1
|
Stojić S, Nadasdy Z. Event as the central construal of psychological time in humans. Front Psychol 2024; 15:1402903. [PMID: 39359968 PMCID: PMC11445672 DOI: 10.3389/fpsyg.2024.1402903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Time is a fundamental dimension of our perception and mental construction of reality. It enables resolving changes in our environment without a direct sensory representation of elapsed time. Therefore, the concept of time is inferential by nature, but the units of subjective time that provide meaningful segmentation of the influx of sensory input remain to be determined. In this review, we posit that events are the construal instances of time perception as they provide a reproducible and consistent segmentation of the content. In that light, we discuss the implications of this proposal by looking at "events" and their role in subjective time experience from cultural anthropological and ontogenetic perspectives, as well as their relevance for episodic memory. Furthermore, we discuss the significance of "events" for the two critical aspects of subjective time-duration and order. Because segmentation involves parsing event streams according to causal sequences, we also consider the role of causality in developing the concept of directionality of mental timelines. We offer a fresh perspective on representing past and future events before age 5 by an egocentric bi-directional timeline model before acquiring the allocentric concept of absolute time. Finally, we illustrate how the relationship between events and durations can resolve contradictory experimental results. Although "time" warrants a comprehensive interdisciplinary approach, we focus this review on "time perception", the experience of time, without attempting to provide an all encompassing overview of the rich philosophical, physical, psychological, cognitive, linguistic, and neurophysiological context.
Collapse
Affiliation(s)
- Sandra Stojić
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltan Nadasdy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
- Zeto, Inc., Santa Clara, CA, United States
| |
Collapse
|
2
|
Micillo L, Grondin S, Mioni G. The effect of modality and order presentation of emotional stimuli on time perception. Q J Exp Psychol (Hove) 2024; 77:1813-1823. [PMID: 37877182 DOI: 10.1177/17470218231211905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Despite human accuracy in perceiving time, many factors can modulate the subjective experience of time. For example, it is widely reported that emotion can expand or shrink our perception of time and that temporal intervals are perceived as longer when marked by auditory stimuli than by visual stimuli. In the present study, we aimed at investigating whether the influence of emotion on time perception can be altered by the order in which emotional stimuli are presented and the sensory modality in which they are presented. Participants were asked to complete a time bisection task in which emotional stimuli were presented either acoustically or visually, and either before or after interval to be estimated. We observed a main effect of modality (longer perceived duration and lower variability in the auditory than in the visual modality) as well as a main effect of emotion (temporal overestimation for negative stimuli compared to neutral). Importantly, the effects of modality and emotion interacted with the order of presentation of the emotional stimuli. In the visual condition, when emotional stimuli were presented after the temporal intervals, participants overestimated time, but no differences between negative and neutral stimuli were observed when emotional stimuli were presented first. In the auditory condition, no significant effect of emotion on perceived duration was found. Results suggest that negative emotions affect our perception of durations acting at the decision-making stage rather than at the pacemaker one. No effect on time perception was observed for emotional auditory stimuli.
Collapse
Affiliation(s)
- Luigi Micillo
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italia
| | - Simon Grondin
- École de Psychologie, Université Laval, Québec, QC, Canada
| | - Giovanna Mioni
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italia
| |
Collapse
|
3
|
Cantarella G, Mioni G, Bisiacchi PS. Young adults and multisensory time perception: Visual and auditory pathways in comparison. Atten Percept Psychophys 2024; 86:1386-1399. [PMID: 37674041 PMCID: PMC11093818 DOI: 10.3758/s13414-023-02773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
The brain continuously encodes information about time, but how sensorial channels interact to achieve a stable representation of such ubiquitous information still needs to be determined. According to recent research, children show a potential interference in multisensory conditions, leading to a trade-off between two senses (sight and audition) when considering time-perception tasks. This study aimed to examine how healthy young adults behave when performing a time-perception task. In Experiment 1, we tested the effects of temporary sensory deprivation on both visual and auditory senses in a group of young adults. In Experiment 2, we compared the temporal performances of young adults in the auditory modality with those of two samples of children (sighted and sighted but blindfolded) selected from a previous study. Statistically significant results emerged when comparing the two pathways: young adults overestimated and showed a higher sensitivity to time in the auditory modality compared to the visual modality. Restricting visual and auditory input did not affect their time sensitivity. Moreover, children were more accurate at estimating time than young adults after a transient visual deprivation. This implies that as we mature, sensory deprivation does not constitute a benefit to time perception, and supports the hypothesis of a calibration process between senses with age. However, more research is needed to determine how this calibration process affects the developmental trajectories of time perception.
Collapse
Affiliation(s)
- Giovanni Cantarella
- Department of Psychology, University of Bologna, Viale Berti Pichat, 5, 40127, Bologna, Italy
| | - Giovanna Mioni
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padova, Italy
| | - Patrizia Silvia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padova, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
4
|
Samaha J, Romei V. Alpha-Band Frequency and Temporal Windows in Perception: A Review and Living Meta-analysis of 27 Experiments (and Counting). J Cogn Neurosci 2024; 36:640-654. [PMID: 37856149 DOI: 10.1162/jocn_a_02069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Temporal windows in perception refer to windows of time within which distinct stimuli interact to influence perception. A simple example is two temporally proximal stimuli fusing into a single percept. It has long been hypothesized that the human alpha rhythm (an 8- to 13-Hz neural oscillation maximal over posterior cortex) is linked to temporal windows, with higher frequencies corresponding to shorter windows and finer-grained temporal resolution. This hypothesis has garnered support from studies demonstrating a correlation between individual differences in alpha-band frequency (IAF) and behavioral measures of temporal processing. However, nonsignificant effects have also been reported. Here, we review and meta-analyze 27 experiments correlating IAF with measures of visual and audiovisual temporal processing. Our results estimate the true correlation in the population to be between .39 and .53, a medium-to-large effect. The effect held when considering visual or audiovisual experiments separately, when examining different IAF estimation protocols (i.e., eyes open and eyes closed), and when using analysis choices that favor a null result. Our review shows that (1) effects have been internally and independently replicated, (2) several positive effects are based on larger sample sizes than the null effects, and (3) many reported null effects are actually in the direction predicted by the hypothesis. A free interactive web app was developed to allow users to replicate our meta-analysis and change or update the study selection at will, making this a "living" meta-analysis (randfxmeta.streamlit.app). We discuss possible factors underlying null reports, design recommendations, and open questions for future research.
Collapse
Affiliation(s)
| | - Vincenzo Romei
- Università di Bologna
- Universidad Antonio de Nebrija, Spain
| |
Collapse
|
5
|
Torres NL, Castro SL, Silva S. Visual movement impairs duration discrimination at short intervals. Q J Exp Psychol (Hove) 2024; 77:57-69. [PMID: 36717537 PMCID: PMC10712207 DOI: 10.1177/17470218231156542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
The classic advantage of audition over vision in time processing has been recently challenged by studies using continuously moving visual stimuli such as bouncing balls. Bouncing balls drive beat-based synchronisation better than static visual stimuli (flashes) and as efficiently as auditory ones (beeps). It is yet unknown how bouncing balls modulate performance in duration perception. Our previous study addressing this was inconclusive: there were no differences among bouncing balls, flashes, and beeps, but this could have been due to the fact that intervals were too long to allow sensitivity to modality (visual vs auditory). In this study, we conducted a first experiment to determine whether shorter intervals elicit cross-stimulus differences. We found that short (mean 157 ms) but not medium (326 ms) intervals made duration perception worse for bouncing balls compared with flashes and beeps. In a second experiment, we investigated whether the lower efficiency of bouncing balls was due to experimental confounds, lack of realism, or movement. We ruled out the experimental confounds and found support for the hypothesis that visual movement-be it continuous or discontinuous-impairs duration perception at short interval lengths. Therefore, unlike beat-based synchronisation, duration perception does not benefit from continuous visual movement, which may even have a detrimental effect at short intervals.
Collapse
Affiliation(s)
- Nathércia L Torres
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - São Luís Castro
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - Susana Silva
- Center for Psychology at the University of Porto (CPUP), Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Petrizzo I, Pellegrino M, Anobile G, Doricchi F, Arrighi R. Top-down determinants of the numerosity-time interaction. Sci Rep 2023; 13:21098. [PMID: 38036544 PMCID: PMC10689472 DOI: 10.1038/s41598-023-47507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Previous studies have reported that larger visual stimuli are perceived as lasting longer than smaller ones. However, this effect disappears when participants provide a qualitative judgment, by stating whether two stimuli have the "same or different" duration, instead of providing an explicit quantitative judgment (which stimulus lasts longer). Here, we extended these observations to the interaction between the numerosity of visual stimuli, i.e. clouds of dots, and their duration. With "longer vs shorter" responses, participants judged larger numerosities as lasting longer than smaller ones, both when the responses were related to the order (Experiment 1) or color (Experiment 4) of stimuli. In contrast, no similar effect was found with "same vs different" responses (Experiment 2) and in a time motor reproduction task (Experiment 3). The numerosity-time interference in Experiment 1 and Experiment 4 was not due to task difficulty, as sensory precision was equivalent to that of Experiment 2. We conclude that in humans the functional interaction between numerosity and time is not guided, in the main, by a shared bottom-up mechanism of magnitude coding. Rather, high-level and top-down processes involved in decision-making and guided by the use of "magnitude-related" response codes play a crucial role in triggering interference among different magnitude domains.
Collapse
Affiliation(s)
- Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Michele Pellegrino
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Rome, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy
| | - Fabrizio Doricchi
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Rome, Italy.
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50139, Florence, Italy.
| |
Collapse
|
7
|
Torres NL, Castro SL, Silva S. Beat cues facilitate time estimation at longer intervals. Front Psychol 2023; 14:1130788. [PMID: 37842702 PMCID: PMC10576433 DOI: 10.3389/fpsyg.2023.1130788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Time perception in humans can be relative (beat-based) or absolute (duration-based). Although the classic view in the field points to different neural substrates underlying beat-based vs. duration-based mechanisms, recent neuroimaging evidence provided support to a unified model wherein these two systems overlap. In line with this, previous research demonstrated that internalized beat cues benefit motor reproduction of longer intervals (> 5.5 s) by reducing underestimation, but little is known about this effect on pure perceptual tasks. The present study was designed to investigate whether and how interval estimation is modulated by available beat cues. Methods To that end, we asked 155 participants to estimate auditory intervals ranging from 500 ms to 10 s, while manipulating the presence of cues before the interval, as well as the reinforcement of these cues by beat-related interference within the interval (vs. beat-unrelated and no interference). Results Beat cues aided time estimation depending on interval duration: for intervals longer than 5 s, estimation was better in the cue than in the no-cue condition. Specifically, the levels of underestimation decreased in the presence of cues, indicating that beat cues had a facilitating effect on time perception very similar to the one observed previously for time production. Discussion Interference had no effects, suggesting that this manipulation was not effective. Our findings are consistent with the idea of cooperation between beat- and duration-based systems and suggest that this cooperation is quite similar across production and perception.
Collapse
Affiliation(s)
- Nathércia L. Torres
- Speech Laboratory, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
8
|
Andronoglou C, Konstantakopoulos G, Simoudi C, Kasselimis D, Evdokimidis I, Tsoukas E, Tsolakopoulos D, Angelopoulou G, Potagas C. Is There a Role of Inferior Frontal Cortex in Motor Timing? A Study of Paced Finger Tapping in Patients with Non-Fluent Aphasia. NEUROSCI 2023; 4:235-246. [PMID: 39483196 PMCID: PMC11523711 DOI: 10.3390/neurosci4030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 11/03/2024] Open
Abstract
The aim of the present study was to investigate the deficits in timing reproduction in individuals with non-fluent aphasia after a left hemisphere lesion including the inferior frontal gyrus, in which Broca's region is traditionally localised. Eighteen stroke patients with non-fluent aphasia and twenty-two healthy controls were recruited. We used a finger-tapping Test, which consisted of the synchronisation and the continuation phase with three fixed intervals (450 ms, 650 ms and 850 ms). Participants firstly had to tap simultaneously with the device's auditory stimuli (clips) (synchronisation phase) and then continue their tapping in the same pace when the stimuli were absent (continuation phase). Patients with aphasia demonstrated less accuracy and greater variability during reproduction in both phases, compared to healthy participants. More specifically, in the continuation phase, individuals with aphasia reproduced longer intervals than the targets, whereas healthy participants displayed accelerated responses. Moreover, patients' timing variability was greater in the absence of the auditory stimuli. This could possibly be attributed to deficient mental representation of intervals and not experiencing motor difficulties (due to left hemisphere stroke), as the two groups did not differ in tapping reproduction with either hand. Given that previous findings suggest a potential link between the IFG, timing and working memory, we argue that patients' extra-linguistic cognitive impairments should be accounted for, as possible contributing factors to timing disturbances.
Collapse
Affiliation(s)
- Chrysanthi Andronoglou
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - George Konstantakopoulos
- First Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece
- Research Department of Clinical, Education and Health Psychology, University College London, London WC1E 6JB, UK
| | - Christina Simoudi
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, 136 Syngrou Ave., 176 71 Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
- Department of Psychology, Panteion University of Social and Political Sciences, 176 71 Athens, Greece
| | - Ioannis Evdokimidis
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Evangelos Tsoukas
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Dimitrios Tsolakopoulos
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Georgia Angelopoulou
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| |
Collapse
|
9
|
Scozia G, Pinto M, Lozito S, Lasaponara S, Binetti N, Pazzaglia M, Doricchi F. Space is a late heuristic of elapsing time: New evidence from the STEARC effect. Cortex 2023; 164:21-32. [PMID: 37148825 DOI: 10.1016/j.cortex.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 05/08/2023]
Abstract
To get a concrete representation of its intangible flow, culture frames elapsing time along spatially oriented mental or graphical lines, which are organised according to reading habits, from left to right in western cultures. One of the strongest evidence for this spatial representation of time is the STEARC effect (Spatial-Temporal Association of Response Codes), which consists of faster coding of "short" durations with motor responses in the left side of space and of "long" durations with responses in the right side. Here, we investigated the STEARC as a function of response speed in two different experiments in healthy participants. Surprisingly, in both sub- and supra-second ranges, we found the STEARC only when decisions on time durations were slow, while no spatial representation of time was present with fast decisions. This first demonstrates that space slowly takes over faster non-spatial processing of time flow and that it is possible to empirically separate the behavioural manifestations of the non-spatial and the nurtured spatial mechanisms of time coding.
Collapse
Affiliation(s)
- Gabriele Scozia
- Dipartimento di Psicologia, Università Degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Mario Pinto
- Dipartimento di Psicologia, Università Degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Silvana Lozito
- Dipartimento di Psicologia, Università Degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Stefano Lasaponara
- Dipartimento di Psicologia, Università Degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Nicola Binetti
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, Università Degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Fabrizio Doricchi
- Dipartimento di Psicologia, Università Degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy.
| |
Collapse
|
10
|
Petrizzo I, Chelli E, Bartolini T, Arrighi R, Anobile G. Similar effect of running on visual and auditory time perception in the ranges of milliseconds and seconds. Front Psychol 2023; 14:1146675. [PMID: 37063551 PMCID: PMC10102424 DOI: 10.3389/fpsyg.2023.1146675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionThe ability to accurately encode events’ duration is of critical importance for almost all everyday activities, yet numerous factors have been reported to robustly distort time perception. One of these is physical activity (i.e., running, walking) but, partly due to the variety of methodologies employed, a full comprehension of the role of exercise on the encoding of time has still to be achieved.MethodsHere we tackle the issue with a multifaceted approach by measuring the effect of vigorous running with a time generalization task for visual and auditory stimuli in the range of milliseconds (0.2–0.8 s) as well as seconds (1–4 s). At baseline, participants performed both the encoding and decoding at rest while in the experimental conditions the decoding was performed while running.ResultsOur results indicate that physical activity in both duration ranges (sub-second and seconds) was expanded during running regardless of the sensory modality used to present the stimuli. Despite this generalized effect of running on perceived duration, we found evidence for the existence of independent timing mechanisms: (1) the perceptual biases induced by running in the two temporal regimes were uncorrelated, (2) sensory precision levels (Weber fraction) were higher for stimuli in the seconds range, (3) sensory precision levels were higher for auditory than for visual stimuli, but only within the sub-second range.DiscussionOverall, our results support previous findings suggesting (at least partially) separate timing mechanisms for short/long durations and for visual and auditory stimuli. However, they also indicate that physical activity affects all these temporal modules, suggesting a generalized interaction—via generalized and shared resources—between the motor system and the brain time mechanisms.
Collapse
|
11
|
Li Y, Cowan N. Constraints of attention, stimulus modality, and feature similarity in working memory. Atten Percept Psychophys 2022; 84:2519-2539. [PMID: 36123501 PMCID: PMC10039417 DOI: 10.3758/s13414-022-02549-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
Two of the most important concepts in working memory that differentiate many theories are the role of attention and similarity between items. Investigators have debated whether there is a central, general resource of attention, and whether interference between items depends mostly on their modality and type of code (i.e., verbal/acoustic versus visual/spatial coding) or upon multiple dimensions of feature similarity even within a modality. Here, we examine results from three experiments in which the features of items to be remembered differed for visual objects in color or orientation, or for acoustic objects in noise duration or tone pitch. There were one or two of these sets on a trial and, when there were two sets, the similarity between their features varied: there were sets in different modalities, sets with different feature types within a modality, or sets of the same feature type. One-set trials consistently produced superior performance. For two-set trials, dissimilarity of the sets mattered only when both sets had to be attended, compared with attention to only one set. Feature differences within a modality mattered at least as much as between-modality differences. The findings conflict with what would be expected if modality were the sole organizing principle and support a working memory model in which a capacity-limited attention is constrained by the feature similarity of task-relevant items.
Collapse
Affiliation(s)
- Yu Li
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.
- Department of Psychological Sciences, University of Missouri, McAlester Hall, Columbia, MO, 65211, USA.
| | - Nelson Cowan
- Department of Psychological Sciences, University of Missouri, McAlester Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
Su ZH, Patel S, Bredemeyer O, FitzGerald JJ, Antoniades CA. Parkinson’s disease deficits in time perception to auditory as well as visual stimuli – A large online study. Front Neurosci 2022; 16:995438. [DOI: 10.3389/fnins.2022.995438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive deficits are common in Parkinson’s disease (PD) and range from mild cognitive impairment to dementia, often dramatically reducing quality of life. Physiological models have shown that attention and memory are predicated on the brain’s ability to process time. Perception has been shown to be increased or decreased by activation or deactivation of dopaminergic neurons respectively. Here we investigate differences in time perception between patients with PD and healthy controls. We have measured differences in sub-second- and second-time intervals. Sensitivity and error in perception as well as the response times are calculated. Additionally, we investigated intra-individual response variability and the effect of participant devices on both reaction time and sensitivity. Patients with PD have impaired sensitivity in discriminating between durations of both visual and auditory stimuli compared to healthy controls. Though initially designed as an in-person study, because of the pandemic the experiment was adapted into an online study. This adaptation provided a unique opportunity to enroll a larger number of international participants and use this study to evaluate the feasibility of future virtual studies focused on cognitive impairment. To our knowledge this is the only time perception study, focusing on PD, which measures the differences in perception using both auditory and visual stimuli. The cohort involved is the largest to date, comprising over 800 participants.
Collapse
|
13
|
Tsao A, Yousefzadeh SA, Meck WH, Moser MB, Moser EI. The neural bases for timing of durations. Nat Rev Neurosci 2022; 23:646-665. [PMID: 36097049 DOI: 10.1038/s41583-022-00623-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Durations are defined by a beginning and an end, and a major distinction is drawn between durations that start in the present and end in the future ('prospective timing') and durations that start in the past and end either in the past or the present ('retrospective timing'). Different psychological processes are thought to be engaged in each of these cases. The former is thought to engage a clock-like mechanism that accurately tracks the continuing passage of time, whereas the latter is thought to engage a reconstructive process that utilizes both temporal and non-temporal information from the memory of past events. We propose that, from a biological perspective, these two forms of duration 'estimation' are supported by computational processes that are both reliant on population state dynamics but are nevertheless distinct. Prospective timing is effectively carried out in a single step where the ongoing dynamics of population activity directly serve as the computation of duration, whereas retrospective timing is carried out in two steps: the initial generation of population state dynamics through the process of event segmentation and the subsequent computation of duration utilizing the memory of those dynamics.
Collapse
Affiliation(s)
- Albert Tsao
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - May-Britt Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
14
|
Abstract
OBJECTIVE The primary aims of the study were to replicate the vigilance decrement in the tactile modality, examine whether a decrease in sensitivity is associated with the decrement, and determine whether tactile vigilance is stressful and demanding. BACKGROUND When people monitor occasional and unpredictable signals for sustained durations, they experience a decline in performance known as the vigilance decrement, which has important practical consequences. Prior studies of the vigilance decrement focused primarily on visual vigilance and, to a lesser degree, on auditory vigilance. There are relatively few studies of tactile vigilance. METHOD Participants monitored vibrotactile stimuli that were created from a tactor, for 40 min. RESULTS Sensitivity declined, self-report ratings of distress increased, and ratings of task engagement decreased, during the vigil, and perceived workload was moderately high. CONCLUSION Monitoring tactile signals is demanding and stressful and results in a decrement in signal detection. APPLICATION Monitoring tactile signals may result in a decrement in tasks requiring discrimination, such as monitoring lane position with the use of rumble strips; these require discrimination between current road vibration and increased vibration when the car drifts out of its lane and crosses over the strip.
Collapse
|
15
|
Hus Y. Detecting Time Concept Competence in Children with Autism Spectrum and Attention Disorders. Neuropsychiatr Dis Treat 2022; 18:2323-2348. [PMID: 36276427 PMCID: PMC9579054 DOI: 10.2147/ndt.s331985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022] Open
Abstract
The importance of time concept in human existence is "ancient history" celebrated in the biblical book Ecclesiastes. Indeed, our time-sensitive mechanisms are literally carved into our biology and neurology on a molecular level, gifting us with neural clocks. However, time in human consciousness is not the time indicated by physical clocks: time is a subjective reality in our psychological makeup due to the nature of the temporal neural mechanisms and unique properties of physical time. Nonetheless, subjective time requires anchoring to physical time which permeates our language, endeavors, and entire existence, a process hinging on time-related skills such as estimates and measures of passage and duration of time. Moreover, accurate time reading, a critical adaptive life-skill, is imperative for effective function in all societal activities. Because it embodies the complexity of the time construct, it is central to instruction of time concept in primary education. It is often measured in children by clock drawings, a cognitive integrative skill with errors pointing to neuroanatomical differences impacting the integrity of executive function. Time competence in children with atypical neurobiological development and high prevalence, as in autism spectrum disorders (ASD), and attention disorders (ADHD), is often compromised, calling for investigation of its function. This thematic review article aims to: 1) discuss the complexity of time concept and its underlying bio-neurological mechanisms, 2) elucidate difficulties children with ASD and those with ADHD exhibit in temporal development, and 3) demonstrate the use of a set of clinical tools in uncovering temporal competence and ecological executive function in two children with ASD, and a child with ADHD, using a clock drawing task and error analyses; children's time knowledge questionnaire; a behavior rating parent questionnaire examining ecological executive function, and parent open-ended questions related to their children's time difficulties. A discussion, directions, and a take-home message round out the article.
Collapse
Affiliation(s)
- Yvette Hus
- Cyprus University of Technology, Department of Rehabilitation Sciences, Theralab Research Collaborator Under Direction of Prof. Kakia Petinou, Limassol, Cyprus
| |
Collapse
|
16
|
Hülsdünker T, Riedel D, Käsbauer H, Ruhnow D, Mierau A. Auditory Information Accelerates the Visuomotor Reaction Speed of Elite Badminton Players in Multisensory Environments. Front Hum Neurosci 2021; 15:779343. [PMID: 34899221 PMCID: PMC8657147 DOI: 10.3389/fnhum.2021.779343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Although vision is the dominating sensory system in sports, many situations require multisensory integration. Faster processing of auditory information in the brain may facilitate time-critical abilities such as reaction speed however previous research was limited by generic auditory and visual stimuli that did not consider audio-visual characteristics in ecologically valid environments. This study investigated the reaction speed in response to sport-specific monosensory (visual and auditory) and multisensory (audio-visual) stimulation. Neurophysiological analyses identified the neural processes contributing to differences in reaction speed. Nineteen elite badminton players participated in this study. In a first recording phase, the sound profile and shuttle speed of smash and drop strokes were identified on a badminton court using high-speed video cameras and binaural recordings. The speed and sound characteristics were transferred into auditory and visual stimuli and presented in a lab-based experiment, where participants reacted in response to sport-specific monosensory or multisensory stimulation. Auditory signal presentation was delayed by 26 ms to account for realistic audio-visual signal interaction on the court. N1 and N2 event-related potentials as indicators of auditory and visual information perception/processing, respectively were identified using a 64-channel EEG. Despite the 26 ms delay, auditory reactions were significantly faster than visual reactions (236.6 ms vs. 287.7 ms, p < 0.001) but still slower when compared to multisensory stimulation (224.4 ms, p = 0.002). Across conditions response times to smashes were faster when compared to drops (233.2 ms, 265.9 ms, p < 0.001). Faster reactions were paralleled by a lower latency and higher amplitude of the auditory N1 and visual N2 potentials. The results emphasize the potential of auditory information to accelerate the reaction time in sport-specific multisensory situations. This highlights auditory processes as a promising target for training interventions in racquet sports.
Collapse
Affiliation(s)
- Thorben Hülsdünker
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg.,Luxembourg Health & Sport Sciences Research Institute A.s.b.l., Differdange, Luxembourg
| | - David Riedel
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | | | - Diemo Ruhnow
- German Badminton Association, Mülheim an der Ruhr, Germany
| | - Andreas Mierau
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg.,Luxembourg Health & Sport Sciences Research Institute A.s.b.l., Differdange, Luxembourg.,Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
17
|
Using adaptive psychophysics to identify the neural network reset time in subsecond interval timing. Exp Brain Res 2021; 239:3565-3572. [PMID: 34581840 PMCID: PMC8599254 DOI: 10.1007/s00221-021-06227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
State-dependent network models of sub-second interval timing propose that duration is encoded in states of neuronal populations that need to reset prior to a novel timing operation to maintain optimal timing performance. Previous research has shown that the approximate boundary of this reset interval can be inferred by varying the inter-stimulus interval between two to-be-timed intervals. However, the estimated boundary of this reset interval is broad (250–500 ms) and remains under-specified with implications for the characteristics of state-dependent network dynamics sub-serving interval timing. Here, we probed the interval specificity of this reset boundary by manipulating the inter-stimulus interval between standard and comparison intervals in two sub-second auditory duration discrimination tasks (100 and 200 ms) and a control (pitch) discrimination task using adaptive psychophysics. We found that discrimination thresholds improved with the introduction of a 333 ms inter-stimulus interval relative to a 250 ms inter-stimulus interval in both duration discrimination tasks, but not in the control task. This effect corroborates previous findings of a breakpoint in the discrimination performance for sub-second stimulus interval pairs as a function of an incremental inter-stimulus delay but more precisely localizes the minimal inter-stimulus delay range. These results suggest that state-dependent networks sub-serving sub-second timing require approximately 250–333 ms for the network to reset to maintain optimal interval timing.
Collapse
|
18
|
Disentangling the effects of modality, interval length and task difficulty on the accuracy and precision of older adults in a rhythmic reproduction task. PLoS One 2021; 16:e0248295. [PMID: 33730049 PMCID: PMC7968708 DOI: 10.1371/journal.pone.0248295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Studies on the functional quality of the internal clock that governs the temporal processing of older adults have demonstrated mixed results as to whether they perceive and produce time slower, faster, or equally well as younger adults. These mixed results are due to a multitude of methodologies applied to study temporal processing: many tasks demand different levels of cognitive ability. To investigate the temporal accuracy and precision of older adults, in Experiment 1, we explored the age-related differences in rhythmic continuation task taking into consideration the effects of attentional resources required by the stimulus (auditory vs. visual; length of intervals). In Experiment 2, we added a dual task to explore the effect of attentional resources required by the task. Our findings indicate that (1) even in an inherently automatic rhythmic task, where older and younger adult’s general accuracy is comparable, accuracy but not precision is altered by the stimulus properties and (2) an increase in task load can magnify age-related differences in both accuracy and precision.
Collapse
|
19
|
Espinoza-Monroy M, de Lafuente V. Discrimination of Regular and Irregular Rhythms Explained by a Time Difference Accumulation Model. Neuroscience 2021; 459:16-26. [PMID: 33549694 DOI: 10.1016/j.neuroscience.2021.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Perceiving the temporal regularity in a sequence of repetitive sensory events facilitates the preparation and execution of relevant behaviors with tight temporal constraints. How we estimate temporal regularity from repeating patterns of sensory stimuli is not completely understood. We developed a decision-making task in which participants had to decide whether a train of visual, auditory, or tactile pulses, had a regular or an irregular temporal pattern. We tested the hypothesis that subjects categorize stimuli as irregular by accumulating the time differences between the predicted and observed times of sensory pulses defining a temporal rhythm. Results suggest that instead of waiting for a single large temporal deviation, participants accumulate timing-error signals and judge a pattern as irregular when the amount of evidence reaches a decision threshold. Model fits of bounded integration showed that this accumulation occurs with negligible leak of evidence. Consistent with previous findings, we show that participants perform better when evaluating the regularity of auditory pulses, as compared with visual or tactile stimuli. Our results suggest that temporal regularity is estimated by comparing expected and measured pulse onset times, and that each prediction error is accumulated towards a threshold to generate a behavioral choice.
Collapse
Affiliation(s)
- Marisol Espinoza-Monroy
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
20
|
Kaya U, Kafaligonul H. Audiovisual interactions in speeded discrimination of a visual event. Psychophysiology 2021; 58:e13777. [PMID: 33483971 DOI: 10.1111/psyp.13777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/10/2023]
Abstract
The integration of information from different senses is central to our perception of the external world. Audiovisual interactions have been particularly well studied in this context and various illusions have been developed to demonstrate strong influences of these interactions on the final percept. Using audiovisual paradigms, previous studies have shown that even task-irrelevant information provided by a secondary modality can change the detection and discrimination of a primary target. These modulations have been found to be significantly dependent on the relative timing between auditory and visual stimuli. Although these interactions in time have been commonly reported, we have still limited understanding of the relationship between the modulations of event-related potentials (ERPs) and final behavioral performance. Here, we aimed to shed light on this important issue by using a speeded discrimination paradigm combined with electroencephalogram (EEG). During the experimental sessions, the timing between an auditory click and a visual flash was varied over a wide range of stimulus onset asynchronies and observers were engaged in speeded discrimination of flash location. Behavioral reaction times were significantly changed by click timing. Furthermore, the modulations of evoked activities over medial parietal/parieto-occipital electrodes were associated with this effect. These modulations were within the 126-176 ms time range and more importantly, they were also correlated with the changes in reaction times. These results provide an important functional link between audiovisual interactions at early stages of sensory processing and reaction times. Together with previous research, they further suggest that early crossmodal interactions play a critical role in perceptual performance.
Collapse
Affiliation(s)
- Utku Kaya
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Informatics Institute, Middle East Technical University, Ankara, Turkey.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| |
Collapse
|
21
|
Ng L, Garcia JE, Dyer AG, Stuart-Fox D. The ecological significance of time sense in animals. Biol Rev Camb Philos Soc 2020; 96:526-540. [PMID: 33164298 DOI: 10.1111/brv.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022]
Abstract
Time is a fundamental dimension of all biological events and it is often assumed that animals have the capacity to track the duration of experienced events (known as interval timing). Animals can potentially use temporal information as a cue during foraging, communication, predator avoidance, or navigation. Interval timing has been traditionally investigated in controlled laboratory conditions but its ecological relevance in natural environments remains unclear. While animals may time events in artificial and highly controlled conditions, they may not necessarily use temporal information in natural environments where they have access to other cues that may have more relevance than temporal information. Herein we critically evaluate the ecological contexts where interval timing has been suggested to provide adaptive value for animals. We further discuss attributes of interval timing that are rarely considered in controlled laboratory studies. Finally, we encourage consideration of ecological relevance when designing future interval-timing studies and propose future directions for such experiments.
Collapse
Affiliation(s)
- Leslie Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jair E Garcia
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Adrian G Dyer
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia.,Department of Physiology, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
22
|
Paton JJ, Buonomano DV. The Neural Basis of Timing: Distributed Mechanisms for Diverse Functions. Neuron 2019; 98:687-705. [PMID: 29772201 DOI: 10.1016/j.neuron.2018.03.045] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/26/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022]
Abstract
Timing is critical to most forms of learning, behavior, and sensory-motor processing. Converging evidence supports the notion that, precisely because of its importance across a wide range of brain functions, timing relies on intrinsic and general properties of neurons and neural circuits; that is, the brain uses its natural cellular and network dynamics to solve a diversity of temporal computations. Many circuits have been shown to encode elapsed time in dynamically changing patterns of neural activity-so-called population clocks. But temporal processing encompasses a wide range of different computations, and just as there are different circuits and mechanisms underlying computations about space, there are a multitude of circuits and mechanisms underlying the ability to tell time and generate temporal patterns.
Collapse
Affiliation(s)
- Joseph J Paton
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Dean V Buonomano
- Departments of Neurobiology and Psychology and Brain Research Institute, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Modality differences in timing and the filled-duration illusion: Testing the pacemaker rate explanation. Atten Percept Psychophys 2019; 81:823-845. [PMID: 30569434 PMCID: PMC6407723 DOI: 10.3758/s13414-018-1630-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Performance in temporal difference threshold and estimation tasks is markedly less accurate for visual than for auditory intervals. In addition, thresholds and estimates are likewise less accurate for empty than for filled intervals. In scalar timing theory, these differences have been explained as alterations in pacemaker rate, which is faster for auditory and filled intervals than for visual and empty intervals. We tested this explanation according to three research aims. First, we replicated the threshold and estimation tasks of Jones, Poliakoff, and Wells (Quarterly Journal of Experimental Psychology, 62, 2171–2186, 2009) and found the well-documented greater precision for auditory than visual intervals, and for filled than for empty intervals. Second, we considered inter-individual differences in these classic effects and found that up to 27% of participants exhibited opposite patterns. Finally, we examined intra-individual differences to investigate (i) whether thresholds and estimates correlate within each stimulus condition and (ii) whether the stimulus condition in which a participants’ pacemaker rate was highest was the same in both tasks. Here we found that if pacemaker rate is indeed a driving factor for thresholds and estimates, its effect may be greater for empty intervals, where the two tasks correlate, than for filled intervals, where they do not. In addition, it was more common for participants to perform best in different modalities in each task, though this was not true for ordinal intra-individual differences in the filled-duration illusion. Overall, this research presents several findings inconsistent with the pacemaker rate explanation.
Collapse
|
24
|
Fan Z, Yotsumoto Y. Multiple Time Intervals of Visual Events Are Represented as Discrete Items in Working Memory. Front Psychol 2018; 9:1340. [PMID: 30116213 PMCID: PMC6083218 DOI: 10.3389/fpsyg.2018.01340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/12/2018] [Indexed: 12/01/2022] Open
Abstract
Previous studies on time perception and temporal memory have focused primarily on single time intervals; it is still unclear how multiple time intervals are perceived and maintained in working memory. In the present study, using Sternberg's item recognition task, we compared the working memory of multiple items with different time intervals and visual textures, for sub- and supra-second ranges, and investigated the characteristics of working memory representation in the framework of the signal detection theory. In Experiments 1-3, gratings with different spatial frequencies and time intervals were sequentially presented as study items, followed by another grating as a probe. Participants determined whether the probe matched one of the study gratings, in either the temporal dimension or in the visual dimension. The results exhibited typical working memory characteristics such as the effects of memory load, serial position, and similarity between probe and study gratings, similarly, to the time intervals and visual textures. However, there were some differences between the two conditions. Specifically, the recency effect for time intervals was smaller, or even absent, as compared to that for visual textures. Further, as compared with visual textures, sub-second intervals were more likely to be judged as remembered in working memory. In addition, we found interactions between visual texture memory and time interval memory, and such visual-interval binding differed between sub- and supra-second ranges. Our results indicate that multiple time intervals are stored as discrete items in working memory, similarly, to visual texture memory, but the former might be more susceptible to decay than the latter. The differences in the binding between sub- and supra-second ranges imply that working memory for sub- and supra-second ranges may differ in the relatively higher decision stage.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Abstract
Temporal information, numerical magnitude and space extension appear to share common representational mechanisms and be processed similarly in the brain. Evidence comes from the phenomenon of ‘pseudoneglect’, i.e. healthy persons’ orientation asymmetry toward the left side of space. Pseudoneglect is also evident along the mental number line which extends from small numbers on the left to large numbers on the right. In analogy to numbers, time is typically represented on a line extending from the left to the right side. It may thus be no surprise that pseudoneglect has been demonstrated in the temporal domain as well. Besides the perception of the space located anteriorly to our trunk (frontspace), we are able to represent the space behind us, which we cannot visually perceive (backspace). The translational model suggests a mapping of spatially defined information to the ipsilateral side of the egocentric reference frame in front- and backspace, while the rotational concept focuses on a 360° spatial representation around the midsagittal plane of the trunk. At the present stage of investigation, little is known about the representation of temporal information in backspace. In an attempt to fill this gap, we compared duration estimations of auditory stimuli in frontspace and backspace. Healthy right-handers were instructed to judge their duration relative to each other. We found a pseudoneglect-behavior not only in frontspace but also in backspace. The data are discussed in the context of common processing mechanisms for time, numbers and space and favor a translational over a rotational account for the representation of backspace. The results are further discussed with reference to potential consequences for the rehabilitation of hemispatial neglect.
Collapse
|
26
|
Droit-Volet S, Hallez Q. Differences in modal distortion in time perception due to working memory capacity: a response with a developmental study in children and adults. PSYCHOLOGICAL RESEARCH 2018; 83:1496-1505. [DOI: 10.1007/s00426-018-1016-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 04/12/2018] [Indexed: 12/30/2022]
|
27
|
Droit-Volet S, Monceau S, Berthon M, Trahanias P, Maniadakis M. The explicit judgment of long durations of several minutes in everyday life: Conscious retrospective memory judgment and the role of affects? PLoS One 2018. [PMID: 29614116 DOI: 10.1371/journal.pone.0195397.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, individuals estimated interval times of several minutes (from 2 to 32 minutes) during their everyday lives using a cell phone they kept with them. Their emotional state, the difficulty of the activity performed during this interval, and the attention that it required were also assessed, together with their subjective experience of the passage of time. The results showed that the mean time estimates and their variability increased linearly with increasing interval duration, indicating that the fundamental scalar property of time found for short durations also applies to very long durations of several minutes. In addition, the emotional state and difficulty of the activity were significant predictors of the judgment of long durations. However, the awareness of the passage of time appeared to play a crucial role in the judgment of very long duration in humans. A theory on the emergence of the awareness of the passage of time and how it affects the judgment of interval durations lasting several minutes is therefore discussed.
Collapse
Affiliation(s)
| | - Sophie Monceau
- Université Clermont Auvergne, CNRS, UMR 6324, Clermont-Ferrand, France
| | - Mickaël Berthon
- Université Clermont Auvergne, CNRS, UMR 6324, Clermont-Ferrand, France
| | - Panos Trahanias
- Foundation for Research and Technology (FORTH), Hellas, Greece
| | | |
Collapse
|
28
|
Droit-Volet S, Monceau S, Berthon M, Trahanias P, Maniadakis M. The explicit judgment of long durations of several minutes in everyday life: Conscious retrospective memory judgment and the role of affects? PLoS One 2018; 13:e0195397. [PMID: 29614116 PMCID: PMC5882167 DOI: 10.1371/journal.pone.0195397] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/21/2018] [Indexed: 11/25/2022] Open
Abstract
In this study, individuals estimated interval times of several minutes (from 2 to 32 minutes) during their everyday lives using a cell phone they kept with them. Their emotional state, the difficulty of the activity performed during this interval, and the attention that it required were also assessed, together with their subjective experience of the passage of time. The results showed that the mean time estimates and their variability increased linearly with increasing interval duration, indicating that the fundamental scalar property of time found for short durations also applies to very long durations of several minutes. In addition, the emotional state and difficulty of the activity were significant predictors of the judgment of long durations. However, the awareness of the passage of time appeared to play a crucial role in the judgment of very long duration in humans. A theory on the emergence of the awareness of the passage of time and how it affects the judgment of interval durations lasting several minutes is therefore discussed.
Collapse
Affiliation(s)
- Sylvie Droit-Volet
- Université Clermont Auvergne, CNRS, UMR 6324, Clermont-Ferrand, France
- * E-mail:
| | - Sophie Monceau
- Université Clermont Auvergne, CNRS, UMR 6324, Clermont-Ferrand, France
| | - Mickaël Berthon
- Université Clermont Auvergne, CNRS, UMR 6324, Clermont-Ferrand, France
| | - Panos Trahanias
- Foundation for Research and Technology (FORTH), Hellas, Greece
| | | |
Collapse
|
29
|
Mitani K, Kashino M. Auditory Feedback Assists Post hoc Error Correction of Temporal Reproduction, and Perception of Self-Produced Time Intervals in Subsecond Range. Front Psychol 2018; 8:2325. [PMID: 29403407 PMCID: PMC5780434 DOI: 10.3389/fpsyg.2017.02325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
We examined whether auditory feedback assists the post hoc error correction of temporal reproduction, and the perception of self-produced time intervals in the subsecond and suprasecond ranges. Here, we employed a temporal reproduction task with a single motor response at a point in time with and without auditory feedback. This task limits participants to reducing errors by employing auditory feedback in a post hoc manner. Additionally, the participants were asked to judge the self-produced timing in this task. The results showed that, in the presence of auditory feedback, the participants exhibited smaller variability and bias in terms of temporal reproduction and the perception of self-produced time intervals in the subsecond range but not in the suprasecond range. Furthermore, in the presence of auditory feedback, the positive serial dependency of temporal reproduction, which is the tendency of reproduced intervals to be similar to those in adjacent trials, was reduced in the subsecond range but not in the suprasecond range. These results suggest that auditory feedback assists the post hoc error correction of temporal reproduction, and the perception of self-produced time intervals in the subsecond range.
Collapse
Affiliation(s)
- Keita Mitani
- Department of Information Processing, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Makio Kashino
- Department of Information Processing, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan.,NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| |
Collapse
|
30
|
Rammsayer T, Pichelmann S. Visual-auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis. Q J Exp Psychol (Hove) 2018; 71:2364-2377. [PMID: 30362412 DOI: 10.1177/1747021817741611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Sensory-Automatic Timing Hypothesis assumes visual-auditory differences in duration discrimination to originate from sensory-automatic temporal processing. Although temporal discrimination of extremely brief intervals in the range of tens-of-milliseconds is predicted to depend mainly on modality-specific, sensory-automatic temporal processing, duration discrimination of longer intervals is predicted to require more and more amodal, higher order cognitive resources and decreasing input from the sensory-automatic timing system with increasing interval duration. In two duration discrimination experiments with sensory modality as a within- and a between-subjects variable, respectively, we tested two decisive predictions derived from the Sensory-Automatic Timing Hypothesis: (1) visual-auditory differences in duration discrimination were expected to be larger for brief intervals in the tens-of-milliseconds range than for longer ones, and (2) visual-auditory differences in duration discrimination of longer intervals should disappear when statistically controlled for modality-specific input from the sensory-automatic timing system. In both experiments, visual-auditory differences in duration discrimination were larger for the brief than for the longer intervals. Furthermore, visual-auditory differences observed with longer intervals disappeared when statistically controlled for modality-specific input from the sensory-automatic timing system. Thus, our findings clearly confirmed the validity of the Sensory-Automatic Timing Hypothesis.
Collapse
|
31
|
Kaya U, Yildirim FZ, Kafaligonul H. The involvement of centralized and distributed processes in sub-second time interval adaptation: an ERP investigation of apparent motion. Eur J Neurosci 2017; 46:2325-2338. [DOI: 10.1111/ejn.13691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Utku Kaya
- National Magnetic Resonance Research Center (UMRAM); Bilkent University; Ankara Turkey
- Informatics Institute; Middle East Technical University; Ankara Turkey
| | - Fazilet Zeynep Yildirim
- Interdisciplinary Neuroscience Program; Bilkent University; Ankara Turkey
- Institute of Psychology; University of Bern; Bern Switzerland
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM); Bilkent University; Ankara Turkey
- Interdisciplinary Neuroscience Program; Bilkent University; Ankara Turkey
| |
Collapse
|
32
|
High levels of time contraction in young children in dual tasks are related to their limited attention capacities. J Exp Child Psychol 2017; 161:148-160. [DOI: 10.1016/j.jecp.2017.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 11/23/2022]
|
33
|
Duarte F, Lemus L. The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns. Front Integr Neurosci 2017; 11:17. [PMID: 28848406 PMCID: PMC5550683 DOI: 10.3389/fnint.2017.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/28/2017] [Indexed: 11/13/2022] Open
Abstract
The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement.
Collapse
Affiliation(s)
- Fabiola Duarte
- Primate Neurobiology Laboratory, Instituto de Fisiología Celular, Neurociencia Cognitiva, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Luis Lemus
- Primate Neurobiology Laboratory, Instituto de Fisiología Celular, Neurociencia Cognitiva, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| |
Collapse
|
34
|
Neural oscillations associated with auditory duration maintenance in working memory. Sci Rep 2017; 7:5695. [PMID: 28720790 PMCID: PMC5515924 DOI: 10.1038/s41598-017-06078-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The neural representation of auditory duration remains unknown. Here, we used electroencephalogram (EEG) recordings to investigate neural oscillations during the maintenance of auditory duration in working memory (WM). EEG analyses indicated that the auditory duration length was not associated with changes in the theta band amplitude, whereas the alpha band amplitudes during 3-s and 4-s auditory duration conditions were lower than during the 1-s and 2-s conditions. Moreover, the alpha band amplitude and accuracy were positively correlated in the 2-s duration condition. We also found that the neural representation of auditory duration is segmented, with a critical threshold point of approximately 2 s, which is shorter than that for visual duration (3 s). The results emphasised the involvement of the alpha band in auditory duration maintenance in WM. Our study's findings indicate that different internal representations of auditory durations are maintained in WM below and above 2 s from the perspective of electrophysiology. Additionally, the critical threshold point is related to the sensory modality of duration.
Collapse
|