1
|
Tadić J, Dumičić G, Veršić Bratinčević M, Vitko S, Liber Z, Radić Brkanac S. Comparative analysis of cultivated and wild olive genotypes to salinity and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1423761. [PMID: 39081524 PMCID: PMC11286399 DOI: 10.3389/fpls.2024.1423761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
The Mediterranean region's harsh conditions, characterized by low rainfall, high solar radiation, and elevated temperatures, pose challenges for vegetation, particularly in the face of climate change. Cultivated olive (Olea europaea subsp. europaea var. europaea) holds historical and economic significance as one of the oldest crops in the Mediterranean. Due to their high germplasm diversity and greater flowering abundance compared to the offspring of cultivated olives, wild olives (Olea europaea subsp. europaea var. sylvestris) could be utilized for selecting new olive cultivars capable of adapting to a changing climate. This research aimed to compare the effects of salt and drought stress on wild and cultivated genotypes by analyzing morphological, physiological, and biochemical parameters. Results showed that shoot length, shoot dry mass, and leaf area are key drought stress indicators in wild olive trees. The results indicated the olive trees more susceptible to salinity stress had lower Na+ and Cl- concentrations in their leaves and took longer to stabilize salt ion levels. Decreased K+ content in roots across all treatments indicated a general stress response. The uptake of Ca2+ appears to be the most energy-efficient response of olive trees to short-term salinity and drought. In contrast to proline and malondialdehyde, trends in superoxide dismutase activity suggest that it is a reliable indicator of salinity and drought stress. Regarding olive adaptability to salinity stress, promising results obtained with two wild olive genotypes merit their further physiological study.
Collapse
Affiliation(s)
- Josip Tadić
- Department of Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroPBioDiv), Zagreb, Croatia
| | - Gvozden Dumičić
- Department of Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Sciences, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Sandra Vitko
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroPBioDiv), Zagreb, Croatia
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sandra Radić Brkanac
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Omondi EO, Lin CY, Huang SM, Liao CA, Lin YP, Oliva R, van Zonneveld M. Landscape genomics reveals genetic signals of environmental adaptation of African wild eggplants. Ecol Evol 2024; 14:e11662. [PMID: 38983700 PMCID: PMC11232056 DOI: 10.1002/ece3.11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Crop wild relatives (CWR) provide a valuable resource for improving crops. They possess desirable traits that confer resilience to various environmental stresses. To fully utilize crop wild relatives in breeding and conservation programs, it is important to understand the genetic basis of their adaptation. Landscape genomics associates environments with genomic variation and allows for examining the genetic basis of adaptation. Our study examined the differences in allele frequency of 15,416 single nucleotide polymorphisms (SNPs) generated through genotyping by sequencing approach among 153 accessions of 15 wild eggplant relatives and two cultivated species from Africa, the principal hotspot of these wild relatives. We also explored the correlation between these variations and the bioclimatic and soil conditions at their collection sites, providing a comprehensive understanding of the genetic signals of environmental adaptation in African wild eggplant. Redundancy analysis (RDA) results showed that the environmental variation explained 6% while the geographical distances among the collection sites explained 15% of the genomic variation in the eggplant wild relative populations when controlling for population structure. Our findings indicate that even though environmental factors are not the main driver of selection in eggplant wild relatives, it is influential in shaping the genomic variation over time. The selected environmental variables and candidate SNPs effectively revealed grouping patterns according to the environmental characteristics of sampling sites. Using four genotype-environment association methods, we detected 396 candidate SNPs (2.5% of the initial SNPs) associated with eight environmental factors. Some of these SNPs signal genes involved in pathways that help adapt to environmental stresses such as drought, heat, cold, salinity, pests, and diseases. These candidate SNPs will be useful for marker-assisted improvement and characterizing the germplasm of this crop for developing climate-resilient eggplant varieties. The study provides a model for applying landscape genomics to other crops' wild relatives.
Collapse
Affiliation(s)
- Emmanuel O Omondi
- Genetic Resources and Seed Unit World Vegetable Center Tainan Taiwan
| | - Chen-Yu Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | | | - Cheng-An Liao
- Department of Horticulture National Taiwan University Taipei Taiwan
| | - Ya-Ping Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | - Ricardo Oliva
- Plant Pathology World Vegetable Center Tainan Taiwan
| | | |
Collapse
|
3
|
Rehman AU, Iso-Touru T, Junkers J, Rantanen M, Karhu S, Fischer D, Alsheikh M, Hjeltnes SH, Mezzetti B, Davik J, Schulman AH, Hytönen T, Haikonen T. Multi-model GWAS reveals key loci for horticultural traits in reconstructed garden strawberry. PHYSIOLOGIA PLANTARUM 2024; 176:e14440. [PMID: 39030778 DOI: 10.1111/ppl.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024]
Abstract
The cultivated garden strawberry (Fragaria × ananassa) has a rich history, originating from the hybridization of two wild octoploid strawberry species in the 18th century. Two-step reconstruction of Fragaria × ananassa through controlled crossings between pre-improved selections of its parental species is a promising approach for enriching the breeding germplasm of strawberry for wider adaptability. We created a population of reconstructed strawberry by hybridizing elite selections of F. virginiana and F. chiloensis. A replicated field experiment was conducted to evaluate the population's performance for eleven horticulturally important traits, over multiple years. Population structure analyses based on Fana-50 k SNP array data confirmed pedigree-based grouping of the progenies into four distinct groups. As complex traits are often influenced by environmental variables, and population structure can lead to spurious associations, we tested multiple genome-wide association study (GWAS) models. GWAS uncovered 39 quantitative trait loci (QTL) regions for eight traits distributed across twenty chromosomes, including 11 consistent and 28 putative QTLs. Candidate genes for traits including winter survival, flowering time, runnering vigor, and hermaphrodism were identified within the QTL regions. To our knowledge, this study marks the first comprehensive investigation of adaptive and horticultural traits in a large, multi-familial reconstructed strawberry population using SNP markers.
Collapse
Affiliation(s)
- Attiq Ur Rehman
- Natural Resources Institute Finland (Luke), Finland
- Doctoral Program in Plant Sciences, University of Helsinki, Finland
| | | | - Jakob Junkers
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Saila Karhu
- Natural Resources Institute Finland (Luke), Finland
| | | | - Muath Alsheikh
- Graminor AS, Norway
- Faculty of Life Sciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jahn Davik
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Alan H Schulman
- Natural Resources Institute Finland (Luke), Finland
- Viikki Plant Science Centre, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| | - Timo Hytönen
- Viikki Plant Science Centre, Finland
- Department of Agricultural Sciences, University of Helsinki, Finland
| | - Tuuli Haikonen
- Natural Resources Institute Finland (Luke), Finland
- Viikki Plant Science Centre, Finland
| |
Collapse
|
4
|
de Celis M, Fernández-Alonso MJ, Belda I, García C, Ochoa-Hueso R, Palomino J, Singh BK, Yin Y, Wang JT, Abdala-Roberts L, Alfaro FD, Angulo-Pérez D, Arthikala MK, Corwin J, Gui-Lan D, Hernandez-Lopez A, Nanjareddy K, Pasari B, Quijano-Medina T, Rivera DS, Shaaf S, Trivedi P, Yang Q, Zaady E, Zhu YG, Delgado-Baquerizo M, Milla R, García-Palacios P. The abundant fraction of soil microbiomes regulates the rhizosphere function in crop wild progenitors. Ecol Lett 2024; 27:e14462. [PMID: 39031813 DOI: 10.1111/ele.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.
Collapse
Affiliation(s)
- Miguel de Celis
- Departamento de Suelo, Planta y Calidad Ambiental, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María José Fernández-Alonso
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos García
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Murcia, Spain
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Cádiz, Spain
| | - Javier Palomino
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Diego Angulo-Pérez
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, Mexico
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, Mexico
| | - Jason Corwin
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Duan Gui-Lan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Antonio Hernandez-Lopez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Guanajuato, Mexico
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, Mexico
| | - Babak Pasari
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Salar Shaaf
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Gilat Research Center, Institute of Plant Sciences, Mobile Post Negev, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Rubén Milla
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
- Global Change Research Institute, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Pablo García-Palacios
- Departamento de Suelo, Planta y Calidad Ambiental, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
6
|
Kapoor C, Anamika, Mukesh Sankar S, Singh SP, Singh N, Kumar S. Omics-driven utilization of wild relatives for empowering pre-breeding in pearl millet. PLANTA 2024; 259:155. [PMID: 38750378 DOI: 10.1007/s00425-024-04423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Pearl millet wild relatives harbour novel alleles which could be utilized to broaden genetic base of cultivated species. Genomics-informed pre-breeding is needed to speed up introgression from wild to cultivated gene pool in pearl millet. Rising episodes of intense biotic and abiotic stresses challenge pearl millet production globally. Wild relatives provide a wide spectrum of novel alleles which could address challenges posed by climate change. Pre-breeding holds potential to introgress novel diversity in genetically narrow cultivated Pennisetum glaucum from diverse gene pool. Practical utilization of gene pool diversity remained elusive due to genetic intricacies. Harnessing promising traits from wild pennisetum is limited by lack of information on underlying candidate genes/QTLs. Next-Generation Omics provide vast scope to speed up pre-breeding in pearl millet. Genomic resources generated out of draft genome sequence and improved genome assemblies can be employed to utilize gene bank accessions effectively. The article highlights genetic richness in pearl millet and its utilization with a focus on harnessing next-generation Omics to empower pre-breeding.
Collapse
Affiliation(s)
- Chandan Kapoor
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anamika
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Mukesh Sankar
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - S P Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
7
|
Krieg CP, Smith DD, Adams MA, Berger J, Layegh Nikravesh N, von Wettberg EJ. Greater ecophysiological stress tolerance in the core environment than in extreme environments of wild chickpea (Cicer reticulatum). Sci Rep 2024; 14:5744. [PMID: 38459248 PMCID: PMC10923935 DOI: 10.1038/s41598-024-56457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Global climate change and land use change underlie a need to develop new crop breeding strategies, and crop wild relatives (CWR) have become an important potential source of new genetic material to improve breeding efforts. Many recent approaches assume adaptive trait variation increases towards the relative environmental extremes of a species range, potentially missing valuable trait variation in more moderate or typical climates. Here, we leveraged distinct genotypes of wild chickpea (Cicer reticulatum) that differ in their relative climates from moderate to more extreme and perform targeted assessments of drought and heat tolerance. We found significance variation in ecophysiological function and stress tolerance between genotypes but contrary to expectations and current paradigms, it was individuals from more moderate climates that exhibited greater capacity for stress tolerance than individuals from warmer and drier climates. These results indicate that wild germplasm collection efforts to identify adaptive variation should include the full range of environmental conditions and habitats instead of only environmental extremes, and that doing so may significantly enhance the success of breeding programs broadly.
Collapse
Affiliation(s)
| | | | - Mark A Adams
- Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jens Berger
- CSIRO, Agriculture and Food, Perth, WA, Australia
| | | | - Eric J von Wettberg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
8
|
Bassi FM, Sanchez-Garcia M, Ortiz R. What plant breeding may (and may not) look like in 2050? THE PLANT GENOME 2024; 17:e20368. [PMID: 37455348 DOI: 10.1002/tpg2.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
At the turn of 2000 many authors envisioned future plant breeding. Twenty years after, which of those authors' visions became reality or not, and which ones may become so in the years to come. After two decades of debates, climate change is a "certainty," food systems shifted from maximizing farm production to reducing environmental impact, and hopes placed into GMOs are mitigated by their low appreciation by consumers. We revise herein how plant breeding may raise or reduce genetic gains based on the breeder's equation. "Accuracy of Selection" has significantly improved by many experimental-scale field and laboratory implements, but also by vulgarizing statistical models, and integrating DNA markers into selection. Pre-breeding has really promoted the increase of useful "Genetic Variance." Shortening "Recycling Time" has seen great progression, to the point that achieving a denominator equal to "1" is becoming a possibility. Maintaining high "Selection Intensity" remains the biggest challenge, since adding any technology results in a higher cost per progeny, despite the steady reduction in cost per datapoint. Furthermore, the concepts of variety and seed enterprise might change with the advent of cheaper genomic tools to monitor their use and the promotion of participatory or citizen science. The technological and societal changes influence the new generation of plant breeders, moving them further away from field work, emphasizing instead the use of genomic-based selection methods relying on big data. We envisage what skills plant breeders of tomorrow might need to address challenges, and whether their time in the field may dwindle.
Collapse
Affiliation(s)
- Filippo M Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Miguel Sanchez-Garcia
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
9
|
Gepts P. Biocultural diversity and crop improvement. Emerg Top Life Sci 2023; 7:151-196. [PMID: 38084755 PMCID: PMC10754339 DOI: 10.1042/etls20230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop improvement has tended to decrease agricultural biodiversity since the origins of agriculture, but awareness of this situation can reverse this negative trend. Cropping improvement can strive to use more diverse cultivars and a broader complement of crops on farms and in landscapes. It can also focus on underutilized crops, including legumes. Genetic improvement can access a broader range of biodiversity sources and, with the assistance of modern breeding tools like genomics, can facilitate the introduction of additional characteristics that improve yield, mitigate environmental stresses, and restore, at least partially, lost crop biodiversity. The current legal framework covering biodiversity includes national intellectual property and international treaty instruments, which have tended to limit access and innovation to biodiversity. A global system of access and benefit sharing, encompassing digital sequence information, would benefit humanity but remains an elusive goal. The Kunming-Montréal Global Biodiversity Framework sets forth an ambitious set of targets and goals to be accomplished by 2030 and 2050, respectively, to protect and restore biocultural diversity, including agrobiodiversity.
Collapse
Affiliation(s)
- Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780, U.S.A
| |
Collapse
|
10
|
Cruppe G, Lemes da Silva C, Lollato RP, Fritz AK, Kuhnem P, D Cruz C, Calderon L, Valent B. QTL Pyramiding Provides Marginal Improvement in 2N vS-Based Wheat Blast Resistance. PLANT DISEASE 2023; 107:2407-2416. [PMID: 36691278 DOI: 10.1094/pdis-09-22-2030-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wheat blast, caused by the fungus Magnaporthe oryzae Triticum pathotype (MoT), is a devastating disease affecting South America, Bangladesh, and Zambia. Resistance to wheat blast has strongly relied on the 2NvS translocation; however, newer MoT isolates have increased aggressiveness, threatening the 2NvS translocation's effectiveness and durability. To identify genomic regions associated with wheat blast resistance, we performed a quantitative trait loci (QTL) mapping study using 187 double-haploid (DH) lines from a cross between the Brazilian wheat cultivars 'TBIO Alvorada' and 'TBIO Sossego', which are moderately resistant and susceptible to blast, respectively. The DH population was evaluated in a greenhouse in Brazil and Bolivia, and field conditions in Bolivia. Contrasting models best explained the relationship between traits evaluated according to differences in disease levels and the presence of the 2NvS. A large effect-locus, derived from 'TBIO Sossego', was identified on chromosome 2AS, which was confirmed to be 2NvS translocation and explained 33.5 to 82.4% of the phenotypic variance. Additional significant loci were identified on 5AL, 1DS, 4DS, 5DL, and 6DL chromosome arms with phenotypic variance <6%, but they were not consistent across trait-environment combinations. QTL pyramiding analyses showed that some specific loci had an additive effect when combined with the 2NvS, suggesting that stacking multiple loci may be an effective strategy to help manage wheat blast. The markers associated with the 2NvS can be used as dominant diagnostic markers for this alien translocation. Additional characterization of these loci using a broader set of MoT isolates is critical to validate their effectiveness against current MoT populations.
Collapse
Affiliation(s)
- Giovana Cruppe
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | | | - Romulo P Lollato
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Allan K Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Paulo Kuhnem
- Biotrigo Genetica, Passo Fundo, Rio Grande do Sul 99052, Brazil
| | - Christian D Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Lidia Calderon
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| |
Collapse
|
11
|
Khan MK, Islam T, Gezgin S, Di Gioia F. Editorial: Wild plant genetic resources: a hope for tomorrow. FRONTIERS IN PLANT SCIENCE 2023; 14:1217547. [PMID: 37324690 PMCID: PMC10264807 DOI: 10.3389/fpls.2023.1217547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
12
|
Cortés AJ, Barnaby JY. Editorial: Harnessing genebanks: High-throughput phenotyping and genotyping of crop wild relatives and landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1149469. [PMID: 36968416 PMCID: PMC10036837 DOI: 10.3389/fpls.2023.1149469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Jinyoung Y. Barnaby
- U.S. Department of Agriculture, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD, United States
| |
Collapse
|
13
|
Rajpal VR, Singh A, Kathpalia R, Thakur RK, Khan MK, Pandey A, Hamurcu M, Raina SN. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1127239. [PMID: 36998696 PMCID: PMC10044020 DOI: 10.3389/fpls.2023.1127239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 05/31/2023]
Abstract
Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| |
Collapse
|
14
|
Gaba Y, Bhowal B, Pareek A, Singla-Pareek SL. Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. Int J Mol Sci 2023; 24:4190. [PMID: 36835601 PMCID: PMC9960948 DOI: 10.3390/ijms24044190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds. Only a few members of this family, primarily those involved in auxin biosynthesis, have been functionally characterized in plant species. Thus, the present study aims to identify all the members of the FMO family in 10 different wild and cultivated Oryza species. Genome-wide analysis of the FMO family in different Oryza species reveals that each species has multiple FMO members in its genome and that this family is conserved throughout evolution. Taking clues from its role in pathogen defense and its possible function in ROS scavenging, we have also assessed the involvement of this family in abiotic stresses. A detailed in silico expression analysis of the FMO family in Oryza sativa subsp. japonica revealed that only a subset of genes responds to different abiotic stresses. This is supported by the experimental validation of a few selected genes using qRT-PCR in stress-sensitive Oryza sativa subsp. indica and stress-sensitive wild rice Oryza nivara. The identification and comprehensive in silico analysis of FMO genes from different Oryza species carried out in this study will serve as the foundation for further structural and functional studies of FMO genes in rice as well as other crop types.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
15
|
Park MJ, Kim E, Jeong YS, Son MY, Jang Y, Ka KH. Determination and Analysis of Hyper-Variable A Mating Types in Wild Strains of Lentinula edodes in Korea. MYCOBIOLOGY 2023; 51:26-35. [PMID: 36846627 PMCID: PMC9946336 DOI: 10.1080/12298093.2022.2161157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The diversity of A mating type in wild strains of Lentinula edodes was extensively analyzed to characterize and utilize them for developing new cultivars. One hundred twenty-three A mating type alleles, including 67 newly discovered alleles, were identified from 106 wild strains collected for the past four decades in Korea. Based on previous studies and current findings, a total of 130 A mating type alleles have been found, 124 of which were discovered from wild strains, indicating the hyper-variability of A mating type alleles of L. edodes. About half of the A mating type alleles in wild strains were found in more than two strains, whereas the other half of the alleles were found in only one strain. About 90% of A mating type combinations in dikaryotic wild strains showed a single occurrence. Geographically, diverse A mating type alleles were intensively located in the central region of the Korean peninsula, whereas only allele A17 was observed throughout Korea. We also found the conservation of the TCCCAC motif in addition to the previously reported motifs, including ATTGT, ACAAT, and GCGGAG, in the intergenic regions of A mating loci. Sequence comparison among some alleles indicated that accumulated mutation and recombination would contribute to the diversification of A mating type alleles in L. edodes. Our data support the rapid evolution of A mating locus in L. edodes, and would help to understand the characteristics of A mating loci of wild strains in Korea and help to utilize them for developing new cultivars.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Eunjin Kim
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Yeun Sug Jeong
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Mi-Young Son
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Yeongseon Jang
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| | - Kang-Hyeon Ka
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Korea
| |
Collapse
|
16
|
Kapazoglou A, Gerakari M, Lazaridi E, Kleftogianni K, Sarri E, Tani E, Bebeli PJ. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020328. [PMID: 36679041 PMCID: PMC9861506 DOI: 10.3390/plants12020328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Global climate change is one of the major constraints limiting plant growth, production, and sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs) to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable approach for crop improvement in the context of the ongoing climate challenges. In this review, we present the progress that has been achieved towards CWRs exploitation for enhanced resilience against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures) in crops of high nutritional and economic value, such as tomato, legumes, and several woody perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative counterparts have unraveled important information with respect to the molecular basis of tolerance to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes, gene networks, and biochemical pathways associated with resilience to adverse conditions, such as heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity, and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes. Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production challenges arising from extreme environmental conditions.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|