) and their involvement in flower and fruit development. BMC PLANT BIOLOGY 2024; 24:626. [PMID: 38961401 PMCID: PMC11220982 DOI: 10.1186/s12870-024-05295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.
Collapse
Affiliation(s)
- Dan Zhang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lumiao Du
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinting Lin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zheng
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Biao Deng
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Wenbin Zhang
- Fine Variety Breeding Farm in Xinluo District, Longyan, 364000, China
| | - Weiqiang Su
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yanhui Liu
- College of Life Sciences, Longyan University, Longyan, 364000, China
| | - Yuming Lu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China.
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Gao Y, Regad F, Li Z, Pirrello J, Bouzayen M, Van Der Rest B. Class I TCP in fruit development: much more than growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1411341. [PMID: 38863555 PMCID: PMC11165105 DOI: 10.3389/fpls.2024.1411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Fruit development can be viewed as the succession of three main steps consisting of the fruit initiation, growth and ripening. These processes are orchestrated by different factors, notably the successful fertilization of flowers, the environmental conditions and the hormones whose action is coordinated by a large variety of transcription factors. Among the different transcription factor families, TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR (TCP) family has received little attention in the frame of fruit biology despite its large effects on several developmental processes and its action as modulator of different hormonal pathways. In this respect, the comprehension of TCP functions in fruit development remains an incomplete puzzle that needs to be assembled. Building on the abundance of genomic and transcriptomic data, this review aims at collecting available TCP expression data to allow their integration in the light of the different functional genetic studies reported so far. This reveals that several Class I TCP genes, already known for their involvement in the cell proliferation and growth, display significant expression levels in developing fruit, although clear evidence supporting their functional significance in this process remains scarce. The extensive expression data compiled in our study provide convincing elements that shed light on the specific involvement of Class I TCP genes in fruit ripening, once these reproductive organs acquire their mature size. They also emphasize their putative role in the control of specific biological processes such as fruit metabolism and hormonal dialogue.
Collapse
Affiliation(s)
- Yushuo Gao
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Farid Regad
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Benoît Van Der Rest
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| |
Collapse
|
3
|
Ahmed FF, Dola FS, Islam MSU, Zohra FT, Akter N, Rahman SM, Rauf Sarkar MA. Genome-Wide Comprehensive Identification and In Silico Characterization of Lectin Receptor-Like Kinase Gene Family in Barley ( Hordeum vulgare L.). Genet Res (Camb) 2024; 2024:2924953. [PMID: 38444770 PMCID: PMC10914435 DOI: 10.1155/2024/2924953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/27/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are a significant subgroup of the receptor-like kinases (RLKs) protein family. They play crucial roles in plant growth, development, immune responses, signal transduction, and stress tolerance. However, the genome-wide identification and characterization of LecRLK genes and their regulatory elements have not been explored in a major cereal crop, barley (Hordeum vulgare L.). Therefore, in this study, integrated bioinformatics tools were used to identify and characterize the LecRLK gene family in barley. Based on the phylogenetic tree and domain organization, a total of 113 LecRLK genes were identified in the barley genome (referred to as HvlecRLK) corresponding to the LecRLK genes of Arabidopsis thaliana. These putative HvlecRLK genes were classified into three groups: 62 G-type LecRLKs, 1 C-type LecRLK, and 50 L-type LecRLKs. They were unevenly distributed across eight chromosomes, including one unknown chromosome, and were predominantly located in the plasma membrane (G-type HvlecRLK (96.8%), C-type HvlecRLK (100%), and L-type HvlecRLK (98%)). An analysis of motif composition and exon-intron configuration revealed remarkable homogeneity with the members of AtlecRLK. Notably, most of the HvlecRLKs (27 G-type, 43 L-type) have no intron, suggesting their rapid functionality. The Ka/Ks and syntenic analysis demonstrated that HvlecRLK gene pairs evolved through purifying selection and gene duplication was the major factor for the expansion of the HvlecRLK gene family. Exploration of gene ontology (GO) enrichment indicated that the identified HvlecRLK genes are associated with various cellular processes, metabolic pathways, defense mechanisms, kinase activity, catalytic activity, ion binding, and other essential pathways. The regulatory network analysis identified 29 transcription factor families (TFFs), with seven major TFFs including bZIP, C2H2, ERF, MIKC_MADS, MYB, NAC, and WRKY participating in the regulation of HvlecRLK gene functions. Most notably, eight TFFs were found to be linked to the promoter region of both L-type HvleckRLK64 and HvleckRLK86. The promoter cis-acting regulatory element (CARE) analysis of barley identified a total of 75 CARE motifs responsive to light responsiveness (LR), tissue-specific (TS), hormone responsiveness (HR), and stress responsiveness (SR). The maximum number of CAREs was identified in HvleckRLK11 (25 for LR), HvleckRLK69 (17 for TS), and HvleckRLK80 (12 for HR). Additionally, HvleckRLK14, HvleckRLK16, HvleckRLK33, HvleckRLK50, HvleckRLK52, HvleckRLK56, and HvleckRLK110 were predicted to exhibit higher responses in stress conditions. In addition, 46 putative miRNAs were predicted to target 81 HvlecRLK genes and HvlecRLK13 was the most targeted gene by 8 different miRNAs. Protein-protein interaction analysis demonstrated higher functional similarities of 63 HvlecRLKs with 7 Arabidopsis STRING proteins. Our overall findings provide valuable information on the LecRLK gene family which might pave the way to advanced research on the functional mechanism of the candidate genes as well as to develop new barley cultivars in breeding programs.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Farah Sumaiya Dola
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
4
|
Gong Y, Wang D, Xie H, Zhao Z, Chen Y, Zhang D, Jiao Y, Shi M, Lv P, Sha Q, Yang J, Chu P, Sun Y. Genome-wide identification and expression analysis of the KCS gene family in soybean ( Glycine max) reveal their potential roles in response to abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1291731. [PMID: 38116151 PMCID: PMC10728876 DOI: 10.3389/fpls.2023.1291731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023]
Abstract
Very long chain fatty acids (VLCFAs) are fatty acids with chain lengths of 20 or more carbon atoms, which are the building blocks of various lipids that regulate developmental processes and plant stress responses. 3-ketoacyl-CoA synthase encoded by the KCS gene is the key rate-limiting enzyme in VLCFA biosynthesis, but the KCS gene family in soybean (Glycine max) has not been adequately studied thus far. In this study, 31 KCS genes (namely GmKCS1 - GmKCS31) were identified in the soybean genome, which are unevenly distributed on 14 chromosomes. These GmKCS genes could be phylogenetically classified into seven groups. A total of 27 paralogous GmKCS gene pairs were identified with their Ka/Ks ratios indicating that they had undergone purifying selection during soybean genome expansion. Cis-acting element analysis revealed that GmKCS promoters contained multiple hormone- and stress-responsive elements, indicating that GmKCS gene expression levels may be regulated by various developmental and environmental stimuli. Expression profiles derived from RNA-seq data and qRT-PCR experiments indicated that GmKCS genes were diversely expressed in different organs/tissues, and many GmKCS genes were found to be differentially expressed in the leaves under cold, heat, salt, and drought stresses, suggesting their critical role in soybean resistance to abiotic stress. These results provide fundamental information about the soybean KCS genes and will aid in their further functional elucidation and exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Pengfei Chu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Wang L, Liu H, Liu P, Wu G, Shen W, Cui H, Dai Z. Cotyledon peeling method for passion fruit protoplasts: a versatile cell system for transient gene expression in passion fruit (Passiflora edulis). FRONTIERS IN PLANT SCIENCE 2023; 14:1236838. [PMID: 37636087 PMCID: PMC10449601 DOI: 10.3389/fpls.2023.1236838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Passion fruit (Passiflora edulis) is a perennial evergreen vine that grows mainly in tropical and subtropical regions due to its nutritional, medicinal and ornamental values. However, the molecular biology study of passion fruit is extremely hindered by the lack of an easy and efficient method for transformation. The protoplast transformation system plays a vital role in plant regeneration, gene function analysis and genome editing. Here, we present a new method ('Cotyledon Peeling Method') for simple and efficient passion fruit protoplast isolation using cotyledon as the source tissue. A high yield (2.3 × 107 protoplasts per gram of fresh tissues) and viability (76%) of protoplasts were obtained upon incubation in the enzyme solution [1% (w/v) cellulase R10, 0.25% (w/v) macerozyme R10, 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] for 2 hours. In addition, we achieved high transfection efficiency of 83% via the polyethylene glycol (PEG)-mediated transformation with a green fluorescent protein (GFP)-tagged plasmid upon optimization. The crucial factors affecting transformation efficiency were optimized as follows: 3 μg of plasmid DNA, 5 min transfection time, PEG concentration at 40% and protoplast density of 100 × 104 cells/ml. Furthermore, the established protoplast system was successfully applied for subcellular localization analysis of multiple fluorescent organelle markers and protein-protein interaction study. Taken together, we report a simple and efficient passion fruit protoplast isolation and transformation system, and demonstrate its usage in transient gene expression for the first time in passion fruit. The protoplast system would provide essential support for various passion fruit biology studies, including genome editing, gene function analysis and whole plant regeneration.
Collapse
Affiliation(s)
- Linxi Wang
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Haobin Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Wentao Shen
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| |
Collapse
|
6
|
Zhang J, Zhang C, Li X, Liu ZY, Liu X, Wang CL. Comprehensive analysis of KCS gene family in pear reveals the involvement of PbrKCSs in cuticular wax and suberin synthesis and pear fruit skin formation. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01371-3. [PMID: 37523053 DOI: 10.1007/s11103-023-01371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Cuticular wax, cutin and suberin polyesters covering the surface of some fleshy fruit are tightly associated with skin color and appearance. β-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme participating in the synthesis of very-long-chain fatty acids (VLCFAs), the essential precursors of cuticular waxes and aliphatic monomers of suberin. However, information on the KCS gene family in pear genome and the specific members involved in pear fruit skin formation remain unclear. In the present study, we performed an investigation of the composition and amount of cuticular waxes, cutin and aliphatic suberin in skins of four sand pear varieties with distinct colors (russet, semi-russet, and green) and demonstrated that the metabolic shifts of cuticular waxes and suberin leading to the significant differences of sand pear skin color. A genome-wide identification of KCS genes from the pear genome was conducted and 35 KCS coding genes were characterized and analyzed. Expression profile analysis revealed that the KCS genes had diverse expression patterns among different pear skins and the transcript abundance of PbrKCS15, PbrKCS19, PbrKCS24, and PbrKCS28 were consistent with the accumulation of cuticular waxes and suberin in fruit skin respectively. Subcellular localization analysis demonstrated that PbrKCS15, PbrKCS19, PbrKCS24 and PbrKCS28 located on the endoplasmic reticulum (ER). Further, transient over-expression of PbrKCS15, PbrKCS19, and PbrKCS24 in pear fruit skins significantly increased cuticular wax accumulation, whereas PbrKCS28 notably induced suberin deposition. In conclusion, pear fruit skin color and appearance are controlled in a coordinated way by the deposition of the cuticular waxes and suberin. PbrKCS15, PbrKCS19, and PbrKCS24 are involved in cuticular wax biosynthesis, and PbrKCS28 is involved in suberin biosynthesis, which play essential roles in pear fruit skin formation. Moreover, this work provides a foundation for further understanding the functions of KCS genes in pear.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xi Li
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Zi-Yu Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Xiao Liu
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China
| | - Chun-Lei Wang
- College of Horticulture and Landscape Architecture, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
7
|
Yang L, Fang J, Wang J, Hui S, Zhou L, Xu B, Chen Y, Zhang Y, Lai C, Jiao G, Sheng Z, Wei X, Shao G, Xie L, Wang L, Chen Y, Zhao F, Hu S, Hu P, Tang S. Genome-wide identification and expression analysis of 3-ketoacyl-CoA synthase gene family in rice ( Oryza sativa L.) under cadmium stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1222288. [PMID: 37554558 PMCID: PMC10406525 DOI: 10.3389/fpls.2023.1222288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
3-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for the synthesis of very long-chain fatty acids (VLCFAs) in plants, which determines the carbon chain length of VLCFAs. However, a comprehensive study of KCSs in Oryza sativa has not been reported yet. In this study, we identified 22 OsKCS genes in rice, which are unevenly distributed on nine chromosomes. The OsKCS gene family is divided into six subclasses. Many cis-acting elements related to plant growth, light, hormone, and stress response were enriched in the promoters of OsKCS genes. Gene duplication played a crucial role in the expansion of the OsKCS gene family and underwent a strong purifying selection. Quantitative Real-time polymerase chain reaction (qRT-PCR) results revealed that most KCS genes are constitutively expressed. We also revealed that KCS genes responded differently to exogenous cadmium stress in japonica and indica background, and the KCS genes with higher expression in leaves and seeds may have functions under cadmium stress. This study provides a basis for further understanding the functions of KCS genes and the biosynthesis of VLCFA in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
8
|
Wang X, Zhao D, Li X, Zhou B, Chang T, Hong B, Guan C, Guan M. Integrated Analysis of lncRNA–mRNA Regulatory Networks Related to Lipid Metabolism in High-Oleic-Acid Rapeseed. Int J Mol Sci 2023; 24:ijms24076277. [PMID: 37047249 PMCID: PMC10093948 DOI: 10.3390/ijms24076277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
A high oleic acid content is considered an essential characteristic in the breeding of high-quality rapeseed in China. Long-chain non-coding RNA (lncRNA) molecules play an important role in the plant’s growth and its response to stress. To better understand the role of lncRNAs in regulating plant reproductive development, we analyzed whole-transcriptome and physiological data to characterize the dynamic changes in lncRNA expression during the four representative times of seed development of high- and low-oleic-acid rapeseed in three regions. We identified 21 and 14 lncRNA and mRNA modules, respectively. These modules were divided into three types related to region, development stages, and material. Next, we analyzed the key modules related to the oil content and the oleic acid, linoleic acid, and linolenic acid contents with physiological data and constructed the key functional network analysis on this basis. Genes related to lipid metabolism, such as 3-ketoacyl-CoA synthase 16 (KCS16) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), were present in the co-expression network, suggesting that the effect of these genes on lipid metabolism might be embodied by the expression of these lncRNAs. Our results provide a fresh insight into region-, development-stage-, and material-biased changes in lncRNA expression in the seeds of Brassica napus. Some of these lncRNAs may participate in the regulatory network of lipid accumulation and metabolism, together with regulated genes. These results may help elucidate the regulatory system of lncRNAs in the lipid metabolism of high-oleic-acid rapeseed seeds.
Collapse
|
9
|
Zhang H, Yu Y, Wang S, Yang J, Ai X, Zhang N, Zhao X, Liu X, Zhong C, Yu H. Genome-wide characterization of phospholipase D family genes in allotetraploid peanut and its diploid progenitors revealed their crucial roles in growth and abiotic stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1102200. [PMID: 36743478 PMCID: PMC9895952 DOI: 10.3389/fpls.2023.1102200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stresses such as cold, drought and salinity are the key environmental factors that limit the yield and quality of oil crop peanut. Phospholipase Ds (PLDs) are crucial hydrolyzing enzymes involved in lipid mediated signaling and have valuable functions in plant growth, development and stress tolerance. Here, 22, 22 and 46 PLD genes were identified in Arachis duranensis, Arachis ipaensis and Arachis hypogaea, respectively, and divided into α, β, γ, δ, ε, ζ and φ isoforms. Phylogenetic relationships, structural domains and molecular evolution proved the conservation of PLDs between allotetraploid peanut and its diploid progenitors. Almost each A. hypogaea PLD except for AhPLDα6B had a corresponding homolog in A. duranensis and A. ipaensis genomes. The expansion of Arachis PLD gene families were mainly attributed to segmental and tandem duplications under strong purifying selection. Functionally, the most proteins interacting with AhPLDs were crucial components of lipid metabolic pathways, in which ahy-miR3510, ahy-miR3513-3p and ahy-miR3516 might be hub regulators. Furthermore, plenty of cis-regulatory elements involved in plant growth and development, hormones and stress responses were identified. The tissue-specific transcription profiling revealed the broad and unique expression patterns of AhPLDs in various developmental stages. The qRT-PCR analysis indicated that most AhPLDs could be induced by specific or multiple abiotic stresses. Especially, AhPLDα3A, AhPLDα5A, AhPLDβ1A, AhPLDβ2A and AhPLDδ4A were highly up-regulated under all three abiotic stresses, whereas AhPLDα9A was neither expressed in 22 peanut tissues nor induced by any abiotic stresses. This genome-wide study provides a systematic analysis of the Arachis PLD gene families and valuable information for further functional study of candidate AhPLDs in peanut growth and abiotic stress responses.
Collapse
|
10
|
Yang Q, Li B, Rizwan HM, Sun K, Zeng J, Shi M, Guo T, Chen F. Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression analysis under Fusarium kyushuense and drought stress conditions in Passiflora edulis. FRONTIERS IN PLANT SCIENCE 2022; 13:972734. [PMID: 36092439 PMCID: PMC9453495 DOI: 10.3389/fpls.2022.972734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 05/07/2023]
Abstract
The NAC gene family is one of the largest plant transcription factors (TFs) families and plays important roles in plant growth, development, metabolism, and biotic and abiotic stresses. However, NAC gene family has not been reported in passion fruit (Passiflora edulis). In this study, a total of 105 NAC genes were identified in the passion fruit genome and were unevenly distributed across all nine-passion fruit chromomere, with a maximum of 48 PeNAC genes on chromosome one. The physicochemical features of all 105 PeNAC genes varied including 120 to 3,052 amino acids, 3 to 8 conserved motifs, and 1 to 3 introns. The PeNAC genes were named (PeNAC001-PeNAC105) according to their chromosomal locations and phylogenetically grouped into 15 clades (NAC-a to NAC-o). Most PeNAC proteins were predicted to be localized in the nucleus. The cis-element analysis indicated the possible roles of PeNAC genes in plant growth, development, light, hormones, and stress responsiveness. Moreover, the PeNAC gene duplications including tandem (11 gene pairs) and segmental (12 gene pairs) were identified and subjected to purifying selection. All PeNAC proteins exhibited similar 3D structures, and a protein-protein interaction network analysis with known Arabidopsis proteins was predicted. Furthermore, 17 putative ped-miRNAs were identified to target 25 PeNAC genes. Potential TFs including ERF, BBR-BPC, Dof, and bZIP were identified in promoter region of all 105 PeNAC genes and visualized in a TF regulatory network. GO and KEGG annotation analysis exposed that PeNAC genes were related to different biological, molecular, and cellular terms. The qRT-PCR expression analysis discovered that most of the PeNAC genes including PeNAC001, PeNAC003, PeNAC008, PeNAC028, PeNAC033, PeNAC058, PeNAC063, and PeNAC077 were significantly upregulated under Fusarium kyushuense and drought stress conditions compared to controls. In conclusion, these findings lay the foundation for further functional studies of PeNAC genes to facilitate the genetic improvement of plants to stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Ahmad S, Chen Y, Shah AZ, Wang H, Xi C, Zhu H, Ge L. The Homeodomain-Leucine Zipper Genes Family Regulates the Jinggangmycin Mediated Immune Response of Oryza sativa to Nilaparvata lugens, and Laodelphax striatellus. Bioengineering (Basel) 2022; 9:bioengineering9080398. [PMID: 36004924 PMCID: PMC9405480 DOI: 10.3390/bioengineering9080398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022] Open
Abstract
The homeodomain-leucine zipper (HDZIP) is an important transcription factor family, instrumental not only in growth but in finetuning plant responses to environmental adversaries. Despite the plethora of literature available, the role of HDZIP genes under chewing and sucking insects remains elusive. Herein, we identified 40 OsHDZIP genes from the rice genome database. The evolutionary relationship, gene structure, conserved motifs, and chemical properties highlight the key aspects of OsHDZIP genes in rice. The OsHDZIP family is divided into a further four subfamilies (i.e., HDZIP I, HDZIP II, HDZIP III, and HDZIP IV). Moreover, the protein–protein interaction and Gene Ontology (GO) analysis showed that OsHDZIP genes regulate plant growth and response to various environmental stimuli. Various microRNA (miRNA) families targeted HDZIP III subfamily genes. The microarray data analysis showed that OsHDZIP was expressed in almost all tested tissues. Additionally, the differential expression patterns of the OsHDZIP genes were found under salinity stress and hormonal treatments, whereas under brown planthopper (BPH), striped stem borer (SSB), and rice leaf folder (RLF), only OsHDZIP3, OsHDZIP4, OsHDZIP40, OsHDZIP10, and OsHDZIP20 displayed expression. The qRT-PCR analysis further validated the expression of OsHDZIP20, OsHDZIP40, and OsHDZIP10 under BPH, small brown planthopper (SBPH) infestations, and jinggangmycin (JGM) spraying applications. Our results provide detailed knowledge of the OsHDZIP gene family resistance in rice plants and will facilitate the development of stress-resilient cultivars, particularly against chewing and sucking insect pests.
Collapse
|