1
|
Mauer E, Uchikoshi Y, Bunge S, Zhou Q. Longitudinal relations between self-regulatory skills and mathematics achievement in early elementary school children from Chinese American immigrant families. J Exp Child Psychol 2023; 227:105601. [PMID: 36512921 PMCID: PMC10984144 DOI: 10.1016/j.jecp.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Drawing from two waves (∼1.5-2.5 years apart) of longitudinal data, the current study investigated the bidirectional associations between self-regulatory skills and mathematics achievement among a socioeconomically diverse sample of school-age Chinese American children from immigrant families (N = 258; 48.1% girls; ages 5.8-9.1 years; first to third grades at Wave 1). Children's self-regulatory skills were assessed with task-based measures of attention focusing, inhibitory control, behavioral persistence, and comprehensive executive function as well as parent- and teacher-reported effortful control. Multiple regressions showed that behavioral persistence and parent-reported effortful control positively predicted math achievement over time. Math achievement positively predicted comprehensive executive function over time. These effects were found when controlling for child age, sex, generation status, family socioeconomic status, parents' cultural orientations, and prior levels of math achievement or self-regulation. The prospective relation of math achievement predicting comprehensive executive function remained significant after a false discovery rate correction.
Collapse
Affiliation(s)
- Ezra Mauer
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuuko Uchikoshi
- School of Education, University of California, Davis, Davis, CA 95616, USA
| | - Silvia Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qing Zhou
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int J Psychophysiol 2021; 170:75-88. [PMID: 34666105 DOI: 10.1016/j.ijpsycho.2021.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
An interoception model for the acute exercise-cognition interaction is presented. During exercise following the norepinephrine threshold, interoceptive feedback induces increased tonic release of extracellular catecholamines, facilitating phasic release hence better cognitive performance of executive functions. When exercise intensity increases to maximum, the nature of task-induced norepinephrine release from the locus coeruleus is dependent on interaction between motivation, perceived effort costs and perceived availability of resources. This is controlled by interaction between the rostral and dorsolateral prefrontal cortices, orbitofrontal cortex, anterior cingulate cortex and anterior insula cortex. If perceived available resources are sufficient to meet predicted effort costs and reward value is high, tonic release from the locus coeruleus is attenuated thus facilitating phasic release, therefore cognition is not inhibited. However, if perceived available resources are insufficient to meet predicted effort costs or reward value is low, tonic release from the locus coeruleus is induced, attenuating phasic release. As a result, cognition is inhibited, although long-term memory and tasks that require switching to new stimuli-response couplings are probably facilitated.
Collapse
Affiliation(s)
- Terry McMorris
- Institute of Sport, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom; Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Guildhall Walk, Portsmouth PO1 2ER, United Kingdom.
| |
Collapse
|
3
|
Mauer E, Zhou Q, Uchikoshi Y. A Longitudinal Study on Bidirectional Relations between Executive Functions and English Word-Level Reading in Chinese American Children in Immigrant Families. LEARNING AND INDIVIDUAL DIFFERENCES 2021; 86:101976. [PMID: 33679112 PMCID: PMC7935035 DOI: 10.1016/j.lindif.2021.101976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This two-wave (1.5 years apart) longitudinal study examined the bidirectional relations between measures of executive function (EF; working memory, attention focusing, inhibitory control, and a comprehensive EF measure) and two types of English word-level reading (pseudoword reading and word reading) among 258 school-aged children (52.6% boys, age = 5.8-9.1 years, in 1st to 3rd grades at Wave 1) from Chinese American immigrant families. Cross-lagged panel analyses were conducted to test whether the four EF measures and English word-level reading proficiency predicted one another controlling for prior levels of EF or word reading, as well as demographic characteristics and children's English and Chinese language proficiency. We found a positive bidirectional association between the comprehensive EF measure and pseudoword reading. By contrast, although the comprehensive EF measure positively predicted word reading over time, word reading did not predict comprehensive EF. Additionally, both word reading and pseudoword reading positively predicted working memory over time. The results provided partial evidence that English word-level reading is bidirectionally related to EF among early elementary school-age dual language learners.
Collapse
Affiliation(s)
- Ezra Mauer
- Department of Psychology, University of California, Berkeley
| | - Qing Zhou
- Department of Psychology, University of California, Berkeley
| | - Yuuko Uchikoshi
- Graduate School of Education, University of California, Davis
| |
Collapse
|
4
|
The α6 GABA A Receptor Positive Allosteric Modulator DK-I-56-1 Reduces Tic-Related Behaviors in Mouse Models of Tourette Syndrome. Biomolecules 2021; 11:biom11020175. [PMID: 33525455 PMCID: PMC7912006 DOI: 10.3390/biom11020175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
Tourette syndrome (TS) is a disabling neurodevelopmental disorder characterized by multiple, recurrent tics. The pharmacological treatment of TS is currently based on dopaminergic antagonists; however, these drugs are associated with extrapyramidal symptoms and other serious adverse events. Recent evidence suggests that positive allosteric modulators (PAMs) of GABAA receptors containing α6 subunits (α6 GABAARs) oppose the behavioral effects of dopamine. Building on this evidence, in the present study, we tested the efficacy of DK-I-56-1, a highly selective PAM for α6 GABAARs, in mouse models of TS exhibiting tic-related responses. DK-I-56-1 significantly reduced tic-like jerks and prepulse inhibition (PPI) deficits in D1CT-7 transgenic mice, a well-documented mouse model of TS. DK-I-56-1 also prevented the exacerbation of spontaneous eyeblink reflex induced by the potent dopamine D1 receptor agonist SKF 82958, a proxy for tic-like responses. We also showed that both systemic and prefrontal cortical administration of DK-I-56-1 countered the PPI disruption caused by SKF 82958. Although the effects of DK-I-56-1 were akin to those elicited by dopaminergic antagonists, this drug did not elicit extrapyramidal effects, as measured by catalepsy. These results point to α6 GABAAR PAMs as promising TS therapies with a better safety profile than dopaminergic antagonists.
Collapse
|
5
|
McMorris T. Cognitive Fatigue Effects on Physical Performance: The Role of Interoception. Sports Med 2020; 50:1703-1708. [DOI: 10.1007/s40279-020-01320-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Openneer TJC, Forde NJ, Akkermans SEA, Naaijen J, Buitelaar JK, Hoekstra PJ, Dietrich A. Executive function in children with Tourette syndrome and attention-deficit/hyperactivity disorder: Cross-disorder or unique impairments? Cortex 2020; 124:176-187. [PMID: 31901563 DOI: 10.1016/j.cortex.2019.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/30/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023]
Abstract
Findings of executive functioning deficits in Tourette syndrome (TS) have so far been inconsistent, possibly due to methodological challenges of previous studies, such as the use of small sample sizes and not accounting for comorbid attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), or medication use. We aimed to address these issues by examining several areas of executive functioning (response inhibition, attentional flexibility, cognitive control, and working memory) and psychomotor speed in 174 8-to-12-year-old children with TS [n = 34 without (TS-ADHD) and n = 26 with comorbid ADHD (TS+ADHD)], ADHD without tics (ADHD-TS; n = 54), and healthy controls (n = 60). We compared executive functioning measures and psychomotor speed between these groups and related these to ADHD severity across the whole sample, and tic severity across the TS groups. Children with TS+ADHD, but not TS-ADHD, made more errors on the cognitive control task than healthy children, while TS-ADHD had a slower psychomotor speed compared to healthy controls. The ADHD group showed impairment in cognitive control and working memory versus healthy controls. Moreover, higher ADHD severity was associated with poorer cognitive control and working memory across all groups; there was no relation between any of the executive functioning measures and tic severity. OCD severity or medication use did not influence our results. In conclusion, we found little evidence for executive function impairments inherent to TS. Executive function problems appear to manifest predominantly in relation to ADHD symptomatology, with both cross-disorder and unique features of neuropsychological functioning when cross-comparing TS and ADHD.
Collapse
Affiliation(s)
- Thaïra J C Openneer
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands.
| | - Natalie J Forde
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Center for Cognitive Neuroimaging, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Sophie E A Akkermans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Center for Cognitive Neuroimaging, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Jilly Naaijen
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Center for Cognitive Neuroimaging, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Center for Cognitive Neuroimaging, Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry, University Center, Nijmegen, the Netherlands
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| |
Collapse
|
7
|
The urge to blink in Tourette syndrome. Cortex 2019; 120:556-566. [PMID: 31525588 DOI: 10.1016/j.cortex.2019.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Functional neuroimaging studies have attempted to explore brain activity that occurs with tic occurrence in subjects with Tourette syndrome (TS). However, they are limited by the difficulty of disambiguating brain activity required to perform a tic, or activity caused by the tic, from brain activity that generates a tic. Inhibiting ticcing following the urge to tic is important to patients' experience of tics and we hypothesize that inhibition of a compelling motor response to a natural urge will differ in TS subjects compared to controls. This study examines the urge to blink, which shares many similarities to premonitory urges to tic. Previous neuroimaging studies with the same hypothesis have used a one-size-fits-all approach to extract brain signal putatively linked to the urge to blink. We aimed to create a subject-specific and blink-timing-specific pathophysiological model, derived from out-of-scanner blink suppression trials, to eventually better interpret blink suppression fMRI data. Eye closure and continuously self-reported discomfort were reported during five blink suppression trials in 30 adult volunteers, 15 with a chronic tic disorder. For each subject, data from four of the trials were used with an empirical mathematical model to predict discomfort from eye closure observed during the remaining trial. The blink timing model of discomfort during blink suppression predicted observed discomfort much better than previously applied models. Combining this approach with observed eye closure during fMRI blink suppression trials should therefore extract brain signal more tightly linked to the urge to blink. The simple mean of time-discomfort curves from each subject's other trials also outperformed older models. The TS group blinked more than twice as often during the blink suppression block, and reported higher baseline discomfort, smaller excursion from baseline to peak discomfort during the blink suppression block, and slower return of discomfort to baseline during the recovery block.
Collapse
|
8
|
Morand-Beaulieu S, Leclerc JB, Valois P, Lavoie ME, O'Connor KP, Gauthier B. A Review of the Neuropsychological Dimensions of Tourette Syndrome. Brain Sci 2017; 7:E106. [PMID: 28820427 PMCID: PMC5575626 DOI: 10.3390/brainsci7080106] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022] Open
Abstract
Neurocognitive functioning in Tourette syndrome (TS) has been the subject of intensive research in the past 30 years. A variety of impairments, presumably related to frontal and frontostriatal dysfunctions, have been observed. These impairments were found in various domains, such as attention, memory, executive functions, language, motor and visuomotor functions, among others. In line with contemporary research, other neurocognitive domains have recently been explored in TS, bringing evidence of altered social reasoning, for instance. Therefore, the aims of this review are to give an overview of the neuropsychological dimensions of TS, to report how neuropsychological functions evolve from childhood to adulthood, and to explain how various confounding factors can affect TS patients' performance in neuropsychological tasks. Finally, an important contribution of this review is to show how recent research has confirmed or changed our beliefs about neuropsychological functioning in TS.
Collapse
Affiliation(s)
- Simon Morand-Beaulieu
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de neurosciences, Université de Montréal, 2960 Chemin de la Tour, Montréal, QC H3T 1J4, Canada.
| | - Julie B Leclerc
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, QC H2X 3P2, Canada.
| | - Philippe Valois
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, QC H2X 3P2, Canada.
| | - Marc E Lavoie
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de neurosciences, Université de Montréal, 2960 Chemin de la Tour, Montréal, QC H3T 1J4, Canada.
- Département de psychiatrie, Université de Montréal, 2900, boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Kieron P O'Connor
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université du Québec à Montréal, 100, rue Sherbrooke Ouest, Montréal, QC H2X 3P2, Canada.
- Département de psychiatrie, Université de Montréal, 2900, boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Bruno Gauthier
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, 7331 rue Hochelaga, Montréal, QC H1N 3V2, Canada.
- Département de psychologie, Université de Montréal, Campus Laval, 1700 rue Jacques-Tétreault, Laval, QC H7N 0B6, Canada.
| |
Collapse
|
9
|
Hamedani AG, Gold DR. Eyelid Dysfunction in Neurodegenerative, Neurogenetic, and Neurometabolic Disease. Front Neurol 2017; 8:329. [PMID: 28769865 PMCID: PMC5513921 DOI: 10.3389/fneur.2017.00329] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
Eye movement abnormalities are among the earliest clinical manifestations of inherited and acquired neurodegenerative diseases and play an integral role in their diagnosis. Eyelid movement is neuroanatomically linked to eye movement, and thus eyelid dysfunction can also be a distinguishing feature of neurodegenerative disease and complements eye movement abnormalities in helping us to understand their pathophysiology. In this review, we summarize the various eyelid abnormalities that can occur in neurodegenerative, neurogenetic, and neurometabolic diseases. We discuss eyelid disorders, such as ptosis, eyelid retraction, abnormal spontaneous and reflexive blinking, blepharospasm, and eyelid apraxia in the context of the neuroanatomic pathways that are affected. We also review the literature regarding the prevalence of eyelid abnormalities in different neurologic diseases as well as treatment strategies (Table 1).
Collapse
Affiliation(s)
- Ali G Hamedani
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel R Gold
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Ophthalmology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
10
|
Eckstein MK, Guerra-Carrillo B, Miller Singley AT, Bunge SA. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev Cogn Neurosci 2017; 25:69-91. [PMID: 27908561 PMCID: PMC6987826 DOI: 10.1016/j.dcn.2016.11.001] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023] Open
Abstract
This review provides an introduction to two eyetracking measures that can be used to study cognitive development and plasticity: pupil dilation and spontaneous blink rate. We begin by outlining the rich history of gaze analysis, which can reveal the current focus of attention as well as cognitive strategies. We then turn to the two lesser-utilized ocular measures. Pupil dilation is modulated by the brain's locus coeruleus-norepinephrine system, which controls physiological arousal and attention, and has been used as a measure of subjective task difficulty, mental effort, and neural gain. Spontaneous eyeblink rate correlates with levels of dopamine in the central nervous system, and can reveal processes underlying learning and goal-directed behavior. Taken together, gaze, pupil dilation, and blink rate are three non-invasive and complementary measures of cognition with high temporal resolution and well-understood neural foundations. Here we review the neural foundations of pupil dilation and blink rate, provide examples of their usage, describe analytic methods and methodological considerations, and discuss their potential for research on learning, cognitive development, and plasticity.
Collapse
Affiliation(s)
- Maria K Eckstein
- Department of Psychology, University of California at Berkeley, United States
| | | | | | - Silvia A Bunge
- Department of Psychology, University of California at Berkeley, United States; Helen Wills Neuroscience Institute, University of California at Berkeley, United States.
| |
Collapse
|
11
|
Rac-Lubashevsky R, Slagter HA, Kessler Y. Tracking Real-Time Changes in Working Memory Updating and Gating with the Event-Based Eye-Blink Rate. Sci Rep 2017; 7:2547. [PMID: 28566762 PMCID: PMC5451427 DOI: 10.1038/s41598-017-02942-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/28/2017] [Indexed: 11/24/2022] Open
Abstract
Effective working memory (WM) functioning depends on the gating process that regulates the balance between maintenance and updating of WM. The present study used the event-based eye-blink rate (ebEBR), which presumably reflects phasic striatal dopamine activity, to examine how the cognitive processes of gating and updating separately facilitate flexible updating of WM contents and the potential involvement of dopamine in these processes. Real-time changes in eye blinks were tracked during performance on the reference-back task, in which demands on these two processes were independently manipulated. In all three experiments, trials that required WM updating and trials that required gate switching were both associated with increased ebEBR. These results may support the prefrontal cortex basal ganglia WM model (PBWM) by linking updating and gating to striatal dopaminergic activity. In Experiment 3, the ebEBR was used to determine what triggers gate switching. We found that switching to an updating mode (gate opening) was more stimulus driven and retroactive than switching to a maintenance mode, which was more context driven. Together, these findings show that the ebEBR - an inexpensive, non-invasive, easy-to-use measure - can be used to track changes in WM demands during task performance and, hence, possibly striatal dopamine activity.
Collapse
Affiliation(s)
- Rachel Rac-Lubashevsky
- Rachel Rac-Lubashevsky, Department of Brain and Cognitive Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Heleen A Slagter
- Heleen A. Slagter, Brain and Cognition, Department of Psychology, and Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Yoav Kessler
- Yoav Kessler, Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
12
|
Spontaneous eye blink rate as predictor of dopamine-related cognitive function-A review. Neurosci Biobehav Rev 2016; 71:58-82. [PMID: 27555290 DOI: 10.1016/j.neubiorev.2016.08.020] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022]
Abstract
An extensive body of research suggests the spontaneous eye blink rate (EBR) is a non-invasive indirect marker of central dopamine (DA) function, with higher EBR predicting higher DA function. In the present review we provide a comprehensive overview of this literature. We broadly divide the available research in studies that aim to disentangle the dopaminergic underpinnings of EBR, investigate its utility in diagnosis of DA-related disorders and responsivity to drug treatment, and, lastly, investigate EBR as predictor of individual differences in DA-related cognitive performance. We conclude (i) EBR can reflect both DA receptor subtype D1 and D2 activity, although baseline EBR might be most strongly related to the latter, (ii) EBR can predict hypo- and hyperdopaminergic activity as well as normalization of this activity following treatment, and (iii) EBR can reliably predict individual differences in performance on many cognitive tasks, in particular those related to reward-driven behavior and cognitive flexibility. In sum, this review establishes EBR as a useful predictor of DA in a wide variety of contexts.
Collapse
|
13
|
Abstract
We present selected highlights from research that appeared during 2015 on Tourette syndrome and other tic disorders. Topics include phenomenology, comorbidities, developmental course, genetics, animal models, neuroimaging, electrophysiology, pharmacology, and treatment. We briefly summarize articles whose results we believe may lead to new treatments, additional research or modifications in current models of TS.
Collapse
Affiliation(s)
- Cheryl A Richards
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kevin J Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|