1
|
Lumaca M, Keller PE, Baggio G, Pando-Naude V, Bajada CJ, Martinez MA, Hansen JH, Ravignani A, Joe N, Vuust P, Vulić K, Sandberg K. Frontoparietal network topology as a neural marker of musical perceptual abilities. Nat Commun 2024; 15:8160. [PMID: 39289390 PMCID: PMC11408523 DOI: 10.1038/s41467-024-52479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Why are some individuals more musical than others? Neither cognitive testing nor classical localizationist neuroscience alone can provide a complete answer. Here, we test how the interplay of brain network organization and cognitive function delivers graded perceptual abilities in a distinctively human capacity. We analyze multimodal magnetic resonance imaging, cognitive, and behavioral data from 200+ participants, focusing on a canonical working memory network encompassing prefrontal and posterior parietal regions. Using graph theory, we examine structural and functional frontoparietal network organization in relation to assessments of musical aptitude and experience. Results reveal a positive correlation between perceptual abilities and the integration efficiency of key frontoparietal regions. The linkage between functional networks and musical abilities is mediated by working memory processes, whereas structural networks influence these abilities through sensory integration. Our work lays the foundation for future investigations into the neurobiological roots of individual differences in musicality.
Collapse
Affiliation(s)
- M Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - P E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - G Baggio
- Language Acquisition and Language Processing Lab, Norwegian University of Science and Technology, Trondheim, Norway
| | - V Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - C J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta / University of Malta Magnetic Resonance Imaging Research Platform, Msida, Malta
| | - M A Martinez
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - J H Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - A Ravignani
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - N Joe
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - K Vulić
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - K Sandberg
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Bihari A, Nárai Á, Kleber B, Zsuga J, Hermann P, Vidnyánszky Z. Operatic voices engage the default mode network in professional opera singers. Sci Rep 2024; 14:21313. [PMID: 39266561 PMCID: PMC11393415 DOI: 10.1038/s41598-024-71458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Extensive research with musicians has shown that instrumental musical training can have a profound impact on how acoustic features are processed in the brain. However, less is known about the influence of singing training on neural activity during voice perception, particularly in response to salient acoustic features, such as the vocal vibrato in operatic singing. To address this gap, the present study employed functional magnetic resonance imaging (fMRI) to measure brain responses in trained opera singers and musically untrained controls listening to recordings of opera singers performing in two distinct styles: a full operatic voice with vibrato, and a straight voice without vibrato. Results indicated that for opera singers, perception of operatic voice led to differential fMRI activations in bilateral auditory cortical regions and the default mode network. In contrast, musically untrained controls exhibited differences only in bilateral auditory cortex. These results suggest that operatic singing training triggers experience-dependent neural changes in the brain that activate self-referential networks, possibly through embodiment of acoustic features associated with one's own singing style.
Collapse
Affiliation(s)
- Adél Bihari
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Judit Zsuga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Liu D, Chang Y, Dai G, Guo Z, Jones JA, Li T, Chen X, Chen M, Li J, Wu X, Liu P, Liu H. Right, but not left, posterior superior temporal gyrus is causally involved in vocal feedback control. Neuroimage 2023; 278:120282. [PMID: 37468021 DOI: 10.1016/j.neuroimage.2023.120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
The posterior superior temporal gyrus (pSTG) has been implicated in the integration of auditory feedback and motor system for controlling vocal production. However, the question as to whether and how the pSTG is causally involved in vocal feedback control is currently unclear. To this end, the present study selectively stimulated the left or right pSTG with continuous theta burst stimulation (c-TBS) in healthy participants, then used event-related potentials to investigate neurobehavioral changes in response to altered auditory feedback during vocal pitch regulation. The results showed that, compared to control (vertex) stimulation, c-TBS over the right pSTG led to smaller vocal compensations for pitch perturbations accompanied by smaller cortical N1 and larger P2 responses. Enhanced P2 responses received contributions from the right-lateralized temporal and parietal regions as well as the insula, and were significantly correlated with suppressed vocal compensations. Surprisingly, these effects were not found when comparing c-TBS over the left pSTG with control stimulation. Our findings provide evidence, for the first time, that supports a causal relationship between right, but not left, pSTG and auditory-motor integration for vocal pitch regulation. This lends support to a right-lateralized contribution of the pSTG in not only the bottom-up detection of vocal feedback errors but also the involvement of driving motor commands for error correction in a top-down manner.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Guo
- School of Computer, Zhuhai College of Science and Technology, Zhuhai, China
| | - Jeffery A Jones
- Department of Psychology and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Centre for Eye and Vision Research, 17W Science Park, Hong Kong SAR, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
M B, Swathi C, Shameer S. Estimation of efferent inhibition and speech in noise perception on vocal musicians and music sleepers: A comparative study. J Otol 2023; 18:91-96. [PMID: 37153705 PMCID: PMC10159755 DOI: 10.1016/j.joto.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
|
5
|
Zatorre RJ. Hemispheric asymmetries for music and speech: Spectrotemporal modulations and top-down influences. Front Neurosci 2022; 16:1075511. [PMID: 36605556 PMCID: PMC9809288 DOI: 10.3389/fnins.2022.1075511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Hemispheric asymmetries in auditory cognition have been recognized for a long time, but their neural basis is still debated. Here I focus on specialization for processing of speech and music, the two most important auditory communication systems that humans possess. A great deal of evidence from lesion studies and functional imaging suggests that aspects of music linked to the processing of pitch patterns depend more on right than left auditory networks. A complementary specialization for temporal resolution has been suggested for left auditory networks. These diverse findings can be integrated within the context of the spectrotemporal modulation framework, which has been developed as a way to characterize efficient neuronal encoding of complex sounds. Recent studies show that degradation of spectral modulation impairs melody perception but not speech content, whereas degradation of temporal modulation has the opposite effect. Neural responses in the right and left auditory cortex in those studies are linked to processing of spectral and temporal modulations, respectively. These findings provide a unifying model to understand asymmetries in terms of sensitivity to acoustical features of communication sounds in humans. However, this explanation does not account for evidence that asymmetries can shift as a function of learning, attention, or other top-down factors. Therefore, it seems likely that asymmetries arise both from bottom-up specialization for acoustical modulations and top-down influences coming from hierarchically higher components of the system. Such interactions can be understood in terms of predictive coding mechanisms for perception.
Collapse
|
6
|
Hansen NC, Højlund A, Møller C, Pearce M, Vuust P. Musicians show more integrated neural processing of contextually relevant acoustic features. Front Neurosci 2022; 16:907540. [PMID: 36312026 PMCID: PMC9612920 DOI: 10.3389/fnins.2022.907540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Little is known about expertise-related plasticity of neural mechanisms for auditory feature integration. Here, we contrast two diverging hypotheses that musical expertise is associated with more independent or more integrated predictive processing of acoustic features relevant to melody perception. Mismatch negativity (MMNm) was recorded with magnetoencephalography (MEG) from 25 musicians and 25 non-musicians, exposed to interleaved blocks of a complex, melody-like multi-feature paradigm and a simple, oddball control paradigm. In addition to single deviants differing in frequency (F), intensity (I), or perceived location (L), double and triple deviants were included reflecting all possible feature combinations (FI, IL, LF, FIL). Following previous work, early neural processing overlap was approximated in terms of MMNm additivity by comparing empirical MMNms obtained with double and triple deviants to modeled MMNms corresponding to summed constituent single-deviant MMNms. Significantly greater subadditivity was found in musicians compared to non-musicians, specifically for frequency-related deviants in complex, melody-like stimuli. Despite using identical sounds, expertise effects were absent from the simple oddball paradigm. This novel finding supports the integrated processing hypothesis whereby musicians recruit overlapping neural resources facilitating more integrative representations of contextually relevant stimuli such as frequency (perceived as pitch) during melody perception. More generally, these specialized refinements in predictive processing may enable experts to optimally capitalize upon complex, domain-relevant, acoustic cues.
Collapse
Affiliation(s)
- Niels Chr. Hansen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Dramaturgy and Musicology, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- *Correspondence: Niels Chr. Hansen,
| | - Andreas Højlund
- Department of Linguistics, Cognitive Science, and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Cecilie Møller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Marcus Pearce
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- School of Electronic Engineering and Computer Science, Cognitive Science Research Group and Centre for Digital Music, Queen Mary University of London, London, United Kingdom
| | - Peter Vuust
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
7
|
Gertsovski A, Ahissar M. Reduced Learning of Sound Categories in Dyslexia Is Associated with Reduced Regularity-Induced Auditory Cortex Adaptation. J Neurosci 2022; 42:1328-1342. [PMID: 34969869 PMCID: PMC8883854 DOI: 10.1523/jneurosci.1533-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/21/2022] Open
Abstract
A main characteristic of dyslexia is poor use of sound categories. We now studied within-session learning of new sound categories in dyslexia, behaviorally and neurally, using fMRI. Human participants (males and females) with and without dyslexia were asked to discriminate which of two serially-presented tones had a higher pitch. The task was administered in two protocols, with and without a repeated reference frequency. The reference condition introduces regularity, and enhances frequency sensitivity in typically developing (TD) individuals. Enhanced sensitivity facilitates the formation of "high" and "low" pitch categories above and below this reference, respectively. We found that in TDs, learning was paralleled by a gradual decrease in activation of the primary auditory cortex (PAC), and reduced activation of the superior temporal gyrus (STG) and left posterior parietal cortex (PPC), which are important for using sensory history. No such sensitivity was found among individuals with dyslexia (IDDs). Rather, IDDs showed reduced behavioral learning of stimulus regularities and no regularity-associated adaptation in the auditory cortex or in higher-level regions. We propose that IDDs' reduced cortical adaptation, associated with reduced behavioral learning of sound regularities, underlies their impoverished use of stimulus history, and consequently impedes their formation of rich sound categories.SIGNIFICANCE STATEMENT Reading difficulties in dyslexia are often attributed to poor use of phonological categories. To test whether poor category use could result from poor learning of new sound categories in general, we administered an auditory discrimination task that examined the learning of new pitch categories above and below a repeated reference sound. Individuals with dyslexia (IDDs) learned categories slower than typically developing (TD) individuals. TD individuals showed adaptation to the repeated sounds that paralleled the category learning in their primary auditory cortex (PAC) and other higher-level regions. In dyslexia, no brain region showed such adaptation. We suggest that poor learning of sound statistics in sensory regions may underlie the poor representations of both speech and nonspeech categories in dyslexia.
Collapse
Affiliation(s)
- Ayelet Gertsovski
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Merav Ahissar
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
8
|
Abstract
Human speech perception results from neural computations that transform external acoustic speech signals into internal representations of words. The superior temporal gyrus (STG) contains the nonprimary auditory cortex and is a critical locus for phonological processing. Here, we describe how speech sound representation in the STG relies on fundamentally nonlinear and dynamical processes, such as categorization, normalization, contextual restoration, and the extraction of temporal structure. A spatial mosaic of local cortical sites on the STG exhibits complex auditory encoding for distinct acoustic-phonetic and prosodic features. We propose that as a population ensemble, these distributed patterns of neural activity give rise to abstract, higher-order phonemic and syllabic representations that support speech perception. This review presents a multi-scale, recurrent model of phonological processing in the STG, highlighting the critical interface between auditory and language systems.
Collapse
Affiliation(s)
- Ilina Bhaya-Grossman
- Department of Neurological Surgery, University of California, San Francisco, California 94143, USA;
- Joint Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California 94720, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
9
|
Abstract
Adult ability in complex cognitive domains, including music, is commonly thought of as the product of gene-environment interactions, where genetic predispositions influence and are modulated by experience, resulting in the final phenotypic expression. Recently, however, the important contribution of maturation to gene-environment interactions has become better understood. Thus, the timing of exposure to specific experience, such as music training, has been shown to produce long-term impacts on adult behaviour and the brain. Work from our lab and others shows that musical training before the ages of 7-9 enhances performance on musical tasks and modifies brain structure and function, sometimes in unexpected ways. The goal of this paper is to present current evidence for sensitive period effects for musical training in the context of what is known about brain maturation and to present a framework that integrates genetic, environmental and maturational influences on the development of musical skill. We believe that this framework can also be applied more broadly to understanding how predispositions, brain development and experience interact.
Collapse
|
10
|
Abstract
Despite the remarkable variability music displays across cultures, certain recurrent musical features motivate the hypothesis that fundamental cognitive principles constrain the way music is produced. One such feature concerns the structure of musical scales. The vast majority of musical cultures use scales that are not uniformly symmetric-that is, scales that contain notes spread unevenly across the octave. Here we present evidence that the structure of musical scales has a substantial impact on how listeners learn new musical systems. Three experiments were conducted to test the hypothesis that nonuniformity facilitates the processing of melodies. Novel melodic stimuli were composed based on artificial grammars using scales with different levels of symmetry. Experiment 1 tested the acquisition of tonal hierarchies and melodic regularities on three different 12-tone equal-tempered scales using a finite-state grammar. Experiments 2 and 3 used more flexible Markov-chain grammars and were designed to generalize the effect to 14-tone and 16-tone equal-tempered scales. The results showed that performance was significantly enhanced by scale structures that specified the tonal space by providing unique intervallic relations between notes. These results suggest that the learning of novel musical systems is modulated by the symmetry of scales, which in turn may explain the prevalence of nonuniform scales across musical cultures.
Collapse
|
11
|
Lin Q, Chang Y, Liu P, Jones JA, Chen X, Peng D, Chen M, Wu C, Liu H. Cerebellar Continuous Theta Burst Stimulation Facilitates Auditory-Vocal Integration in Spinocerebellar Ataxia. Cereb Cortex 2021; 32:455-466. [PMID: 34240142 DOI: 10.1093/cercor/bhab222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical studies have shown the efficacy of transcranial magnetic stimulation in treating movement disorders in patients with spinocerebellar ataxia (SCA). However, whether similar effects occur for their speech motor disorders remains largely unknown. The present event-related potential study investigated whether and how abnormalities in auditory-vocal integration associated with SCA can be modulated by neuronavigated continuous theta burst stimulation (c-TBS) over the right cerebellum. After receiving active or sham cerebellar c-TBS, 19 patients with SCA were instructed to produce sustained vowels while hearing their voice unexpectedly pitch-shifted by ±200 cents. Behaviorally, active cerebellar c-TBS led to smaller magnitudes of vocal compensations for pitch perturbations than sham stimulation. Parallel modulatory effects were also observed at the cortical level, as reflected by increased P1 and P2 responses but decreased N1 responses elicited by active cerebellar c-TBS. Moreover, smaller magnitudes of vocal compensations were predicted by larger amplitudes of cortical P1 and P2 responses. These findings provide the first neurobehavioral evidence that c-TBS over the right cerebellum produces modulatory effects on abnormal auditory-motor integration for vocal pitch regulation in patients with SCA, offering a starting point for the treatment of speech motor disorders associated with SCA with cerebellar c-TBS.
Collapse
Affiliation(s)
- Qing Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danhua Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Harvey A, Hou L, Davidson-Kelly K, Schaefer RS, Hong S, Mangin JF, Overy K, Roberts N. Increased representation of the non-dominant hand in pianists demonstrated by measurement of 3D morphology of the central sulcus. PSYCHORADIOLOGY 2021; 1:66-72. [PMID: 38665358 PMCID: PMC10939323 DOI: 10.1093/psyrad/kkab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 04/28/2024]
Abstract
Background Post-mortem and magnetic resonance imaging (MRI) studies of the central sulcus, as an indicator of motor cortex, have shown that in the general population there is greater representation of the dominant compared to the non-dominant hand. Studies of musicians, who are highly skilled in performing complex finger movements, have suggested this dominance is affected by musical training, but methods and findings have been mixed. Objective In the present study, an automated image analysis pipeline using a 3D mesh approach was applied to measure central sulcus (CS) asymmetry on MR images obtained for a cohort of right-handed pianists and matched controls. Methods The depth, length, and surface area (SA) of the CS and thickness of the cortical mantle adjacent to the CS were measured in each cerebral hemisphere by applying the BrainVISA Morphologist 2012 software pipeline to 3D T1-weighted MR images of the brain obtained for 15 right-handed pianists and 14 controls, matched with respect to age, sex, and handedness. Asymmetry indices (AIs) were calculated for each parameter and multivariate analysis of covariance (MANCOVA), and post hoc tests were performed to compare differences between the pianist and control groups. Results A one-way MANCOVA across the four AIs, controlling for age and sex, revealed a significant main effect of group (P = 0.04), and post hoc analysis revealed that while SA was significantly greater in the left than the right cerebral hemisphere in controls (P < 0.001), there was no significant difference between left and right SA in the pianists (P = 0.634). Independent samples t-tests revealed that the SA of right CS was significantly larger in pianists compared to controls (P = 0.015), with no between-group differences in left CS. Conclusions Application of an image analysis pipeline to 3D MR images has provided robust evidence of significantly increased representation of the non-dominant hand in the brain of pianists compared to age-, sex-, and handedness-matched controls. This finding supports prior research showing structural differences in the central sulcus in musicians and is interpreted to reflect the long-term motor training and high skill level of right-handed pianists in using their left hand.
Collapse
Affiliation(s)
- Adam Harvey
- Reid School of Music, Alison House, 12 Nicolson Square, University of Edinburgh, EH8 9DF, UK
- School of Clinical Sciences, The Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK
| | - Lewis Hou
- School of Clinical Sciences, The Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK
| | | | - Rebecca S Schaefer
- Health, Medical and Neuropsychology Unit, Institute for Psychology, Leiden University, Leiden, The Netherlands
- Academy of Creative and Performing Arts, Leiden University, Leiden, The Netherlands
| | - Sujin Hong
- Neuropolitics Research Lab and Edinburgh Imaging, School of Social and Political Science, University of Edinburgh, EH8 9LN, UK
| | - Jean-François Mangin
- Université Paris-Saclay, CEA, Centre National de la Recherche Scientifique (CNRS), Neurospin, Baobab, Gif-sur-Yvette, France
| | - Katie Overy
- Reid School of Music, Alison House, 12 Nicolson Square, University of Edinburgh, EH8 9DF, UK
| | - Neil Roberts
- School of Clinical Sciences, The Queen's Medical Research Institute (QMRI), University of Edinburgh, EH16 4TJ, UK
| |
Collapse
|
13
|
Olszewska AM, Gaca M, Herman AM, Jednoróg K, Marchewka A. How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Front Neurosci 2021; 15:630829. [PMID: 33776638 PMCID: PMC7987793 DOI: 10.3389/fnins.2021.630829] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
Learning to play a musical instrument is a complex task that integrates multiple sensory modalities and higher-order cognitive functions. Therefore, musical training is considered a useful framework for the research on training-induced neuroplasticity. However, the classical nature-or-nurture question remains, whether the differences observed between musicians and non-musicians are due to predispositions or result from the training itself. Here we present a review of recent publications with strong focus on experimental designs to better understand both brain reorganization and the neuronal markers of predispositions when learning to play a musical instrument. Cross-sectional studies identified structural and functional differences between the brains of musicians and non-musicians, especially in regions related to motor control and auditory processing. A few longitudinal studies showed functional changes related to training while listening to and producing music, in the motor network and its connectivity with the auditory system, in line with the outcomes of cross-sectional studies. Parallel changes within the motor system and between the motor and auditory systems were revealed for structural connectivity. In addition, potential predictors of musical learning success were found including increased brain activation in the auditory and motor systems during listening, the microstructure of the arcuate fasciculus, and the functional connectivity between the auditory and the motor systems. We show that “the musical brain” is a product of both the natural human neurodiversity and the training practice.
Collapse
Affiliation(s)
- Alicja M Olszewska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra M Herman
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Matsushita R, Puschmann S, Baillet S, Zatorre RJ. Inhibitory effect of tDCS on auditory evoked response: Simultaneous MEG-tDCS reveals causal role of right auditory cortex in pitch learning. Neuroimage 2021; 233:117915. [PMID: 33652144 DOI: 10.1016/j.neuroimage.2021.117915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
A body of literature has demonstrated that the right auditory cortex (AC) plays a dominant role in fine pitch processing. However, our understanding is relatively limited about whether this asymmetry extends to perceptual learning of pitch. There is also a lack of causal evidence regarding the role of the right AC in pitch learning. We addressed these points with anodal transcranial direct current stimulation (tDCS), adapting a previous behavioral study in which anodal tDCS over the right AC was shown to block improvement of a microtonal pitch pattern learning task over 3 days. To address the physiological changes associated with tDCS, we recorded MEG data simultaneously with tDCS on the first day, and measured behavioral thresholds on the following two consecutive days. We tested three groups of participants who received anodal tDCS over their right or left AC, or sham tDCS, and measured the N1m auditory evoked response before, during, and after tDCS. Our data show that anodal tDCS of the right AC disrupted pitch discrimination learning up to two days after its application, whereas learning was unaffected by left-AC or sham tDCS. Although tDCS reduced the amplitude of the N1m ipsilaterally to the stimulated hemisphere on both left and right, only right AC N1m amplitude reductions were associated with the degree to which pitch learning was disrupted. This brain-behavior relationship confirms a causal link between right AC physiological responses and fine pitch processing, and provides neurophysiological insight concerning the mechanisms of action of tDCS on the auditory system.
Collapse
Affiliation(s)
- Reiko Matsushita
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2S9, Canada.
| | - Sebastian Puschmann
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; Institute of Psychology, Carl von Ossietzky University, Oldenburg 26111, Germany
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2S9, Canada.
| |
Collapse
|
15
|
Li Y, Tan M, Fan H, Wang EQ, Chen L, Li J, Chen X, Liu H. Neurobehavioral Effects of LSVT ® LOUD on Auditory-Vocal Integration in Parkinson's Disease: A Preliminary Study. Front Neurosci 2021; 15:624801. [PMID: 33716652 PMCID: PMC7952622 DOI: 10.3389/fnins.2021.624801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Individuals with Parkinson's disease (PD) are impaired in auditory-vocal integration, characterized by abnormal compensatory responses to auditory feedback errors during self-monitoring of vocal production. The present study examined whether auditory feedback control of vocal pitch production in PD can benefit from Lee Silverman voice treatment (LSVT® LOUD), a high effort, intensive speech treatment for hypokinetic dysarthria in PD. Before and immediately after LSVT LOUD, 12 individuals with PD were instructed to produce sustained vowel sounds while hearing their voice unexpectedly pitch-shifted by -200 cents. Their vocal responses and event-related potentials (ERPs) to pitch perturbations were measured to assess the treatment outcomes. A group of 12 healthy controls were one-to-one pair matched by age, sex, and language. Individuals with PD exhibited abnormally enhanced vocal and ERP P2 responses to pitch perturbations relative to healthy controls. Successful treatment with LSVT LOUD, however, led to significantly smaller and faster vocal compensations that were accompanied by significantly larger P2 responses. Moreover, improved vocal loudness during passage reading was significantly correlated with reduced vocal compensations for pitch perturbations. These preliminary findings provide the first neurobehavioral evidence for beneficial effects of LSVT LOUD on impaired auditory-vocal integration associated with PD, which may be related to improved laryngeal motor functions and a top-down modulation of the speech motor network by LSVT LOUD.
Collapse
Affiliation(s)
- Yongxue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingdan Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Fan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Emily Q. Wang
- Department of Communication Disorders and Sciences, RUSH University Medical Center, Chicago, IL, United States
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Coy N, Bader M, Schröger E, Grimm S. Change detection of auditory tonal patterns defined by absolute versus relative pitch information. A combined behavioural and EEG study. PLoS One 2021; 16:e0247495. [PMID: 33630974 PMCID: PMC7906474 DOI: 10.1371/journal.pone.0247495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
The human auditory system often relies on relative pitch information to extract and identify auditory objects; such as when the same melody is played in different keys. The current study investigated the mental chronometry underlying the active discrimination of unfamiliar melodic six-tone patterns by measuring behavioural performance and event-related potentials (ERPs). In a roving standard paradigm, such patterns were either repeated identically within a stimulus train, carrying absolute frequency information about the pattern, or shifted in pitch (transposed) between repetitions, so only relative pitch information was available to extract the pattern identity. Results showed that participants were able to use relative pitch to detect when a new melodic pattern occurred. Though in the absence of absolute pitch sensitivity significantly decreased and behavioural reaction time to pattern changes increased. Mismatch-Negativity (MMN), an ERP indicator of auditory deviance detection, was elicited at approximately 206 ms after stimulus onset at frontocentral electrodes, even when only relative pitch was available to inform pattern discrimination. A P3a was elicited in both conditions, comparable in amplitude and latency. Increased latencies but no differences in amplitudes of N2b, and P3b suggest that processing at higher levels is affected when, in the absence of absolute pitch cues, relative pitch has to be extracted to inform pattern discrimination. Interestingly, the response delay of approximately 70 ms on the behavioural level, already fully manifests at the level of N2b. This is in accordance with recent findings on implicit auditory learning processes and suggests that in the absence of absolute pitch cues a slowing of target selection rather than a slowing of the auditory pattern change detection process causes the deterioration in behavioural performance.
Collapse
Affiliation(s)
- Nina Coy
- Institute of Psychology–Wilhelm Wundt, Leipzig University, Leipzig, Germany
| | - Maria Bader
- Institute of Psychology–Wilhelm Wundt, Leipzig University, Leipzig, Germany
| | - Erich Schröger
- Institute of Psychology–Wilhelm Wundt, Leipzig University, Leipzig, Germany
| | - Sabine Grimm
- Institute of Psychology–Wilhelm Wundt, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Wenger E, Papadaki E, Werner A, Kühn S, Lindenberger U. Observing Plasticity of the Auditory System: Volumetric Decreases Along with Increased Functional Connectivity in Aspiring Professional Musicians. Cereb Cortex Commun 2021; 2:tgab008. [PMID: 34296157 PMCID: PMC8152844 DOI: 10.1093/texcom/tgab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Playing music relies on several sensory systems and the motor system, and poses strong demands on control processes, hence, offering an excellent model to study how experience can mold brain structure and function. Although most studies on neural correlates of music expertise rely on cross-sectional comparisons, here we compared within-person changes over time in aspiring professionals intensely preparing for an entrance exam at a University of the Arts to skilled amateur musicians not preparing for a music exam. In the group of aspiring professionals, we observed gray-matter volume decrements in left planum polare, posterior insula, and left inferior frontal orbital gyrus over a period of about 6 months that were absent among the amateur musicians. At the same time, the left planum polare, the largest cluster of structural change, showed increasing functional connectivity with left and right auditory cortex, left precentral gyrus, left supplementary motor cortex, left and right postcentral gyrus, and left cingulate cortex, all regions previously identified to relate to music expertise. In line with the expansion-renormalization pattern of brain plasticity (Wenger et al., 2017a. Expansion and renormalization of human brain structure during skill acquisition. Trends Cogn Sci. 21:930-939.), the aspiring professionals might have been in the selection and refinement period of plastic change.
Collapse
Affiliation(s)
- Elisabeth Wenger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Eleftheria Papadaki
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - André Werner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany, and WC1B 5EH London, UK
| |
Collapse
|
18
|
Penhune VB. A gene-maturation-environment model for understanding sensitive period effects in musical training. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Palomar-García MÁ, Hernández M, Olcina G, Adrián-Ventura J, Costumero V, Miró-Padilla A, Villar-Rodríguez E, Ávila C. Auditory and frontal anatomic correlates of pitch discrimination in musicians, non-musicians, and children without musical training. Brain Struct Funct 2020; 225:2735-2744. [PMID: 33029708 DOI: 10.1007/s00429-020-02151-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Individual differences in pitch discrimination have been associated with the volume of both the bilateral Heschl's gyrus and the right inferior frontal gyrus (IFG). However, most of these studies used samples composed of individuals with different amounts of musical training. Here, we investigated the relationship between pitch discrimination and individual differences in the gray matter (GM) volume of these brain structures in 32 adult musicians, 28 adult non-musicians, and 32 children without musical training. The results showed that (i) the individuals without musical training (whether children or adults) who were better at pitch discrimination had greater volume of auditory regions, whereas (ii) musicians with better pitch discrimination had greater volume of the IFG. These results suggest that the relationship between pitch discrimination and the volume of auditory regions is innately established early in life, and that musical training modulates the volume of the IFG, probably improving audio-motor connectivity. This is the first study to detect a relationship between pitch discrimination ability and GM volume before beginning any musical training in children and adults.
Collapse
Affiliation(s)
- María-Ángeles Palomar-García
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain.
| | - Mireia Hernández
- Cognition and Brain Plasticity Group, Department of Cognition, Development and Educational Psychology, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Gustau Olcina
- Neuropsychology and Functional Neuroimaging Group, Department of Education, University Jaume I, 12071, Castellón, Spain
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - Víctor Costumero
- Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| | - Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - Esteban Villar-Rodríguez
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| |
Collapse
|
20
|
Qi Z, Han M, Wang Y, de los Angeles C, Liu Q, Garel K, Chen ES, Whitfield-Gabrieli S, Gabrieli JD, Perrachione TK. Speech processing and plasticity in the right hemisphere predict variation in adult foreign language learning. Neuroimage 2019; 192:76-87. [DOI: 10.1016/j.neuroimage.2019.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
|
21
|
Germain E, Foster NEV, Sharda M, Chowdhury R, Tryfon A, Doyle-Thomas KAR, Anagnostou E, Hyde KL. Pitch direction ability predicts melodic perception in autism. Child Neuropsychol 2018; 25:445-465. [PMID: 29950145 DOI: 10.1080/09297049.2018.1488954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Individuals with autism spectrum disorders (ASDs) often present atypical auditory perception. Previous work has reported both enhanced low-level pitch discrimination and superior abilities to detect local pitch structure on higher-level melodic tasks in ASD. However, it is unclear how low and high levels of auditory perception are related in ASD or typical development (TD), or how this relationship might change across development and stimulus presentation rates. To these aims, in the present study, children with ASD and TD were tested on a low-level pitch direction discrimination task and a high-level melodic global-local task. Groups performed similarly on both of these auditory tasks. Moreover, individual differences in low-level pitch direction ability predicted performance on the higher-level global-local task, with a stronger relationship in ASD. Age did not affect the relationship between low-level and high-level pitch performance in either ASD or TD. However, there was a more positive effect of age on the high-level global-local task performance in TD than ASD. Finally, there was no effect of stimulus rate on the relationship between low-level and high-level pitch performance in either group. These findings provide a better understanding of how perception is associated across levels of processing in ASD versus TD. This work helps to better understand individual differences in auditory perception and to refine ASD phenotypes.
Collapse
Affiliation(s)
- Esther Germain
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada
| | - Nicholas E V Foster
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,c Medicine, McIntyre Medical Building , McGill University , Montreal , Quebec , Canada
| | - Megha Sharda
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada
| | - Rakhee Chowdhury
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada
| | - Ana Tryfon
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,c Medicine, McIntyre Medical Building , McGill University , Montreal , Quebec , Canada
| | - Krissy A R Doyle-Thomas
- d Holland Bloorview Kids Rehabilitation Hospital , University of Toronto , Toronto , ON , Canada
| | - Evdokia Anagnostou
- d Holland Bloorview Kids Rehabilitation Hospital , University of Toronto , Toronto , ON , Canada
| | - Krista L Hyde
- a International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont-Royal, Department of Psychology , University of Montreal , Montreal , Quebec , Canada.,b Arts and Sciences, Pavillon Lionel-Groulx , Université de Montréal , Montréal , Québec Canada.,c Medicine, McIntyre Medical Building , McGill University , Montreal , Quebec , Canada
| |
Collapse
|
22
|
Wollman I, Penhune V, Segado M, Carpentier T, Zatorre RJ. Neural network retuning and neural predictors of learning success associated with cello training. Proc Natl Acad Sci U S A 2018; 115:E6056-E6064. [PMID: 29891670 PMCID: PMC6042146 DOI: 10.1073/pnas.1721414115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The auditory and motor neural systems are closely intertwined, enabling people to carry out tasks such as playing a musical instrument whose mapping between action and sound is extremely sophisticated. While the dorsal auditory stream has been shown to mediate these audio-motor transformations, little is known about how such mapping emerges with training. Here, we use longitudinal training on a cello as a model for brain plasticity during the acquisition of specific complex skills, including continuous and many-to-one audio-motor mapping, and we investigate individual differences in learning. We trained participants with no musical background to play on a specially designed MRI-compatible cello and scanned them before and after 1 and 4 wk of training. Activation of the auditory-to-motor dorsal cortical stream emerged rapidly during the training and was similarly activated during passive listening and cello performance of trained melodies. This network activation was independent of performance accuracy and therefore appears to be a prerequisite of music playing. In contrast, greater recruitment of regions involved in auditory encoding and motor control over the training was related to better musical proficiency. Additionally, pre-supplementary motor area activity and its connectivity with the auditory cortex during passive listening before training was predictive of final training success, revealing the integrative function of this network in auditory-motor information processing. Together, these results clarify the critical role of the dorsal stream and its interaction with auditory areas in complex audio-motor learning.
Collapse
Affiliation(s)
- Indiana Wollman
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada;
- Center for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC H3A 1E3, Canada
- International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2J2, Canada
| | - Virginia Penhune
- Center for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC H3A 1E3, Canada
- International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2J2, Canada
- Laboratory for Motor Learning and Neural Plasticity, Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Melanie Segado
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Center for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC H3A 1E3, Canada
- International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2J2, Canada
| | - Thibaut Carpentier
- CNRS, Institut de Recherche et Coordination Acoustique/Musique, Sorbonne Université, UMR 9912 Sciences et Technologies de la Musique et du Son, 75004 Paris, France
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Center for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC H3A 1E3, Canada
- International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2J2, Canada
| |
Collapse
|
23
|
Lumaca M, Ravignani A, Baggio G. Music Evolution in the Laboratory: Cultural Transmission Meets Neurophysiology. Front Neurosci 2018; 12:246. [PMID: 29713263 PMCID: PMC5911491 DOI: 10.3389/fnins.2018.00246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and “users” of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs). We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems.
Collapse
Affiliation(s)
- Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Andrea Ravignani
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium.,Research Department, Sealcentre Pieterburen, Pieterburen, Netherlands.,Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Giosuè Baggio
- Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
24
|
Irvine DRF. Auditory perceptual learning and changes in the conceptualization of auditory cortex. Hear Res 2018; 366:3-16. [PMID: 29551308 DOI: 10.1016/j.heares.2018.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Perceptual learning, improvement in discriminative ability as a consequence of training, is one of the forms of sensory system plasticity that has driven profound changes in our conceptualization of sensory cortical function. Psychophysical and neurophysiological studies of auditory perceptual learning have indicated that the characteristics of the learning, and by implication the nature of the underlying neural changes, are highly task specific. Some studies in animals have indicated that recruitment of neurons to the population responding to the training stimuli, and hence an increase in the so-called cortical "area of representation" of those stimuli, is the substrate of improved performance, but such changes have not been observed in other studies. A possible reconciliation of these conflicting results is provided by evidence that changes in area of representation constitute a transient stage in the processes underlying perceptual learning. This expansion - renormalization hypothesis is supported by evidence from studies of the learning of motor skills, another form of procedural learning, but leaves open the nature of the permanent neural substrate of improved performance. Other studies have suggested that the substrate might be reduced response variability - a decrease in internal noise. Neuroimaging studies in humans have also provided compelling evidence that training results in long-term changes in auditory cortical function and in the auditory brainstem frequency-following response. Musical training provides a valuable model, but the evidence it provides is qualified by the fact that most such training is multimodal and sensorimotor, and that few of the studies are experimental and allow control over confounding variables. More generally, the overwhelming majority of experimental studies of the various forms of auditory perceptual learning have established the co-occurrence of neural and perceptual changes, but have not established that the former are causally related to the latter. Important forms of perceptual learning in humans are those involved in language acquisition and in the improvement in speech perception performance of post-lingually deaf cochlear implantees over the months following implantation. The development of a range of auditory training programs has focused interest on the factors determining the extent to which perceptual learning is specific or generalises to tasks other than those used in training. The context specificity demonstrated in a number of studies of perceptual learning suggests a multiplexing model, in which learning relating to a particular stimulus attribute depends on a subset of the diverse inputs to a given cortical neuron being strengthened, and different subsets being gated by top-down influences. This hypothesis avoids the difficulty of balancing system stability with plasticity, which is a problem for recruitment hypotheses. The characteristics of auditory perceptual learning reflect the fact that auditory cortex forms part of distributed networks that integrate the representation of auditory stimuli with attention, decision, and reward processes.
Collapse
Affiliation(s)
- Dexter R F Irvine
- Bionics Institute, East Melbourne, Victoria 3002, Australia; School of Psychological Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|
25
|
Tang C, Hamilton LS, Chang EF. Intonational speech prosody encoding in the human auditory cortex. Science 2017; 357:797-801. [PMID: 28839071 PMCID: PMC9584035 DOI: 10.1126/science.aam8577] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/21/2017] [Accepted: 07/20/2017] [Indexed: 11/02/2022]
Abstract
Speakers of all human languages regularly use intonational pitch to convey linguistic meaning, such as to emphasize a particular word. Listeners extract pitch movements from speech and evaluate the shape of intonation contours independent of each speaker's pitch range. We used high-density electrocorticography to record neural population activity directly from the brain surface while participants listened to sentences that varied in intonational pitch contour, phonetic content, and speaker. Cortical activity at single electrodes over the human superior temporal gyrus selectively represented intonation contours. These electrodes were intermixed with, yet functionally distinct from, sites that encoded different information about phonetic features or speaker identity. Furthermore, the representation of intonation contours directly reflected the encoding of speaker-normalized relative pitch but not absolute pitch.
Collapse
Affiliation(s)
- C Tang
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA
| | - L S Hamilton
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA
| | - E F Chang
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Lumaca M, Baggio G. Brain potentials predict learning, transmission and modification of an artificial symbolic system. Soc Cogn Affect Neurosci 2016; 11:1970-1979. [PMID: 27510496 DOI: 10.1093/scan/nsw112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/28/2016] [Accepted: 08/03/2016] [Indexed: 11/12/2022] Open
Abstract
It has recently been argued that symbolic systems evolve while they are being transmitted across generations of learners, gradually adapting to the relevant brain structures and processes. In the context of this hypothesis, little is known on whether individual differences in neural processing capacity account for aspects of 'variation' observed in symbolic behavior and symbolic systems. We addressed this issue in the domain of auditory processing. We conducted a combined behavioral and EEG study on 2 successive days. On day 1, participants listened to standard and deviant five-tone sequences: as in previous oddball studies, an mismatch negativity (MMN) was elicited by deviant tones. On day 2, participants learned an artificial signaling system from a trained confederate of the experimenters in a coordination game in which five-tone sequences were associated to affective meanings (emotion-laden pictures of human faces). In a subsequent game with identical structure, participants transmitted and occasionally changed the signaling system learned during the first game. The MMN latency from day 1 predicted learning, transmission and structural modification of signaling systems on day 2. Our study introduces neurophysiological methods into research on cultural transmission and evolution, and relates aspects of variation in symbolic systems to individual differences in neural information processing.
Collapse
Affiliation(s)
- Massimo Lumaca
- SISSA International School for Advanced Studies, Trieste
| | - Giosuè Baggio
- Language Acquisition and Language Processing Lab Department of Language and Literature, Norwegian University of Science and Technology, Trondheim
| |
Collapse
|
27
|
Amad A, Seidman J, Draper SB, Bruchhage MMK, Lowry RG, Wheeler J, Robertson A, Williams SCR, Smith MS. Motor Learning Induces Plasticity in the Resting Brain—Drumming Up a Connection. Cereb Cortex 2016; 27:2010-2021. [DOI: 10.1093/cercor/bhw048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Chen Z, Wong FCK, Jones JA, Li W, Liu P, Chen X, Liu H. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors. Sci Rep 2015; 5:13134. [PMID: 26278337 PMCID: PMC4538572 DOI: 10.1038/srep13134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/20/2015] [Indexed: 11/28/2022] Open
Abstract
Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.
Collapse
Affiliation(s)
- Zhaocong Chen
- 1] Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China [2] Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Francis C K Wong
- Division of Linguistics and Multilingual Studies, School of Humanities and Social Sciences, Nanyang Technological University, 14 Nanyang Drive, HSS-03-49, 637332, Singapore
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
29
|
Herholz SC, Coffey EBJ, Pantev C, Zatorre RJ. Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning. Cereb Cortex 2015; 26:3125-34. [PMID: 26139842 DOI: 10.1093/cercor/bhv138] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skill learning results in changes to brain function, but at the same time individuals strongly differ in their abilities to learn specific skills. Using a 6-week piano-training protocol and pre- and post-fMRI of melody perception and imagery in adults, we dissociate learning-related patterns of neural activity from pre-training activity that predicts learning rates. Fronto-parietal and cerebellar areas related to storage of newly learned auditory-motor associations increased their response following training; in contrast, pre-training activity in areas related to stimulus encoding and motor control, including right auditory cortex, hippocampus, and caudate nuclei, was predictive of subsequent learning rate. We discuss the implications of these results for models of perceptual and of motor learning. These findings highlight the importance of considering individual predisposition in plasticity research and applications.
Collapse
Affiliation(s)
- Sibylle C Herholz
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H2A 3B4, Canada International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec H3C 3J7, Canada German Center for Neurodegenerative Diseases (DZNE), Holbeinstr 13-15, Bonn 53175, Germany
| | - Emily B J Coffey
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H2A 3B4, Canada International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec H3C 3J7, Canada
| | - Christo Pantev
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, Münster 48149, Germany
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H2A 3B4, Canada International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
30
|
Matsushita R, Andoh J, Zatorre RJ. Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning. Front Neurosci 2015; 9:174. [PMID: 26041982 PMCID: PMC4434966 DOI: 10.3389/fnins.2015.00174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioral outcomes, possibly due to differences in stimulation parameters, task-induced brain activity, or task measurements used in each study. Further research, using well-validated tasks is therefore required for clarification of behavioral effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for 3 days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold) over the 3 days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the 3 days. The results support a causal role for the right auditory cortex in pitch discrimination learning.
Collapse
Affiliation(s)
- Reiko Matsushita
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music, and Sound Research Montreal, QC, Canada ; Centre for Research on Brain, Language, and Music Montreal, QC, Canada
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health Mannheim Mannheim, Germany
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music, and Sound Research Montreal, QC, Canada ; Centre for Research on Brain, Language, and Music Montreal, QC, Canada
| |
Collapse
|
31
|
Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 2015; 85:11-26. [PMID: 25569345 DOI: 10.1016/j.neuron.2014.10.047] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain and its variation across individuals (neurodiversity) in both health and disease. Such progress has not yet, however, propelled changes in educational or medical practices that improve people's lives. We review neuroimaging findings in which initial brain measures (neuromarkers) are correlated with or predict future education, learning, and performance in children and adults; criminality; health-related behaviors; and responses to pharmacological or behavioral treatments. Neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures. With further advances in study designs and analyses, neuromarkers may offer opportunities to personalize educational and clinical practices that lead to better outcomes for people.
Collapse
Affiliation(s)
- John D E Gabrieli
- Poitras Center for Affective Disorders Research at the McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Satrajit S Ghosh
- Poitras Center for Affective Disorders Research at the McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Whitfield-Gabrieli
- Poitras Center for Affective Disorders Research at the McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Tan YT, McPherson GE, Peretz I, Berkovic SF, Wilson SJ. The genetic basis of music ability. Front Psychol 2014; 5:658. [PMID: 25018744 PMCID: PMC4073543 DOI: 10.3389/fpsyg.2014.00658] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/08/2014] [Indexed: 01/18/2023] Open
Abstract
Music is an integral part of the cultural heritage of all known human societies, with the capacity for music perception and production present in most people. Researchers generally agree that both genetic and environmental factors contribute to the broader realization of music ability, with the degree of music aptitude varying, not only from individual to individual, but across various components of music ability within the same individual. While environmental factors influencing music development and expertise have been well investigated in the psychological and music literature, the interrogation of possible genetic influences has not progressed at the same rate. Recent advances in genetic research offer fertile ground for exploring the genetic basis of music ability. This paper begins with a brief overview of behavioral and molecular genetic approaches commonly used in human genetic analyses, and then critically reviews the key findings of genetic investigations of the components of music ability. Some promising and converging findings have emerged, with several loci on chromosome 4 implicated in singing and music perception, and certain loci on chromosome 8q implicated in absolute pitch and music perception. The gene AVPR1A on chromosome 12q has also been implicated in music perception, music memory, and music listening, whereas SLC6A4 on chromosome 17q has been associated with music memory and choir participation. Replication of these results in alternate populations and with larger samples is warranted to confirm the findings. Through increased research efforts, a clearer picture of the genetic mechanisms underpinning music ability will hopefully emerge.
Collapse
Affiliation(s)
- Yi Ting Tan
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Gary E McPherson
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research and Department of Psychology, Université de Montréal Montreal, QC, Canada
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia
| | - Sarah J Wilson
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia ; Melbourne School of Psychological Sciences, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
33
|
Fauvel B, Groussard M, Chételat G, Fouquet M, Landeau B, Eustache F, Desgranges B, Platel H. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. Neuroimage 2014; 90:179-88. [DOI: 10.1016/j.neuroimage.2013.12.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 12/25/2022] Open
|
34
|
|
35
|
Zatorre RJ. Predispositions and plasticity in music and speech learning: neural correlates and implications. Science 2013; 342:585-9. [PMID: 24179219 DOI: 10.1126/science.1238414] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Speech and music are remarkable aspects of human cognition and sensory-motor processing. Cognitive neuroscience has focused on them to understand how brain function and structure are modified by learning. Recent evidence indicates that individual differences in anatomical and functional properties of the neural architecture also affect learning and performance in these domains. Here, neuroimaging findings are reviewed that reiterate evidence of experience-dependent brain plasticity, but also point to the predictive validity of such data in relation to new learning in speech and music domains. Indices of neural sensitivity to certain stimulus features have been shown to predict individual rates of learning; individual network properties of brain activity are especially relevant in this regard, as they may reflect anatomical connectivity. Similarly, numerous studies have shown that anatomical features of auditory cortex and other structures, and their anatomical connectivity, are predictive of new sensory-motor learning ability. Implications of this growing body of literature are discussed.
Collapse
Affiliation(s)
- Robert J Zatorre
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
36
|
Abstract
Singing provides a unique opportunity to examine music performance—the musical instrument is contained wholly within the body, thus eliminating the need for creating artificial instruments or tasks in neuroimaging experiments. Here, more than two decades of voice and singing research will be reviewed to give an overview of the sensory-motor control of the singing voice, starting from the vocal tract and leading up to the brain regions involved in singing. Additionally, to demonstrate how sensory feedback is integrated with vocal motor control, recent functional magnetic resonance imaging (fMRI) research on somatosensory and auditory feedback processing during singing will be presented. The relationship between the brain and singing behavior will be explored also by examining: (1) neuroplasticity as a function of various lengths and types of training, (2) vocal amusia due to a compromised singing network, and (3) singing performance in individuals with congenital amusia. Finally, the auditory-motor control network for singing will be considered alongside dual-stream models of auditory processing in music and speech to refine both these theoretical models and the singing network itself.
Collapse
|
37
|
Abstract
AbstractThere is a strong interaction between multisensory processing and the neuroplasticity of the human brain. On one hand, recent research demonstrates that experience and training in various domains modifies how information from the different senses is integrated; and, on the other hand multisensory training paradigms seem to be particularly effective in driving functional and structural plasticity. Multisensory training affects early sensory processing within separate sensory domains, as well as the functional and structural connectivity between uni- and multisensory brain regions. In this review, we discuss the evidence for interactions of multisensory processes and brain plasticity and give an outlook on promising clinical applications and open questions.
Collapse
|