1
|
Bianchetti R, Ali A, Gururani M. Abscisic acid and ethylene coordinating fruit ripening under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112243. [PMID: 39233143 DOI: 10.1016/j.plantsci.2024.112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Fleshy fruit metabolism is intricately influenced by environmental changes, yet the hormonal regulations underlying these responses remain poorly elucidated. ABA and ethylene, pivotal in stress responses across plant vegetative tissues, play crucial roles in triggering fleshy fruit ripening. Their actions are intricately governed by complex mechanisms, influencing key aspects such as nutraceutical compound accumulation, sugar content, and softening parameters. Both hormones are essential orchestrators of significant alterations in fruit development in response to stressors like drought, salt, and temperature fluctuations. These alterations encompass colour development, sugar accumulation, injury mitigation, and changes in cell-wall degradation and ripening progression. This review provides a comprehensive overview of recent research progress on the roles of ABA and ethylene in responding to drought, salt, and temperature stress, as well as the molecular mechanisms controlling ripening in environmental cues. Additionally, we propose further studies aimed at genetic manipulation of ABA and ethylene signalling, offering potential strategies to enhance fleshy fruit resilience in the face of future climate change scenarios.
Collapse
Affiliation(s)
- Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy
| | - Mayank Gururani
- Biology department, College of Science, UAE University, P.O.Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
Yang W, He Y, Li W, Dai M, Wu B, Zhang Z, Shi J, Song Z. PpERF-CRF3 selected by transcriptomic analysis plays key roles in the regulation of ABA alleviating chilling injury in peach fruit. Int J Biol Macromol 2024; 282:136850. [PMID: 39461629 DOI: 10.1016/j.ijbiomac.2024.136850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Abscisic acid (ABA) is widely utilized to mitigate chilling injury (CI) of fruit. However, the molecular mechanism of ABA alleviates CI in peach fruit remain unclear. Herein, 10-4 M ABA treatment significantly mitigated the CI of peach fruit by reducing relative conductivity and malondialdehyde content, while increasing proline and endogenous ABA content. Transcriptomic analysis indicated that an abundant number of differentially expressed genes were altered by ABA treatment, which primarily enriched pathways such as plant hormone signal transduction, glycerophospholipid metabolism and phenylpropanoid biosynthesis. RNA-Seq results indicate that ABA modulates the transcription of genes involved in auxin, ABA and ethylene signal transduction, as well as in cell wall degradation, antioxidant, fatty acid desaturation and proline metabolism. RT-qPCR confirmed the RNA-Seq results, ABA treatment induced the transcription of proline metabolism related genes (PpP5CR2, PpP5CS, PpP5CS1) and PpERF-CRF3. Particularly noteworthy, as a nuclear protein, PpERF-CRF3 activated the expression of PpP5CR2 and PpP5CS by directly binding to their promoters and over-expression PpERF-CRF3 increased proline content and enhanced PpP5CR2 and PpP5CS expression. Overall, these findings suggest that ABA mitigates CI in peach fruit may be by mediating these pathways, and PpERF-CRF3 potentially involves this process by stimulating the expression of genes related to proline synthesis.
Collapse
Affiliation(s)
- Wenteng Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan He
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wenhui Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mei Dai
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Zheng Zhang
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
3
|
Wu W, Cao SF, Shi LY, Chen W, Yin XR, Yang ZF. Abscisic acid biosynthesis, metabolism and signaling in ripening fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1279031. [PMID: 38126013 PMCID: PMC10731311 DOI: 10.3389/fpls.2023.1279031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Fruits are highly recommended nowadays in human diets because they are rich in vitamins, minerals, fibers and other necessary nutrients. The final stage of fruit production, known as ripening, plays a crucial role in determining the fruit's quality and commercial value. This is a complex physiological process, which involves many phytohormones and regulatory factors. Among the phytohormones involved in fruit ripening, abscisic acid (ABA) holds significant importance. ABA levels generally increase during the ripening process in most fruits, and applying ABA externally can enhance fruit flavor, hasten softening, and promote color development through complex signal regulation. Therefore, gaining a deeper understanding of ABA's mechanisms in fruit ripening is valuable for regulating various fruit characteristics, making them more suitable for consumption or storage. This, in turn, can generate greater economic benefits and reduce postharvest losses. This article provides an overview of the relationship between ABA and fruit ripening. It summarizes the effects of ABA on ripening related traits, covering the biochemical aspects and the underlying molecular mechanisms. Additionally, the article discusses the interactions of ABA with other phytohormones during fruit ripening, especially ethylene, and provides perspectives for future exploration in this field.
Collapse
Affiliation(s)
- Wei Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shi-feng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Li-yu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen-feng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Franzoni G, Spadafora ND, Sirangelo TM, Ferrante A, Rogers HJ. Biochemical and molecular changes in peach fruit exposed to cold stress conditions. MOLECULAR HORTICULTURE 2023; 3:24. [PMID: 37953307 PMCID: PMC10641970 DOI: 10.1186/s43897-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Storage or transportation temperature is very important for preserving the quality of fruit. However, low temperature in sensitive fruit such as peach can induce loss of quality. Fruit exposed to a specific range of temperatures and for a longer period can show chilling injury (CI) symptoms. The susceptibility to CI at low temperature varies among cultivars and genetic backgrounds. Along with agronomic management, appropriate postharvest management can limit quality losses. The importance of correct temperature management during postharvest handling has been widely demonstrated. Nowadays, due to long-distance markets and complex logistics that require multiple actors, the management of storage/transportation conditions is crucial for the quality of products reaching the consumer.Peach fruit exposed to low temperatures activate a suite of physiological, metabolomic, and molecular changes that attempt to counteract the negative effects of chilling stress. In this review an overview of the factors involved, and plant responses is presented and critically discussed. Physiological disorders associated with CI generally only appear after the storage/transportation, hence early detection methods are needed to monitor quality and detect internal changes which will lead to CI development. CI detection tools are assessed: they need to be easy to use, and preferably non-destructive to avoid loss of products.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
5
|
Liu W, Ren W, Liu X, He L, Qin C, Wang P, Kong L, Li Y, Liu Y, Ma W. Identification and characterization of Dof genes in Cerasus humilis. FRONTIERS IN PLANT SCIENCE 2023; 14:1152685. [PMID: 37077646 PMCID: PMC10106723 DOI: 10.3389/fpls.2023.1152685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Introduction Dof genes encode plant-specific transcription factors, which regulate various biological processes such as growth, development, and secondary metabolite accumulation. Methods We conducted whole-genome analysis of Chinese dwarf cherry (Cerasus humilis) to identify ChDof genes and characterize the structure, motif composition, cis-acting elements, chromosomal distribution, and collinearity of these genes as well as the physical and chemical properties, amino acid sequences, and phylogenetic evolution of the encoded proteins. Results The results revealed the presence of 25 ChDof genes in C. humilis genome. All 25 ChDof genes could be divided into eight groups, and the members of the same group had similar motif arrangement and intron-exon structure. Promoter analysis showed that cis-acting elements responsive to abscisic acid, low temperature stress, and light were dominant. Transcriptome data revealed that most ChDof genes exhibited tissue-specific expression. Then, we performed by qRT-PCR to analyze the expression patterns of all 25 ChDof genes in fruit during storage. The results indicated that these genes exhibited different expression patterns, suggesting that they played an important role in fruit storage. Discussion The results of this study provide a basis for further investigation of the biological function of Dof genes in C. humilis fruit.
Collapse
Affiliation(s)
- Weili Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Lianqing He
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Li
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Yunwei Liu
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Chilling injury tolerance induced by quarantine hot water treatment in mango fruit is associated with an increase in the synthesis of gallotannins in the pulp. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Kumar Patel M, Fanyuk M, Feyngenberg O, Maurer D, Sela N, Ovadia R, Oren Sahmir M, Alkan N. Phenylalanine induces mango fruit resistance against chilling injuries during storage at suboptimal temperature. Food Chem 2022; 405:134909. [DOI: 10.1016/j.foodchem.2022.134909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
|