1
|
Tao MX, Hu JP, Zhang ZQ, Chen YQ. The effects of implicit emotion on the use of theory of mind among college students in China. Cogn Process 2024; 25:267-279. [PMID: 38064117 DOI: 10.1007/s10339-023-01173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/17/2023] [Indexed: 05/22/2024]
Abstract
This research aims to study the impact of implicit emotion on the use of theory of mind and enrich the research on emotions and the use of theory of mind, thus allowing adults to apply theory of mind more effectively in the context of social interaction. This study includes 120 college students as participants. A two (level of theory of mind: high vs. low) * three (implicit emotional state: implicit positive emotion, implicit neutral emotion, or implicit negative emotion) * two (private knowledge: endowed vs. unendowed) between-subjects three-factor design was employed. This study obtained the following results: (1) The main effect of different implicit emotional states on college students' use of theory of mind is significant. College students with implicit positive emotions use theory of mind much less than those with implicit neutral and negative emotions. (2) In cases of implicit positive emotions, college students with a low level of theory of mind use theory of mind substantially less than students with a high level of theory of mind. In cases of implicit neutral and negative emotions, college students with the high and low theory of mind do not exhibit substantial differences in their use of theory of mind. This study concludes that different emotional states affect college students' use of theory of mind.
Collapse
Affiliation(s)
- Meng-Xin Tao
- Mental Health Education Center, Anhui Broadcasting Movie And Television College, Hefei, 230011, China.
- Institute of Psychology, St. Paul University Philippines, Tuguegarao, Philippines.
| | - Jin-Ping Hu
- Mental Health Education Center, Anhui Broadcasting Movie And Television College, Hefei, 230011, China
| | - Zu-Qiang Zhang
- Mental Health Education Center, Anhui Broadcasting Movie And Television College, Hefei, 230011, China
| | - You-Qing Chen
- Institute of Psychology, Hohai University, Nanjing, China
| |
Collapse
|
2
|
Pierce JE, Thomasson M, Voruz P, Selosse G, Péron J. Explicit and Implicit Emotion Processing in the Cerebellum: A Meta-analysis and Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:852-864. [PMID: 35999332 PMCID: PMC10485090 DOI: 10.1007/s12311-022-01459-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The cerebellum's role in affective processing is increasingly recognized in the literature, but remains poorly understood, despite abundant clinical evidence for affective disruptions following cerebellar damage. To improve the characterization of emotion processing and investigate how attention allocation impacts this processing, we conducted a meta-analysis on task activation foci using GingerALE software. Eighty human neuroimaging studies of emotion including 2761 participants identified through Web of Science and ProQuest databases were analyzed collectively and then divided into two categories based on the focus of attention during the task: explicit or implicit emotion processing. The results examining the explicit emotion tasks identified clusters within the posterior cerebellar hemispheres (bilateral lobule VI/Crus I/II), the vermis, and left lobule V/VI that were likely to be activated across studies, while implicit tasks activated clusters including bilateral lobules VI/Crus I/II, right Crus II/lobule VIII, anterior lobule VI, and lobules I-IV/V. A direct comparison between these categories revealed five overlapping clusters in right lobules VI/Crus I/Crus II and left lobules V/VI/Crus I of the cerebellum common to both the explicit and implicit task contrasts. There were also three clusters activated significantly more for explicit emotion tasks compared to implicit tasks (right lobule VI, left lobule VI/vermis), and one cluster activated more for implicit than explicit tasks (left lobule VI). These findings support previous studies indicating affective processing activates both the lateral hemispheric lobules and the vermis of the cerebellum. The common and distinct activation of posterior cerebellar regions by tasks with explicit and implicit attention demonstrates the supportive role of this structure in recognizing, appraising, and reacting to emotional stimuli.
Collapse
Affiliation(s)
- Jordan E Pierce
- Cognitive and Affective Neuroscience Laboratory, Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marine Thomasson
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland
- Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland
- Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Garance Selosse
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology, University of Geneva, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland.
- Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Olson IR, Hoffman LJ, Jobson KR, Popal HS, Wang Y. Little brain, little minds: The big role of the cerebellum in social development. Dev Cogn Neurosci 2023; 60:101238. [PMID: 37004475 PMCID: PMC10067769 DOI: 10.1016/j.dcn.2023.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Seminal work in the 1990's found alterations in the cerebellum of individuals with social disorders including autism spectrum disorder and schizophrenia. In neurotypical populations, distinct portions of the posterior cerebellum are consistently activated in fMRI studies of social cognition and it has been hypothesized that the cerebellum plays an essential role in social cognition, particularly in theory of mind. Here we review the lesion literature and find that the effect of cerebellar damage on social cognition is strongly linked to the age of insult, with dramatic impairments observed after prenatal insult, strong deficits observed after childhood damage, and mild and inconsistent deficits observed following damage to the adult cerebellum. To explain the developmental gradient, we propose that early in life, the forward model dominates cerebellar computations. The forward model learns and uses errors to help build schemas of our interpersonal worlds. Subsequently, we argue that once these schemas have been built up, the inverse model, which is the foundation of automatic processing, becomes dominant. We provide suggestions for how to test this, and also outline directions for future research.
Collapse
Affiliation(s)
- Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA.
| | - Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Katie R Jobson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Haroon S Popal
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Olivito G, Siciliano L, Clausi S, Lupo M, Baiocco R, Gragnani A, Saettoni M, Delle Chiaie R, Laghi F, Leggio M. The Cerebellum Gets Social: Evidence from an Exploratory Study of Cerebellar, Neurodevelopmental, and Psychiatric Disorders. Biomedicines 2023; 11:309. [PMID: 36830846 PMCID: PMC9953169 DOI: 10.3390/biomedicines11020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Social prediction is a key feature of social cognition (SC), a function in which the modulating role of the cerebellum is recognized. Accordingly, cerebellar alterations are reported in cerebellar pathologies, neurodevelopmental disorders, and psychiatric conditions that show SC deficits. Nevertheless, to date, no study has directly compared populations representative of these three conditions with respect to SC and cerebellar alterations. Therefore, the present exploratory study aimed to compare the SC profiles of individuals with cerebellar neurodegenerative disorders (CB), autism (ASD), bipolar disorder type 2 (BD2), or healthy subjects (HS) using a battery of social tests requiring different degrees of prediction processing. The patterns of cerebellar gray matter (GM) alterations were compared among the groups using voxel-based morphometry. Compared to HS, the clinical groups showed common SC deficits in tasks involving a moderate to high level of prediction. The behavioral results of the clinical groups are consistent with the presence of overlapping GM reduction in cerebellar right Crus II, an area notably involved in complex social processing and prediction. Although exploratory and preliminary, these results deepen the cerebellar role in social prediction and highlight the transdiagnostic value of the cerebellum in social functioning and prediction in pathologies of different aetiologies, forecasting novel possibilities for shared interventions.
Collapse
Affiliation(s)
- Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Libera Siciliano
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Silvia Clausi
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
- Klinikos Center for Psychodiagnostics and Psychotherapy, Viale delle Milizie 38, 00192 Roma, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell’Età Evolutiva ASL, Roma 2, 00145 Rome, Italy
| | - Roberto Baiocco
- Department of Developmental and Social Psychology, Sapienza University of Rome, 00185 Roma, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy
- Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), 00185 Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy
- Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, 56121 Pisa, Italy
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy
| | - Fiorenzo Laghi
- Department of Developmental and Social Psychology, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| |
Collapse
|
5
|
Siciliano L, Olivito G, Lupo M, Urbini N, Gragnani A, Saettoni M, Delle Chiaie R, Leggio M. The role of the cerebellum in sequencing and predicting social and non-social events in patients with bipolar disorder. Front Cell Neurosci 2023; 17:1095157. [PMID: 36874211 PMCID: PMC9974833 DOI: 10.3389/fncel.2023.1095157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Advances in the operational mode of the cerebellum indicate a role in sequencing and predicting non-social and social events, crucial for individuals to optimize high-order functions, such as Theory of Mind (ToM). ToM deficits have been described in patients with remitted bipolar disorders (BD). The literature on BD patients' pathophysiology reports cerebellar alterations; however, sequential abilities have never been investigated and no study has previously focused on prediction abilities, which are needed to properly interpret events and to adapt to changes. Methods To address this gap, we compared the performance of BD patients in the euthymic phase with healthy controls using two tests that require predictive processing: a ToM test that require implicit sequential processing and a test that explicitly assesses sequential abilities in non-ToM functions. Additionally, patterns of cerebellar gray matter (GM) alterations were compared between BD patients and controls using voxel-based morphometry. Results Impaired ToM and sequential skills were detected in BD patients, specifically when tasks required a greater predictive load. Behavioral performances might be consistent with patterns of GM reduction in cerebellar lobules Crus I-II, which are involved in advanced human functions. Discussion These results highlight the importance of deepening the cerebellar role in sequential and prediction abilities in patients with BD.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell'Età Evolutiva ASL, Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, Pisa, Italy
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health-Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
6
|
Clausi S, Siciliano L, Olivito G, Leggio M. Cerebellum and Emotion in Social Behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:235-253. [PMID: 35902475 DOI: 10.1007/978-3-030-99550-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that the cerebellum plays a crucial role not only in the motor and cognitive domains but also in emotions and social behavior. In the present chapter, after a general introduction on the significance of the emotional components of social behavior, we describe recent efforts to understand the contributions of the cerebellum in social cognition focusing on the emotional and affective aspects. Specifically, starting from the description of the cerebello-cortical networks subtending the social-affective domains, we illustrate the most recent findings on the social cerebellum and the possible functional mechanisms by which the cerebellum modulate social-affective behavior. Finally, we discuss the possible consequences of cerebellar dysfunction in the social-affective domain, focusing on those neurological and psychopathological conditions in which emotional and social behavior difficulties have been described as being associated with cerebellar structural or functional alterations.
Collapse
Affiliation(s)
- Silvia Clausi
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy. .,Psychology Department, Sapienza University, Rome, Italy.
| | - Libera Siciliano
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Giusy Olivito
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| | - Maria Leggio
- Ataxia Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy.,Psychology Department, Sapienza University, Rome, Italy
| |
Collapse
|
7
|
Ma Q, Pu M, Haihambo NP, Baetens K, Heleven E, Deroost N, Baeken C, Van Overwalle F. The posterior cerebellum and temporoparietal junction support explicit learning of social belief sequences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:467-491. [PMID: 34811709 DOI: 10.3758/s13415-021-00966-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
This study tests the hypothesis that the posterior cerebellum is involved in social cognition by identifying and automatizing sequences of social actions. We applied a belief serial reaction time task (Belief SRT task), which requires mentalizing about two protagonists' beliefs about how many flowers they receive. The protagonists' beliefs could either be true or false depending on their orientation (true belief: oriented towards and directly observing the flowers; or false belief: oriented away and knowing only prior information about flowers). A Control SRT task was created by replacing protagonists and their beliefs with shapes and colors. Participants were explicitly told that there was a standard sequence related to the two protagonists' belief orientations (Belief SRT task) or the shapes' colors (Control SRT task). Both tasks included a Training phase where the standard sequence was repeated and a Test phase where this standard sequence was interrupted by random sequences. As hypothesized, compared with the Control SRT task, the Belief SRT task recruited the posterior cerebellar Crus II and the temporoparietal junction (TPJ) more. Faster response times were correlated with less Crus II activation and with more TPJ activation, suggesting that the Crus II supported automatizing the belief sequence while the TPJ supported inferring the protagonists' beliefs. Also as hypothesized, compared with an implicit version of the Belief SRT task (i.e., participants did not know about the existence of sequences; Ma, Pu, et al., 2021b), the cerebellar Crus I &II was engaged less during initial training and automatic application of the sequence, and the cortical TPJ was activated more in processing random sequences.
Collapse
Affiliation(s)
- Qianying Ma
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| | - Min Pu
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Naem P Haihambo
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Natacha Deroost
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental, Ghent, Belgium
- Psychiatry (GHEP) Laboratory, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Van Overwalle
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| |
Collapse
|
8
|
Yeh CH, Tseng RY, Ni HC, Cocchi L, Chang JC, Hsu MY, Tu EN, Wu YY, Chou TL, Gau SSF, Lin HY. White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities. Mol Autism 2022; 13:21. [PMID: 35585645 PMCID: PMC9118608 DOI: 10.1186/s13229-022-00499-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neuroimage literature of autism spectrum disorder (ASD) has a moderate-to-high risk of bias, partially because those combined with intellectual impairment (II) and/or minimally verbal (MV) status are generally ignored. We aimed to provide more comprehensive insights into white matter alterations of ASD, inclusive of individuals with II (ASD-II-Only) or MV expression (ASD-MV). Methods Sixty-five participants with ASD (ASD-Whole; 16.6 ± 5.9 years; comprising 34 intellectually able youth, ASD-IA, and 31 intellectually impaired youth, ASD-II, including 24 ASD-II-Only plus 7 ASD-MV) and 38 demographic-matched typically developing controls (TDC; 17.3 ± 5.6 years) were scanned in accelerated diffusion-weighted MRI. Fixel-based analysis was undertaken to investigate the categorical differences in fiber density (FD), fiber cross section (FC), and a combined index (FDC), and brain symptom/cognition associations. Results ASD-Whole had reduced FD in the anterior and posterior corpus callosum and left cerebellum Crus I, and smaller FDC in right cerebellum Crus II, compared to TDC. ASD-IA, relative to TDC, had no significant discrepancies, while ASD-II showed almost identical alterations to those from ASD-Whole vs. TDC. ASD-II-Only had greater FD/FDC in the isthmus splenium of callosum than ASD-MV. Autistic severity negatively correlated with FC in right Crus I. Nonverbal full-scale IQ positively correlated with FC/FDC in cerebellum VI. FD/FDC of the right dorsolateral prefrontal cortex showed a diagnosis-by-executive function interaction. Limitations We could not preclude the potential effects of age and sex from the ASD cohort, although statistical tests suggested that these factors were not influential. Our results could be confounded by variable psychiatric comorbidities and psychotropic medication uses in our ASD participants recruited from outpatient clinics, which is nevertheless closer to a real-world presentation of ASD. The outcomes related to ASD-MV were considered preliminaries due to the small sample size within this subgroup. Finally, our study design did not include intellectual impairment-only participants without ASD to disentangle the mixture of autistic and intellectual symptoms. Conclusions ASD-associated white matter alterations appear driven by individuals with II and potentially further by MV. Results suggest that changes in the corpus callosum and cerebellum are key for psychopathology and cognition associated with ASD. Our work highlights an essential to include understudied subpopulations on the spectrum in research. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00499-1.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan. .,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Rung-Yu Tseng
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, 333, Taoyuan City, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - En-Nien Tu
- Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. .,Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, and Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1025 Queen St W - 3314, Toronto, ON, M6J 1H4, Canada. .,Department of Psychiatry and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Sun S, Webster PJ, Wang Y, Yu H, Yu R, Wang S. Reduced Pupil Oscillation During Facial Emotion Judgment in People with Autism Spectrum Disorder. J Autism Dev Disord 2022; 53:1963-1973. [PMID: 35178651 DOI: 10.1007/s10803-022-05478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/30/2022]
Abstract
People with autism spectrum disorder (ASD) show abnormal face perception and emotion recognition. However, it remains largely unknown whether these differences are associated with abnormal physiological responses when viewing faces. In this study, we employed a sensitive emotion judgment task and conducted a detailed investigation of pupil dilation/constriction and oscillation in high-functioning adult participants with ASD and matched controls. We found that participants with ASD showed normal pupil constriction to faces; however, they demonstrated reduced pupil oscillation, which was independent of stimulus properties and participants' perception of the emotion. Together, our results have revealed an abnormal physiological response to faces in people with ASD, which may in turn be associated with impaired face perception previously found in many studies.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba-6-3 Aramaki, Aoba Ward, Sendai, 980-8578, Japan. .,Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba Ward, Sendai, 980-8577, Japan.
| | - Paula J Webster
- Department of Chemical and Biomedical Engineering and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Yu Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Rongjun Yu
- Department of Management, School of Business, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - Shuo Wang
- Department of Chemical and Biomedical Engineering and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Williams RJ, Brown EC, Clark DL, Pike GB, Ramasubbu R. Early post-treatment blood oxygenation level-dependent responses to emotion processing associated with clinical response to pharmacological treatment in major depressive disorder. Brain Behav 2021; 11:e2287. [PMID: 34333866 PMCID: PMC8413787 DOI: 10.1002/brb3.2287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Pre-treatment blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been used for the early identification of patients with major depressive disorder (MDD) who later respond or fail to respond to medication. However, BOLD responses early after treatment initiation may offer insight into early neural changes associated with later clinical response. The present study evaluated both pre-treatment and early post-treatment fMRI responses to an emotion processing task, to further our understanding of neural changes associated with a successful response to pharmacological intervention. METHODS MDD patients who responded (n = 22) and failed to respond (n = 12) after 8 weeks of treatment with either citalopram or quetiapine extended release, and healthy controls (n = 18) underwent two fMRI scans, baseline (pre-treatment), and early post-treatment (one week after treatment commencement). Participants completed an emotional face matching task at both scans. RESULTS Using threshold-free cluster enhancement (TFCE) and non-parametric permutation testing, fMRI activation maps showed that after one week of treatment, responders demonstrated increased activation in the left parietal lobule, precentral gyrus, and bilateral insula (all P < 0.05 threshold-free cluster enhancement (TFCE) family-wise error-corrected) to negative facial expressions. Non-responders showed some small increases in the precentral gyrus, while controls showed no differences between scans. Compared to non-responders, responders showed some increased activation in the superior parietal lobule and middle temporal gyrus at the post-treatment scan. There were no group differences between responders, non-responders, and controls at baseline. CONCLUSIONS One week after treatment commencement, BOLD signal changes in the parietal lobules, insula, and middle temporal gyrus were related to clinical response to pharmacological treatment.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Darren L Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Stoodley CJ, Tsai PT. Adaptive Prediction for Social Contexts: The Cerebellar Contribution to Typical and Atypical Social Behaviors. Annu Rev Neurosci 2021; 44:475-493. [PMID: 34236892 DOI: 10.1146/annurev-neuro-100120-092143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social interactions involve processes ranging from face recognition to understanding others' intentions. To guide appropriate behavior in a given context, social interactions rely on accurately predicting the outcomes of one's actions and the thoughts of others. Because social interactions are inherently dynamic, these predictions must be continuously adapted. The neural correlates of social processing have largely focused on emotion, mentalizing, and reward networks, without integration of systems involved in prediction. The cerebellum forms predictive models to calibrate movements and adapt them to changing situations, and cerebellar predictive modeling is thought to extend to nonmotor behaviors. Primary cerebellar dysfunction can produce social deficits, and atypical cerebellar structure and function are reported in autism, which is characterized by social communication challenges and atypical predictive processing. We examine the evidence that cerebellar-mediated predictions and adaptation play important roles in social processes and argue that disruptions in these processes contribute to autism.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Departments of Neuroscience and Psychology, American University, Washington, DC 20016, USA
| | - Peter T Tsai
- Departments of Neurology, Neuroscience, Psychiatry, and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
12
|
Lupo M, Olivito G, Gragnani A, Saettoni M, Siciliano L, Pancheri C, Panfili M, Bozzali M, Delle Chiaie R, Leggio M. Comparison of Cerebellar Grey Matter Alterations in Bipolar and Cerebellar Patients: Evidence from Voxel-Based Analysis. Int J Mol Sci 2021; 22:ijms22073511. [PMID: 33805296 PMCID: PMC8036397 DOI: 10.3390/ijms22073511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to compare the patterns of cerebellar alterations associated with bipolar disease with those induced by the presence of cerebellar neurodegenerative pathologies to clarify the potential cerebellar contribution to bipolar affective disturbance. Twenty-nine patients affected by bipolar disorder, 32 subjects affected by cerebellar neurodegenerative pathologies, and 37 age-matched healthy subjects underwent a 3T MRI protocol. A voxel-based morphometry analysis was used to show similarities and differences in cerebellar grey matter (GM) loss between the groups. We found a pattern of GM cerebellar alterations in both bipolar and cerebellar groups that involved the anterior and posterior cerebellar regions (p = 0.05). The direct comparison between bipolar and cerebellar patients demonstrated a significant difference in GM loss in cerebellar neurodegenerative patients in the bilateral anterior and posterior motor cerebellar regions, such as lobules I-IV, V, VI, VIIIa, VIIIb, IX, VIIb and vermis VI, while a pattern of overlapping GM loss was evident in right lobule V, right crus I and bilateral crus II. Our findings showed, for the first time, common and different alteration patterns of specific cerebellar lobules in bipolar and neurodegenerative cerebellar patients, which allowed us to hypothesize a cerebellar role in the cognitive and mood dysregulation symptoms that characterize bipolar disorder.
Collapse
Affiliation(s)
- Michela Lupo
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (G.O.); (M.L.)
- Correspondence: ; Tel.: +39-065-150-1115
| | - Giusy Olivito
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (G.O.); (M.L.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy; (A.G.); (M.S.)
- Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), 00185 Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy; (A.G.); (M.S.)
- Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, 56121 Pisa, Italy
| | - Libera Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00185 Rome, Italy;
| | - Corinna Pancheri
- Departement of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (C.P.); (M.P.); (R.D.C.)
| | - Matteo Panfili
- Departement of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (C.P.); (M.P.); (R.D.C.)
| | - Marco Bozzali
- Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton BN1 9RR, UK;
| | - Roberto Delle Chiaie
- Departement of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (C.P.); (M.P.); (R.D.C.)
| | - Maria Leggio
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (G.O.); (M.L.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
13
|
Styliadis C, Leung R, Özcan S, Moulton EA, Pang E, Taylor MJ, Papadelis C. Atypical spatiotemporal activation of cerebellar lobules during emotional face processing in adolescents with autism. Hum Brain Mapp 2021; 42:2099-2114. [PMID: 33528852 PMCID: PMC8046060 DOI: 10.1002/hbm.25349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social deficits and atypical facial processing of emotional expressions. The underlying neuropathology of these abnormalities is still unclear. Recent studies implicate cerebellum in emotional processing; other studies show cerebellar abnormalities in ASD. Here, we elucidate the spatiotemporal activation of cerebellar lobules in ASD during emotional processing of happy and angry faces in adolescents with ASD and typically developing (TD) controls. Using magnetoencephalography, we calculated dynamic statistical parametric maps across a period of 500 ms after emotional stimuli onset and determined differences between group activity to happy and angry emotions. Following happy face presentation, adolescents with ASD exhibited only left‐hemispheric cerebellar activation in a cluster extending from lobule VI to lobule V (compared to TD controls). Following angry face presentation, adolescents with ASD exhibited only midline cerebellar activation (posterior IX vermis). Our findings indicate an early (125–175 ms) overactivation in cerebellar activity only for happy faces and a later overactivation for both happy (250–450 ms) and angry (250–350 ms) faces in adolescents with ASD. The prioritized hemispheric activity (happy faces) could reflect the promotion of a more flexible and adaptive social behavior, while the latter midline activity (angry faces) may guide conforming behavior.
Collapse
Affiliation(s)
- Charis Styliadis
- Laboratory of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Selin Özcan
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Pang
- University of Toronto, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- University of Toronto, Toronto, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, Hospital for Sick Children, Toronto, Canada
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, Texas, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA.,Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, Texas, USA
| |
Collapse
|