1
|
Howie EE, Ambler O, Gunn EG, Dias RD, Wigmore SJ, Skipworth RJ, Yule SJ. Surgical Sabermetrics: A Scoping Review of Technology-enhanced Assessment of Nontechnical Skills in the Operating Room. Ann Surg 2024; 279:973-984. [PMID: 38258573 PMCID: PMC11086675 DOI: 10.1097/sla.0000000000006211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
OBJECTIVE To evaluate the current evidence for surgical sabermetrics: digital methods of assessing surgical nontechnical skills and investigate the implications for enhancing surgical performance. BACKGROUND Surgeons need high-quality, objective, and timely feedback to optimize performance and patient safety. Digital tools to assess nontechnical skills have the potential to reduce human bias and aid scalability. However, we do not fully understand which of the myriad of digital metrics of performance assessment have efficacy for surgeons. METHODS A systematic review was conducted by searching PubMed, EMBASE, CINAHL, and PSYCINFO databases following PRISMA-ScR guidelines. MeSH terms and keywords included "Assessment," "Surgeons," and "Technology". Eligible studies included a digital assessment of nontechnical skills for surgeons, residents, and/or medical students within an operative context. RESULTS From 19,229 articles screened, 81 articles met the inclusion criteria. The studies varied in surgical specialties, settings, and outcome measurements. A total of 122 distinct objective, digital metrics were utilized. Studies digitally measured at least 1 category of surgical nontechnical skill using a single (n=54) or multiple objective measures (n=27). The majority of studies utilized simulation (n=48) over live operative settings (n=32). Surgical Sabermetrics has been demonstrated to be beneficial in measuring cognitive load (n=57), situation awareness (n=24), communication (n=3), teamwork (n=13), and leadership (n=2). No studies measured intraoperative decision-making. CONCLUSIONS The literature detailing the intersection between surgical data science and operative nontechnical skills is diverse and growing rapidly. Surgical Sabermetrics may provide a promising modifiable technique to achieve desirable outcomes for both the surgeon and the patient. This study identifies a diverse array of measurements possible with sensor devices and highlights research gaps, including the need for objective assessment of decision-making. Future studies may advance the integration of physiological sensors to provide a holistic assessment of surgical performance.
Collapse
Affiliation(s)
- Emma E. Howie
- Clinical Surgery, University of Edinburgh & Royal Infirmary of Edinburgh, Edinburgh, Scotland
- Edinburgh Surgical Sabermetrics Group, University of Edinburgh, Edinburgh, Scotland
| | - Olivia Ambler
- Edinburgh Surgical Sabermetrics Group, University of Edinburgh, Edinburgh, Scotland
| | - Eilidh G.M. Gunn
- Clinical Surgery, University of Edinburgh & Royal Infirmary of Edinburgh, Edinburgh, Scotland
- Edinburgh Surgical Sabermetrics Group, University of Edinburgh, Edinburgh, Scotland
| | - Roger D. Dias
- Edinburgh Surgical Sabermetrics Group, University of Edinburgh, Edinburgh, Scotland
- Human Factors and Cognitive Engineering Lab, STRATUS Centre for Medical Simulation, Brigham & Women’s Hospital, Boston, MA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA
| | - Stephen J. Wigmore
- Clinical Surgery, University of Edinburgh & Royal Infirmary of Edinburgh, Edinburgh, Scotland
- Edinburgh Surgical Sabermetrics Group, University of Edinburgh, Edinburgh, Scotland
| | - Richard J.E. Skipworth
- Clinical Surgery, University of Edinburgh & Royal Infirmary of Edinburgh, Edinburgh, Scotland
- Edinburgh Surgical Sabermetrics Group, University of Edinburgh, Edinburgh, Scotland
| | - Steven J. Yule
- Clinical Surgery, University of Edinburgh & Royal Infirmary of Edinburgh, Edinburgh, Scotland
- Edinburgh Surgical Sabermetrics Group, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
2
|
Regehr C, Birze A. Assessing the equivalency of face-to-face and online simulated patient interviews in an educational intervention. Adv Simul (Lond) 2024; 9:13. [PMID: 38581026 PMCID: PMC10998310 DOI: 10.1186/s41077-024-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND In adapting to COVID-19, many health professional training programs moved abruptly from in-person to online simulated patient interviews for teaching and evaluation without the benefit of evidence regarding the efficacy of this mode of delivery. This paper reports on a multi-methods research project comparing in-person and online simulated patient interviews conducted by allied health professionals as part of an educational intervention offered at a large university teaching hospital. METHODS Twenty-three participants conducted two 15-min interviews with simulated patients using previously validated scenarios of patients presenting with suicide risk. In order to assess the equivalency of the two modalities, physiological and psychological stress were measured using heart rate variability parameters and the State-Trait Anxiety Inventory respectively, and then were compared across cohorts using t-tests. Reflective interviews elicited qualitative impressions of the simulations that were subject to thematic qualitative analysis. RESULTS There were no statistical differences in measures of psychological stress or physiological arousal of participant health care professionals who engaged with in-person versus online simulated interviews, suggesting they were equally effective in eliciting reactions commonly found in challenging clinical situations. In reflective interviews, participants commented on the realism of both modalities of simulated patient encounters and that simulated interviews provoked emotional and physiological responses consistent with actual patient encounters. CONCLUSIONS These findings provide developing evidence that carefully designed online clinical simulations can be a useful tool for the education and assessment of healthcare professionals.
Collapse
Affiliation(s)
- Cheryl Regehr
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Canada.
| | - Arija Birze
- Institute for Better Health, Trillium Health Partners, Mississauga, ON, Canada
| |
Collapse
|
3
|
de Laurentis C, Pirillo D, Di Cristofori A, Versace A, Calloni T, Trezza A, Villa V, Alberti L, Baldo A, Nicolosi F, Carrabba G, Giussani C. Boosting teamwork between scrub nurses and neurosurgeons: exploring the value of a role-played hands-on, cadaver-free simulation and systematic review of the literature. Front Surg 2024; 11:1386887. [PMID: 38558881 PMCID: PMC10978771 DOI: 10.3389/fsurg.2024.1386887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Recently, non-technical skills (NTS) and teamwork in particular have been demonstrated to be essential in many jobs, in business as well as in medical specialties, including plastic, orthopedic, and general surgery. However, NTS and teamwork in neurosurgery have not yet been fully studied. We reviewed the relevant literature and designed a mock surgery to be used as a team-building activity specifically designed for scrub nurses and neurosurgeons. Methods We conducted a systematic review by searching PubMed (Medline) and CINAHL, including relevant articles in English published until 15 July 2023. Then, we proposed a pilot study consisting of a single-session, hands-on, and cadaver-free activity, based on role play. Scrub nurses were administered the SPLINTS (Scrub Practitioners' List of Intraoperative Non-Technical Skills) rating form as a self-evaluation at baseline and 20-30 days after the simulation. During the experiment, surgeons and scrub nurses role-played as each other, doing exercises including a simulated glioma resection surgery performed on an advanced model of a cerebral tumor (Tumor Box, UpSurgeOn®) under an exoscope. At the end, every participant completed an evaluation questionnaire. Results A limited number of articles are available on the topic. This study reports one of the first neurosurgical team-building activities in the literature. All the participating scrub nurses and neurosurgeons positively evaluated the simulation developed on a roleplay. The use of a physical simulator seems an added value, as the tactile feedback given by the model further helps to understand the actual surgical job, more than only observing and assisting. The SPLINTS showed a statistically significant improvement not only in "Communication and Teamwork" (p = 0.048) but also in "Situation Awareness" (p = 0.031). Conclusion Our study suggests that team-building activities may play a role in improving interprofessional teamwork and other NTS in neurosurgery.
Collapse
Affiliation(s)
- Camilla de Laurentis
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Milan, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - David Pirillo
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Di Cristofori
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Milan, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Tommaso Calloni
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Milan, Italy
- Neurosurgery, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Andrea Trezza
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Valentina Villa
- Operating Room, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Lucia Alberti
- Operating Room, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Angelo Baldo
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Milan, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Federico Nicolosi
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Milan, Italy
| | - Giorgio Carrabba
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Milan, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, Università Degli Studi di Milano Bicocca, Milan, Italy
- Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
4
|
Hudson D, Wiltshire TJ, Atzmueller M. multiSyncPy: A Python package for assessing multivariate coordination dynamics. Behav Res Methods 2023; 55:932-962. [PMID: 35513768 PMCID: PMC10027834 DOI: 10.3758/s13428-022-01855-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to support the burgeoning field of research into intra- and interpersonal synchrony, we present an open-source software package: multiSyncPy. Multivariate synchrony goes beyond the bivariate case and can be useful for quantifying how groups, teams, and families coordinate their behaviors, or estimating the degree to which multiple modalities from an individual become synchronized. Our package includes state-of-the-art multivariate methods including symbolic entropy, multidimensional recurrence quantification analysis, coherence (with an additional sum-normalized modification), the cluster-phase 'Rho' metric, and a statistical test based on the Kuramoto order parameter. We also include functions for two surrogation techniques to compare the observed coordination dynamics with chance levels and a windowing function to examine time-varying coordination for most of the measures. Taken together, our collation and presentation of these methods make the study of interpersonal synchronization and coordination dynamics applicable to larger, more complex and often more ecologically valid study designs. In this work, we summarize the relevant theoretical background and present illustrative practical examples, lessons learned, as well as guidance for the usage of our package - using synthetic as well as empirical data. Furthermore, we provide a discussion of our work and software and outline interesting further directions and perspectives. multiSyncPy is freely available under the LGPL license at: https://github.com/cslab-hub/multiSyncPy , and also available at the Python package index.
Collapse
Affiliation(s)
- Dan Hudson
- Semantic Information Systems Group, Institute of Computer Science, Osnabrück University, P.O. Box 4469, 49069, Osnabrueck, Germany.
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The Netherlands.
| | - Travis J Wiltshire
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The Netherlands
| | - Martin Atzmueller
- Semantic Information Systems Group, Institute of Computer Science, Osnabrück University, P.O. Box 4469, 49069, Osnabrueck, Germany
| |
Collapse
|
5
|
Stevens R, Galloway TL. Exploring how healthcare teams balance the neurodynamics of autonomous and collaborative behaviors: a proof of concept. Front Hum Neurosci 2022; 16:932468. [PMID: 35966993 PMCID: PMC9365959 DOI: 10.3389/fnhum.2022.932468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Team members co-regulate their activities and move together at the collective level of behavior while coordinating their actions toward shared goals. In parallel with team processes, team members need to resolve uncertainties arising from the changing task and environment. In this exploratory study we have measured the differential neurodynamics of seven two-person healthcare teams across time and brain regions during autonomous (taskwork) and collaborative (teamwork) segments of simulation training. The questions posed were: (1) whether these abstract and mostly integrated constructs could be separated neurodynamically; and, (2) what could be learned about taskwork and teamwork by trying to do so? The taskwork and teamwork frameworks used were Neurodynamic Information (NI), an electroencephalography (EEG) derived measure shown to be a neurodynamic proxy for the pauses and hesitations associated with individual uncertainty, and inter-brain EEG coherence (IBC) which is a required component of social interactions. No interdependency was observed between NI and IBC, and second-by-second dynamic comparisons suggested mutual exclusivity. These studies show that proxies for fundamental properties of teamwork and taskwork can be separated neurodynamically during team performances of ecologically valid tasks. The persistent expression of NI and IBC were not simultaneous suggesting that it may be difficult for team members to maintain inter-brain coherence while simultaneously reducing their individual uncertainties. Lastly, these separate dynamics occur over time frames of 15-30 s providing time for real-time detection and mitigation of individual and collaborative complications during training or live patient encounters.
Collapse
Affiliation(s)
- Ronald Stevens
- UCLA School of Medicine, Brain Research Institute, Los Angeles, CA, United States
- The Learning Chameleon, Inc., Culver City, CA, United States
| | | |
Collapse
|
6
|
Kennedy-Metz LR, Dias RD, Stevens RH, Yule SJ, Zenati MA. Analysis of Mirrored Psychophysiological Change of Cardiac Surgery Team Members During Open Surgery. JOURNAL OF SURGICAL EDUCATION 2021; 78:622-629. [PMID: 32863172 PMCID: PMC7904574 DOI: 10.1016/j.jsurg.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Mirrored psychophysiological change in cognitive workload indices may reflect shared mental models and effective healthcare team dynamics. In this exploratory analysis, we investigated the frequency of mirrored changes, defined as concurrent peaks in heart rate variability (HRV) across team members, during cardiac surgery. DESIGN Objective cognitive workload was evaluated via HRV collected from the primary surgical team during cardiac surgery cases (N = 15). Root mean square of the successive differences (RMSSD) was calculated as the primary HRV measure. Procedures were divided into consecutive nonoverlapping 5-minute segments, and RMSSD along with deviations from RMSSD were calculated for each segment. Segments with positive deflections represent above-average cognitive workload. Positive deflections and peaks across dyads within the same segment were counted. SETTING Data collection for this study took place in the cardiovascular operating room during live surgeries. PARTICIPANTS Physiological data were collected and analyzed from the attending surgeon, attending anesthesiologist, and primary perfusionist involved with the recorded cases. RESULTS Of the 641 five-minute segments analyzed, 325 (50.7%) were positive deflections above average, concurrently across at least 2 team members. Within the 325 positive deflections, 26 (8%) represented concurrent peaks in HRV across at least 2 active team members. Mirrored peaks across team members were observed most commonly during the coronary anastomoses or valve replacement phase (N = 12). CONCLUSIONS In this pilot study, mirrored physiological responses representing peaks in cognitive workload were observed uncommonly across dyads of cardiac surgery team members (1.73 peaks/case on average). Almost half of these occurred during the most technically demanding phases of cardiac surgery, which may underpin teamwork quality. Future work should investigate interactions between technical and nontechnical performance surrounding times of mirrored peaks and expand the sample size.
Collapse
Affiliation(s)
- Lauren R Kennedy-Metz
- Medical Robotics and Computer-Assisted Surgery Laboratory, Boston, Massachusetts; VA Boston Healthcare System, West Roxbury, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Roger D Dias
- Harvard Medical School, Boston, Massachusetts; STRATUS Center for Medical Simulation, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Steven J Yule
- Harvard Medical School, Boston, Massachusetts; Department of Clinical Surgery, University of Edinburgh, Edinburgh, Scotland; Department of Surgery, Brigham & Women's Hospital, Boston, Massachusetts
| | - Marco A Zenati
- Medical Robotics and Computer-Assisted Surgery Laboratory, Boston, Massachusetts; VA Boston Healthcare System, West Roxbury, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Stevens RH, Galloway TL. Parsing Neurodynamic Information Streams to Estimate the Frequency, Magnitude and Duration of Team Uncertainty. Front Syst Neurosci 2021; 15:606823. [PMID: 33597850 PMCID: PMC7882625 DOI: 10.3389/fnsys.2021.606823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Neurodynamic organizations are information-based abstractions, expressed in bits, of the structure of long duration EEG amplitude levels. Neurodynamic information (NI, the variable of neurodynamic organization) is thought to continually accumulate as EEG amplitudes cycle through periods of persistent activation and deactivation in response to the activities and uncertainties of teamwork. Here we show that (1) Neurodynamic information levels were a better predictor of uncertainty and novice and expert behaviors than were the EEG power levels from which NI was derived. (2) Spatial and temporal parsing of team NI from experienced submarine navigation and healthcare teams showed that it was composed of discrete peaks with durations up to 20–60 s, and identified the involvement of activated delta waves when precise motor control was needed. (3) The relationship between NI and EEG power was complex varying by brain regions, EEG frequencies, and global vs. local brain interactions. The presence of an organizational system of information that parallels the amplitude of EEG rhythms is important as it provides a greatly reduced data dimension while retaining the essential system features, i.e., linkages to higher scale behaviors that span temporal and spatial scales of teamwork. In this way the combinatorial explosion of EEG rhythmic variables at micro levels become compressed into an intermediate system of information and organization which links to macro-scale team and team member behaviors. These studies provide an avenue for understanding how complex organizations arise from the dynamics of underlying micro-scale variables. The study also has practical implications for how micro-scale variables might be better represented, both conceptually and in terms of parsimony, for training machines to recognize human behaviors that span scales of teams.
Collapse
Affiliation(s)
- Ronald H Stevens
- University of California Los Angeles (UCLA) School of Medicine, Brain Research Institute, Culver City, CA, United States.,The Learning Chameleon, Inc., Culver City, CA, United States
| | | |
Collapse
|
8
|
Shpurov IY, Vlasova RM, Rumshiskaya AD, Rozovskaya RI, Mershina EA, Sinitsyn VE, Pechenkova EV. Neural Correlates of Group Versus Individual Problem Solving Revealed by fMRI. Front Hum Neurosci 2020; 14:290. [PMID: 33005135 PMCID: PMC7483667 DOI: 10.3389/fnhum.2020.00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Group problem solving is a prototypical complex collective intellectual activity. Psychological research provides compelling evidence that problem solving in groups is both qualitatively and quantitatively different from doing so alone. However, the question of whether individual and collective problem solving involve the same neural substrate has not yet been addressed, mainly due to methodological limitations. In the current study, functional magnetic resonance imaging was performed to compare brain activation when participants solved Raven-like matrix problems in a small group and individually. In the group condition, the participant in the scanner was able to discuss the problem with other team members using a special communication device. In the individual condition, the participant was required to think aloud while solving the problem in the silent presence of the other team members. Greater activation was found in several brain regions during group problem solving, including the medial prefrontal cortex; lateral parietal, cingulate, precuneus and retrosplenial cortices; frontal and temporal poles. These areas have been identified as potential components of the so-called "social brain" on the basis of research using offline judgments of material related to socializing. Therefore, this study demonstrated the actual involvement of these regions in real-time social interactions, such as group problem solving. However, further connectivity analysis revealed that the social brain components are co-activated, but do not increase their coupling during cooperation as would be suggested for a holistic network. We suggest that the social mode of the brain may be described instead as a re-configuration of connectivity between basic networks, and we found decreased connectivity between the language and salience networks in the group compared to the individual condition. A control experiment showed that the findings from the main experiment cannot be entirely accounted for by discourse comprehension. Thus, the study demonstrates affordances provided by the presented new technique for neuroimaging the "group mind," implementing the single-brain version of the second-person neuroscience approach.
Collapse
Affiliation(s)
- Ilya Yu Shpurov
- Research Institute of Neuropsychology of Speech and Writing, Moscow, Russia
| | - Roza M Vlasova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alena D Rumshiskaya
- Davydovsky City Clinical Hospital, Moscow, Russia.,Radiology Department, Federal Center of Treatment and Rehabilitation, Moscow, Russia
| | - Renata I Rozovskaya
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elena A Mershina
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Valentin E Sinitsyn
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Pechenkova
- Research Institute of Neuropsychology of Speech and Writing, Moscow, Russia.,Laboratory for Cognitive Research, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
9
|
Shuffler ML, Salas E, Rosen MA. The Evolution and Maturation of Teams in Organizations: Convergent Trends in the New Dynamic Science of Teams. Front Psychol 2020; 11:2128. [PMID: 33013542 PMCID: PMC7499456 DOI: 10.3389/fpsyg.2020.02128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/30/2020] [Indexed: 01/29/2023] Open
Affiliation(s)
- Marissa L Shuffler
- College of Behavioral Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Eduardo Salas
- Department of Psychology, Rice University, Houston, TX, United States
| | - Michael A Rosen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|