1
|
Safdar A, Hameed A, Hassan HM. Biochemical and morpho-physiological insights revealed low moisture stress adaptation mechanisms in cotton (Gossypium hirsutum L.). Sci Rep 2024; 14:25942. [PMID: 39472516 PMCID: PMC11522388 DOI: 10.1038/s41598-024-77204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Cotton (Gossypium hirsutum L.) is a multipurpose crop. Abiotic stresses, especially extreme heat and drought, limit crop growth and thus reduce cotton yield by about 50%. In this study, 30 cotton genotypes were tested against low moisture stress in a pot experiment in triplicates along with control under wire house conditions. At the 3-4 leaf stage, different morpho-physiological and biochemical parameters were measured in order to select the low moisture stress-tolerant genotypes. For the selection of the best performing genotypes, Multi-Trait Genotype-Ideotype Distance Index (MGIDI) was used for the ranking of genotypes on the basis of multiple indices. For biochemical traits, 09 (TPC, TF, TSP, MDA, SOD, POD, CAT, APX, and Proline) out of 24 showed significant genotypic effects and were used for MGIDI. Eight genotypes (N-812 N-1296 N-696 N-377 N-121-896 N-T86, and N-3496) were observed to be best performing than others at 25% selection pressure (SI = 25%). For morpho-physiological traits, 14 out of 15 showed significant genotypic effects and used for MGIDI. Ten genotypes (N-1237 N-812 N-1296 N-696 N-9078 N-377 N-512 N-121 N-375, and N-896) were observed to be best performing at 35% selection pressure (SI = 35%). Six genotypes, i.e. N-812-1296 N-696 N-377 N-121, and N-896 were found common in both MGIDI analysis. In conclusion, three genotypes, i.e. N-696, N-896, and N-T86 proved to be most resilient to low moisture stress. Develop protocols, identified genotypes and markers that can be used for development of climate-smart cotton genotypes.
Collapse
Affiliation(s)
- Ayesha Safdar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan.
| | - Hafiz Mumtaz Hassan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
2
|
Faghani E, Hashemi A, Kazemian M, Razzaghi MH. Evaluation of memory drought stress effects on storage compounds seedlings of cotton (Gossypium hirsutum) and in-silico analysis of glutathione reductase. BMC PLANT BIOLOGY 2024; 24:825. [PMID: 39227761 PMCID: PMC11370064 DOI: 10.1186/s12870-024-05522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
In breeding programs, stress memory in plants can develop drought stress tolerance. Memory stress, as an approach, can keep stress data by activating tolerance mechanisms. This research was conducted to evaluate some physiologically effective mechanisms in inducing memory drought stress in the seeds that were exposed to water stress three times in four treatments including rainfed, 33%, 66%, and 100% of field capacity (FC). After the production of the seeds, the third-generation seeds were placed under different irrigation treatments, seed and seedling traits, starch to carbohydrate ratio in seed, protein concentration and glutathione reductase were investigatied in a factorial format based on a randomized complete block design with three replications. Results showed that percentage of changes from the lowest to the highest value for traits including seed vigor, seed endosperm weight, seed coat weight, accelerated aging, cold test, seedling biomass and seedling length were 25, 37, 65, 65, 55, 77, 55, 65 and 79, respectively and germination uniformity was 3.9 times higher than the lowest amount. According to the deterioration percentage, seed vigor and the percentage of seed germination in cold test data, it can be reported that seed production by 100% FC was not appropriate for rainfed plots. However, considering the the appropriate results in the percentage of germination for a cold test, germination uniformity percentage, and the lowest accelerated aging seeds, seed production under the rainfed conditions with 33% FC watering can be recommended. In-silico analysis was coducted on Glutathione reductase (GR) enzymes in Gossypium hirsutum. It is clear that GR has a Redox-active site and NADPH binding, and it interacts with Glutathione S transferase (GST). So, memory drought stress through inducing physiological drought tolerance mechanisms such as starch-to-carbohydrate ratio and GR can determine the suitable pattern for seed production for rainfed and low rainfall regions in a breeding program. Our study thus illustrated that seed reprduction under 33% FC equipped cotton with the tolerance against under draught stress from the seedling stage. This process is done through activating glutathione reductase and balancing the ratio of starch to carbohydrates concentration.
Collapse
Affiliation(s)
- Elham Faghani
- Cotton Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Amenehsadat Hashemi
- Agricultural Department, University of Applied Science and Technology, Sari, Mazandaran, Iran
| | - Mina Kazemian
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Hossein Razzaghi
- Agricultural Engineering Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| |
Collapse
|
3
|
Ishfaq N, Waraich EA, Ahmad M, Hussain S, Zulfiqar U, Din KU, Haider A, Yong JWH, Askri SMH, Ali HM. Mitigating drought-induced oxidative stress in wheat (Triticum aestivum L.) through foliar application of sulfhydryl thiourea. Sci Rep 2024; 14:15985. [PMID: 38987560 PMCID: PMC11237047 DOI: 10.1038/s41598-024-66506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought. Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.
Collapse
Affiliation(s)
- Nazia Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ejaz Ahmad Waraich
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Arslan Haider
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Tisarum R, Theerawitaya C, Praseartkul P, Chungloo D, Ullah H, Himanshu SK, Datta A, Cha-Um S. Screening cotton genotypes for their drought tolerance ability based on the expression level of dehydration-responsive element-binding protein and proline biosynthesis-related genes and morpho-physio-biochemical responses. PROTOPLASMA 2024; 261:783-798. [PMID: 38376598 DOI: 10.1007/s00709-024-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Drought stress adversely affects growth, development, productivity, and fiber quality of cotton (Gossypium hirsutum L). Breeding strategies to enhance drought tolerance require an improved knowledge of plant drought responses necessitating proper identification of drought-tolerant genotypes of crops, including cotton. The objective of this study was to classify the selected cotton genotypes for their drought tolerance ability based on morpho-physio-biochemical traits using Hierarchical Ward's cluster analysis. Five genotypes of cotton (Takfa 3, Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5) were selected as plant materials, and were grown under well-watered (WW; 98 ± 2% field capacity) and water-deficit (WD; 50 ± 2% field capacity) conditions for 16 days during the flower initiation stage. Data on morpho-physio-biochemical parameters and gene expression levels for these parameters were collected, and subsequently genotypes were classified either as a drought tolerant or drought susceptible one. Upregulation of GhPRP (proline-rich protein), GhP5CS (Δ1-pyrroline-5-carboxylate synthetase), and GhP5CR (Δ1-pyrroline-5-carboxylate reductase) in relation to free proline enrichment was observed in Takfa 3 genotype under WD condition. An accumulation of free proline, total soluble sugar, and potassium in plants under WD conditions was detected, which played a key role as major osmolytes controlling cellular osmotic potential. Magnesium and calcium concentrations were also enriched in leaves under WD conditions, functioning as essential elements and regulating photosynthetic abilities. Leaf greenness, net photosynthetic rate, stomatal conductance, and transpiration rate were also declined under WD conditions, leading to growth retardation, especially aboveground traits of Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5 genotypes. An increase in leaf temperature (1.1 - 4.0 °C) and crop water stress index (CWSI > 0.75) in relation to stomatal closure and reduced transpiration rate was recorded in cotton genotypes under WD conditions compared with WW conditions. Based on the increase of free proline, soluble sugar, leaf temperature, and CWSI, as well as the decrease of aboveground growth traits and physiological attributes, five genotypes were categorized into two cluster groups: drought tolerant (Takfa 3) and drought susceptible (Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5). The identified drought-tolerant cotton genotype, namely, Takfa 3, may be grown in areas experiencing drought conditions. It is recommended to further validate the yield traits of Takfa 3 under rainfed field conditions in drought-prone environments.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Hayat Ullah
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sushil Kumar Himanshu
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
5
|
Sugumar T, Shen G, Smith J, Zhang H. Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1238. [PMID: 38732452 PMCID: PMC11085490 DOI: 10.3390/plants13091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Over the years, the changes in the agriculture industry have been inevitable, considering the need to feed the growing population. As the world population continues to grow, food security has become challenged. Resources such as arable land and freshwater have become scarce due to quick urbanization in developing countries and anthropologic activities; expanding agricultural production areas is not an option. Environmental and climatic factors such as drought, heat, and salt stresses pose serious threats to food production worldwide. Therefore, the need to utilize the remaining arable land and water effectively and efficiently and to maximize the yield to support the increasing food demand has become crucial. It is essential to develop climate-resilient crops that will outperform traditional crops under any abiotic stress conditions such as heat, drought, and salt, as well as these stresses in any combinations. This review provides a glimpse of how plant breeding in agriculture has evolved to overcome the harsh environmental conditions and what the future would be like.
Collapse
Affiliation(s)
- Tharanya Sugumar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jennifer Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.S.); (J.S.)
| |
Collapse
|
6
|
Geng S, Gao W, Li S, Chen Q, Jiao Y, Zhao J, Wang Y, Wang T, Qu Y, Chen Q. Rapidly mining candidate cotton drought resistance genes based on key indicators of drought resistance. BMC PLANT BIOLOGY 2024; 24:129. [PMID: 38383284 PMCID: PMC10880307 DOI: 10.1186/s12870-024-04801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Focusing on key indicators of drought resistance is highly important for quickly mining candidate genes related to drought resistance in cotton. RESULTS In the present study, drought resistance was identified in drought resistance-related RIL populations during the flowering and boll stages, and multiple traits were evaluated; these traits included three key indicators: plant height (PH), single boll weight (SBW) and transpiration rate (Tr). Based on these three key indicators, three groups of extreme mixing pools were constructed for BSA-seq. Based on the mapping interval of each trait, a total of 6.27 Mb QTL intervals were selected on chromosomes A13 (3.2 Mb), A10 (2.45 Mb) and A07 (0.62 Mb) as the focus of this study. Based on the annotation information and qRT‒PCR analysis, three key genes that may be involved in the drought stress response of cotton were screened: GhF6'H1, Gh3AT1 and GhPER55. qRT‒PCR analysis of parental and extreme germplasm materials revealed that the expression of these genes changed significantly under drought stress. Cotton VIGS experiments verified the important impact of key genes on cotton drought resistance. CONCLUSIONS This study focused on the key indicators of drought resistance, laying the foundation for the rapid mining of drought-resistant candidate genes in cotton and providing genetic resources for directed molecular breeding of drought resistance in cotton.
Collapse
Affiliation(s)
- Shiwei Geng
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Wenju Gao
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Shengmei Li
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Qin Chen
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yang Jiao
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Jieyin Zhao
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yuxiang Wang
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - TingWei Wang
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yanying Qu
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Quanjia Chen
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
7
|
Pu Y, Wang P, Xu J, Yang Y, Zhou T, Zheng K, Pei X, Chen Q, Sun G. Overexpression of the Caragana korshinskii com58276 Gene Enhances Tolerance to Drought in Cotton ( Gossypium hirsutum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1069. [PMID: 36903928 PMCID: PMC10005422 DOI: 10.3390/plants12051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The increasing water scarcity associated with environmental change brings significant negative impacts to the growth of cotton plants, whereby it is urgent to enhance plant tolerance to drought. Here, we overexpressed the com58276 gene isolated from the desert plant Caragana korshinskii in cotton plants. We obtained three OE plants and demonstrated that com58276 confers drought tolerance in cotton after subjecting transgenic seeds and plants to drought. RNA-seq revealed the mechanisms of the possible anti-stress response, and that the overexpression of com58276 does not affect growth and fiber content in OE cotton plants. The function of com58276 is conserved across species, improving the tolerance of cotton to salt and low temperature, and demonstrating its applicability to improve plant resistance to environmental change.
Collapse
Affiliation(s)
- Yuanchun Pu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangling Xu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yejun Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ting Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Khan MT, Ahmed S, Sardar R, Shareef M, Abbasi A, Mohiuddin M, Ercisli S, Fiaz S, Marc RA, Attia K, Khan N, Golokhvast KS. Impression of foliar-applied folic acid on coriander ( Coriandrum sativum L.) to regulate aerial growth, biochemical activity, and essential oil profiling under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1005710. [PMID: 36340333 PMCID: PMC9633984 DOI: 10.3389/fpls.2022.1005710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Drought is one of the major environmental limitations in the crop production sector that has a great impact on food security worldwide. Coriander (Coriandrum sativum L.) is an herbaceous angiosperm of culinary significance and highly susceptible to rootzone dryness. Elucidating the drought-induced physio-chemical changes and the foliar-applied folic acid (FA; vitamin B9)-mediated stress tolerance mechanism of coriander has been found as a research hotspot under the progressing water scarcity challenges for agriculture. The significance of folic acid in ameliorating biochemical activities for the improved vegetative growth and performance of coriander under the mild stress (MS75), severe stress (SS50), and unstressed (US100) conditions was examined in this study during two consecutive seasons. The results revealed that the plants treated with 50 mM FA showed the highest plant fresh biomass, leaf fresh biomass, and shoot fresh biomass from bolting stage to seed filling stage under mild drought stress. In addition, total soluble sugars, total flavonoids content, and chlorophyll content showed significant results by the foliar application of FA, while total phenolic content showed non-significant results under MS75 and SS50. It was found that 50 mM of FA upregulated the activity of catalase, superoxide dismutase, and ascorbate peroxidase enzymes in MS75 and SS50 plants compared with untreated FA plants. Thus, FA treatment improved the overall biological yield and economic yield regardless of water deficit conditions. FA-accompanied plants showed a decline in drought susceptibility index, while it improved the drought tolerance efficiency, indicating this variety to become stress tolerant. The optimum harvest index, essential oil (EO) percentage, and oil yield were found in MS75 followed by SS50 in FA-supplemented plants. The gas chromatography-mass spectrometry analysis revealed a higher abundance of linalool as the major chemical constituent of EO, followed by α-terpeniol, terpinene, and p-Cymene in FA-treated SS50 plants. FA can be chosen as a shotgun tactic to improve drought tolerance in coriander by delimiting the drastic changes due to drought stress.
Collapse
Affiliation(s)
- Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Muhammad Mohiuddin
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Kiril S. Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology, Russian Academy of Sciences (RAS), Krasnoobsk, Russia
| |
Collapse
|