1
|
Tada M, Yagishita S, Uka T, Nishimura R, Kishigami T, Kirihara K, Koshiyama D, Usui K, Fujioka M, Araki T, Kasai K. From the Laboratory to the Real-World: The Role of Mismatch Negativity in Psychosis. Clin EEG Neurosci 2025; 56:60-71. [PMID: 39506274 DOI: 10.1177/15500594241294188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Mismatch negativity (MMN) has gained attention as a biomarker for psychosis and a translational intermediate phenotype in animal models of psychosis, including rodents and non-human primates. MMN has been linked to global functioning (Global Assessment of Functioning [GAF] score) and prognosis (psychosis onset or remission), suggesting that MMN reflects activities beyond auditory processing alone. This review examines the 45-year history of MMN from the perspective of psychiatric researchers and discusses current advances in computational and translational research on MMN, summarizing the current understanding of the MMN generation mechanism. We then address the essential question, "What do we observe through MMN?" Currently, we regard the relationship between global functioning in the real world and MMN as the key to answering this question. As a preliminary investigation, we analyzed the relationship between GAF as an objective variable and MMN, diagnosis, and basic epidemiological factors (age, sex, premorbid intelligence quotient) as explanatory variables (total n = 201, healthy controls: n = 41, patients with psychiatric disorders: n = 160) without assuming diagnostic categories. The relationship between functional outcomes and MMN was confirmed without a case-control design. Finally, we propose that new neurophysiological studies should acknowledge psychophysiological responses such as emotion, intention, and autonomic responses, as well as behavioral differences among participants beyond the dichotomy between healthy controls and patients. Measurements could be conducted in various settings from the participant's perspective. We discuss the potential for research investigating psychosis based on the interaction between individuals and the environment, using MMN as an illustrative model.
Collapse
Affiliation(s)
- Mariko Tada
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Yagishita
- Department of Structural Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Ryoichi Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taiki Kishigami
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Coproduction of Inclusion, Diversity and Equity (IncluDE), The University of Tokyo, Tokyo, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Community Mental Health and Law, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
- Center for Diversity in Medical Education and Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
- Center for Diversity in Medical Education and Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Deng J, Zhang Y, Lu L, Ou Y, Lai X, Chen S, Ye Y. Duration mismatch negativity under varying deviant conditions in individuals with high schizotypal traits. Front Psychiatry 2024; 15:1428814. [PMID: 39165502 PMCID: PMC11333253 DOI: 10.3389/fpsyt.2024.1428814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Although impaired auditory mismatch negativity (MMN) has consistently been found in individuals with schizophrenia, there are few and inconsistent reports on nonclinical individuals with schizotypy. To date, no studies have thoroughly assessed MMN with different degrees of deviant oddballs in nonclinical schizotypal samples. The aim of this study was to examine the extent of duration MMN (dMMN) amplitudes under two deviant duration conditions (large and small) in nonclinical participants with high schizotypal traits. Methods An extreme-group design was utilized, in which 63 participants from the schizotypy and control groups were selected from a pool of 1519 young adults using the Schizotypal Personality Questionnaire (SPQ). MMN was measured using passive duration oddball paradigms. Basic demographic information and musical backgrounds were assessed and matched, while depression and anxiety were evaluated and controlled for. The repeated measures analysis of covariance was utilized to evaluate differences in dMMN between groups. The Bonferroni correction was applied for multiple comparisons. Partial correlation and multiple linear regression analyses were conducted to investigate the association between dMMN amplitudes and SPQ scores. Results The amplitudes of dMMN at Cz were significantly increased under the large deviance condition in nonclinical schizotypal individuals (F = 4.36, p = .04). Large-deviance dMMN amplitudes at Fz were positively correlated with mild cognitive-perceptual symptoms in the control group (rp = .42, p = .03). However, as schizophrenia-like symptoms worsened and approached the clinical threshold for schizophrenia, small-deviance dMMN amplitudes at Cz showed negative associations with the cognitive-perceptual factor in the schizotypy group (rp = -.40, p = .04). Conclusion These results suggest the importance of considering the degree of deviation in duration when implementing the auditory oddball paradigm among nonclinical participants with schizotypal traits. In addition, our findings reveal a potential non-linear relationship between bottom-up auditory processing and the positive dimension of the schizophrenia spectrum.
Collapse
Affiliation(s)
- Jue Deng
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yuanjun Zhang
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Liqin Lu
- Department of Forensic Science, Fujian Police College, Fuzhou, China
| | - Yuanhua Ou
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
| | - Xianghui Lai
- Department of Basic Courses, Fujian Police College, Fuzhou, China
| | - Siwei Chen
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yiduo Ye
- School of Psychology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
3
|
Lepock JR, Sanches M, Ahmed S, Gerritsen CJ, Korostil M, Mizrahi R, Kiang M. N400 event-related brain potential index of semantic processing and two-year clinical outcomes in persons at high risk for psychosis: A longitudinal study. Eur J Neurosci 2024; 59:1877-1888. [PMID: 37386749 DOI: 10.1111/ejn.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The N400 event-related brain potential (ERP) semantic priming effect reflects greater activation of contextually related versus unrelated concepts in long-term semantic memory. Deficits in this measure have been found in persons with schizophrenia and those at clinical high risk (CHR) for this disorder. In CHR patients, we previously found that these deficits predict poorer social functional outcomes after 1 year. In the present study, we tested whether these deficits predicted greater psychosis-spectrum symptom severity and functional impairment over 2 years. We measured N400 semantic priming effects at baseline in CHR patients (n = 47) who viewed prime words each followed by a related/unrelated target word at stimulus-onset asynchronies (SOAs) of 300 or 750 ms. We measured psychosis-spectrum symptoms using the Structured Interview for Prodromal Symptoms and role and social functioning with the Global Functioning: Role and Social scales, at baseline, 1 (n = 29) and 2 years (n = 25). There was a significant interaction between the N400 semantic priming effect at the 300-ms SOA and time on GF:Role scores, indicating that, contrary to expectations, smaller baseline N400 semantic priming effects were associated with more improvement in role functioning from baseline to Year 1, but baseline N400 priming effects did not predict role functioning at Year 2. N400 priming effects were not significantly associated with different trajectories in psychosis-spectrum symptoms or social functioning. Thus, CHR patients' N400 semantic priming effects did not predict clinical outcomes over 2 years, suggesting that this ERP measure may have greater value as a state or short-term prognostic neurophysiological biomarker.
Collapse
Affiliation(s)
| | - Marcos Sanches
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah Ahmed
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Cory J Gerritsen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michele Korostil
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Michael Kiang
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Takasago M, Kunii N, Fujitani S, Ishishita Y, Tada M, Kirihara K, Komatsu M, Uka T, Shimada S, Nagata K, Kasai K, Saito N. Auditory prediction errors in sound frequency and duration generated different cortical activation patterns in the human brain: an ECoG study. Cereb Cortex 2024; 34:bhae072. [PMID: 38466116 DOI: 10.1093/cercor/bhae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Sound frequency and duration are essential auditory components. The brain perceives deviations from the preceding sound context as prediction errors, allowing efficient reactions to the environment. Additionally, prediction error response to duration change is reduced in the initial stages of psychotic disorders. To compare the spatiotemporal profiles of responses to prediction errors, we conducted a human electrocorticography study with special attention to high gamma power in 13 participants who completed both frequency and duration oddball tasks. Remarkable activation in the bilateral superior temporal gyri in both the frequency and duration oddball tasks were observed, suggesting their association with prediction errors. However, the response to deviant stimuli in duration oddball task exhibited a second peak, which resulted in a bimodal response. Furthermore, deviant stimuli in frequency oddball task elicited a significant response in the inferior frontal gyrus that was not observed in duration oddball task. These spatiotemporal differences within the Parasylvian cortical network could account for our efficient reactions to changes in sound properties. The findings of this study may contribute to unveiling auditory processing and elucidating the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Megumi Takasago
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Neurosurgery, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Neurosurgery, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, The University of Tokyo, Tokyo 113-0033, Japan
- Office for Mental Health Support, Center for Research on Counseling and Support Services, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, The University of Tokyo, Tokyo 113-0033, Japan
- Disability Services Office, The University of Tokyo, Tokyo 113-0033, Japan
| | - Misako Komatsu
- Institution of Innovative Research, Tokyo Institute of Technology, Tokyo 226-8503, Japan
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, The University of Tokyo, Tokyo 113-0033, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
6
|
Dheerendra P, Grent-'t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schwannauer M, Schultze-Lutter F, Uhlhaas PJ. Intact Mismatch Negativity Responses in Clinical High Risk for Psychosis and First-Episode Psychosis: Evidence From Source-Reconstructed Event-Related Fields and Time-Frequency Data. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:121-131. [PMID: 37778724 DOI: 10.1016/j.bpsc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND This study examined whether mismatch negativity (MMN) responses are impaired in participants at clinical high risk for psychosis (CHR-P) and patients with first-episode psychosis (FEP) and whether MMN deficits predict clinical outcomes in CHR-Ps. METHODS Magnetoencephalography data were collected during a duration-deviant MMN paradigm for a group of 116 CHR-P participants, 33 FEP patients (15 antipsychotic-naïve), clinical high risk negative group (n = 38) with substance abuse and affective disorder, and 49 healthy control participants. Analysis of group differences of source-reconstructed event-related fields as well as time-frequency and intertrial phase coherence focused on the bilateral Heschl's gyri and bilateral superior temporal gyri. RESULTS Significant magnetic MMN responses were found across participants in the bilateral Heschl's gyri and bilateral superior temporal gyri. However, MMN amplitude as well as time-frequency and intertrial phase coherence responses were intact in CHR-P participants and FEP patients compared with healthy control participants. Furthermore, MMN deficits were not related to persistent attenuated psychotic symptoms or transitions to psychosis in CHR-P participants. CONCLUSIONS Our data suggest that magnetic MMN responses in magnetoencephalography data are not impaired in early-stage psychosis and may not predict clinical outcomes in CHR-P participants.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Tineke Grent-'t-Jong
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Ruchika Gajwani
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Muenster, Germany
| | - Andrew I Gumley
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Rajeev Krishnadas
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Stephen M Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Schwannauer
- Department of Clinical Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Peter J Uhlhaas
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
7
|
Usui K, Kirihara K, Araki T, Tada M, Koshiyama D, Fujioka M, Nishimura R, Ando S, Koike S, Sugiyama H, Shirakawa T, Toriyama R, Masaoka M, Fujikawa S, Endo K, Yamasaki S, Nishida A, Kasai K. Longitudinal change in mismatch negativity (MMN) but not in gamma-band auditory steady-state response (ASSR) is associated with psychological difficulties in adolescence. Cereb Cortex 2023; 33:11070-11079. [PMID: 37815245 PMCID: PMC10631957 DOI: 10.1093/cercor/bhad346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
Adolescence is a critical period for psychological difficulties. Auditory mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are representative electrophysiological indices that mature during adolescence. However, the longitudinal association between MMN/ASSR and psychological difficulties among adolescents remains unclear. We measured MMN amplitude for duration and frequency changes and ASSR twice in a subsample (n = 67, mean age 13.4 and 16.1 years, respectively) from a large-scale population-based cohort. No significant longitudinal changes were observed in any of the electroencephalography indices. Changes in SDQ-TD were significantly associated with changes in duration MMN, but not frequency MMN and ASSR. Furthermore, the subgroup with higher SDQ-TD at follow-up showed a significant duration MMN decrease over time, whereas the subgroup with lower SDQ-TD did not. The results of our population neuroscience study suggest that insufficient changes in electroencephalography indices may have been because of the short follow-up period or non-monotonic change during adolescence, and indicated that the longitudinal association with psychological difficulties was specific to the duration MMN. These findings provide new insights that electrophysiological change may underlie the development of psychosocial difficulties emerging in adolescence.
Collapse
Affiliation(s)
- Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Community Mental Health & Law, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Disability Services Office, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Neuropsychiatry, Teikyo University Hospital, Mizonokuchi, Tokyo, 213-8507, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Office for Mental Health Support, Center for Research on Counseling and Support Services, The University of Tokyo, Tokyo, 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ryoichi Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, 113-8655, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Hiroshi Sugiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Toru Shirakawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Electrical Engineering and Computer Science, Faculty of Systems Design, Tokyo Metropolitan University, Tokyo, 192-0397 Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kaori Endo
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Syudo Yamasaki
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsushi Nishida
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, 113-8655, Japan
| |
Collapse
|
8
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
9
|
Valt C, Quarto T, Tavella A, Romanelli F, Fazio L, Arcara G, Altamura M, Barrasso G, Bellomo A, Blasi G, Brudaglio F, Carofiglio A, D'Ambrosio E, Padalino FA, Rampino A, Saponaro A, Semisa D, Suma D, Pergola G, Bertolino A. Reduced magnetic mismatch negativity: a shared deficit in psychosis and related risk. Psychol Med 2023; 53:6037-6045. [PMID: 36321391 DOI: 10.1017/s003329172200321x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Abnormal auditory processing of deviant stimuli, as reflected by mismatch negativity (MMN), is often reported in schizophrenia (SCZ). At present, it is still under debate whether this dysfunctional response is specific to the full-blown SCZ diagnosis or rather a marker of psychosis in general. The present study tested MMN in patients with SCZ, bipolar disorder (BD), first episode of psychosis (FEP), and in people at clinical high risk for psychosis (CHR). METHODS Source-based MEG activity evoked during a passive auditory oddball task was recorded from 135 patients grouped according to diagnosis (SCZ, BD, FEP, and CHR) and 135 healthy controls also divided into four subgroups, age- and gender-matched with diagnostic subgroups. The magnetic MMN (mMMN) was analyzed as event-related field (ERF), Theta power, and Theta inter-trial phase coherence (ITPC). RESULTS The clinical group as a whole showed reduced mMMN ERF amplitude, Theta power, and Theta ITPC, without any statistically significant interaction between diagnosis and mMMN reductions. The mMMN subgroup contrasts showed lower ERF amplitude in all the diagnostic subgroups. In the analysis of Theta frequency, SCZ showed significant power and ITPC reductions, while only indications of diminished ITPC were observed in CHR, but no significant decreases characterized BD and FEP. CONCLUSIONS Significant mMMN alterations in people experiencing psychosis, also for diagnoses other than SCZ, suggest that this neurophysiological response may be a feature shared across psychotic disorders. Additionally, reduced Theta ITPC may be associated with risk for psychosis.
Collapse
Affiliation(s)
- Christian Valt
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Quarto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Humanities, University of Foggia, Foggia, Italy
| | | | | | - Leonardo Fazio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | | | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Barrasso
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | - Flora Brudaglio
- Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
| | | | - Enrico D'Ambrosio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience - King's College London, London, UK
| | | | - Antonio Rampino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| | | | | | - Domenico Suma
- Department of Mental Health, ASL Brindisi, Brindisi, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Bari University Hospital, Bari, Italy
| |
Collapse
|
10
|
Hird EJ, Ohmuro N, Allen P, Moseley P, Kempton MJ, Modinos G, Sachs G, van der Gaag M, de Haan L, Gadelha A, Bressan R, Barrantes-Vidal N, Ruhrmann S, Catalan A, McGuire P. Speech Illusions in People at Clinical High Risk for Psychosis Linked to Clinical Outcome. Schizophr Bull 2023; 49:339-349. [PMID: 36516396 PMCID: PMC10016413 DOI: 10.1093/schbul/sbac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND HYPOTHESIS Around 20% of people at clinical high risk (CHR) for psychosis later develop a psychotic disorder, but it is difficult to predict who this will be. We assessed the incidence of hearing speech (termed speech illusions [SIs]) in noise in CHR participants and examined whether this was associated with adverse clinical outcomes. STUDY DESIGN At baseline, 344 CHR participants and 67 healthy controls were presented with a computerized white noise task and asked whether they heard speech, and whether speech was neutral, affective, or whether they were uncertain about its valence. After 2 years, we assessed whether participants transitioned to psychosis, or remitted from the CHR state, and their functioning. STUDY RESULTS CHR participants had a lower sensitivity to the task. Logistic regression revealed that a bias towards hearing targets in stimuli was associated with remission status (OR = 0.21, P = 042). Conversely, hearing SIs with uncertain valence at baseline was associated with reduced likelihood of remission (OR = 7.72. P = .007). When we assessed only participants who did not take antipsychotic medication at baseline, the association between hearing SIs with uncertain valence at baseline and remission likelihood remained (OR = 7.61, P = .043) and this variable was additionally associated with a greater likelihood of transition to psychosis (OR = 5.34, P = .029). CONCLUSIONS In CHR individuals, a tendency to hear speech in noise, and uncertainty about the affective valence of this speech, is associated with adverse outcomes. This task could be used in a battery of cognitive markers to stratify CHR participants according to subsequent outcomes.
Collapse
Affiliation(s)
- Emily J Hird
- To whom correspondence should be addressed; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, SE5 8AF, London, UK; e-mail:
| | | | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- School of Psychology, Whitelands College, University of Roehampton, Holybourne Ave, London, SW15 4JD, UK
| | - Peter Moseley
- Psychology Department, Northumbria University, College Lane, Newcastle-Upon-Tyne, NE1 8ST, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gabriele Sachs
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Mark van der Gaag
- Faculty of Behavioural and Movement Sciences, Department of Clinical Psychology, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
- EMGO Institute for Health and Care Research, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
- Department of Psychosis Research, Parnassia Psychiatric Institute, Zoutkeetsingel 40, 2512 HN The Hague, The Netherlands
| | - Lieuwe de Haan
- Department Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
- Arkin, Amsterdam, The Netherlands
| | - Ary Gadelha
- LiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, Brazil
| | - Rodrigo Bressan
- LiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, Brazil
| | - Neus Barrantes-Vidal
- Departament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Fundació Sanitària Sant Pere Claver (Spain), Spanish Mental Health Research Network (CIBERSAM), Barcelona, Spain
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Ana Catalan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Psychiatry Department, Biocruces Bizkaia Health Research Institute, OSI Bilbao-Basurto, Facultad de Medicina y Odontología, University of the Basque Country UPV/EHU, Centro de Investigación en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain
| | - EU-GEI High Risk Study
McGuirePhilipDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKValmaggiaLucia RDepartment of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, 456, London, SE5 8AF, UKKemptonMatthew JDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKCalemMariaDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKTogninStefaniaDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKModinosGemmaDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark 458 Hill, London, SE5 8AF, UKde HaanLieuweDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The NetherlandsArkin, Amsterdam, The Netherlandsvan der GaagMarkFaculty of Behavioural and Movement Sciences, Department of Clinical Psychology and EMGO Institute for Health and Care Research, VU University, van der Boechorststraat 1, 1081 BT Amsterdam, The NetherlandsDepartment of Psychosis Research, Parnassia Psychiatric Institute, Zoutkeetsingel 40, 2512 HN The Hague, The NetherlandsVelthorstEvaDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The NetherlandsDepartment of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USAKraanTamar CDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlandsvan DamDaniella SDepartment Early Psychosis, AMC, Academic Psychiatric Centre, Meibergdreef 5, 1105 AZ Amsterdam, The NetherlandsBurgerNadineDepartment of Psychosis Research, Parnassia Psychiatric Institute, Zoutkeetsingel 40, 2512 HN The Hague, The NetherlandsNelsonBarnabyCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaMcGorryPatrickCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaPaul AmmingerGünterCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaPantelisChristosCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaPolitisAthenaCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaGoodallJoanneCentre for Youth Mental Health, University of Melbourne, 35 Poplar Road (Locked Bag 10), Parkville, Victoria 485 3052, AustraliaRiecher-RösslerAnitaUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandBorgwardtStefanUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandRappCharlotteUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandIttigSarahUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandStuderusErichUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandSmieskovaRenataUniversity Psychiatric Hospital, Wilhelm Klein-Strasse 27, CH-4002 Basel, SwitzerlandBressanRodrigoLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilGadelhaAryLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilBrietzkeElisaDepto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilAsevedoGraccielleLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilAsevedoElsonLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilZugmanAndreLiNC - Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo – UNIFESP, São Paulo, BrazilBarrantes-VidalNeusDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Fundació Sanitària Sant Pere Claver (Spain), Spanish Mental Health Research Network (CIBERSAM), Barcelona, SpainDomínguez-MartínezTecelliCONACYT-Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (México), Mexico City, MexicoTorrecillaPilarDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Barcelona, SpainKwapilThomas RDepartment of Psychology, University of Illinois at Urbana-Champaign, IL, USAMonsonetManelDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Barcelona, SpainHinojosaLídiaDepartament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Barcelona, SpainKazesMathildeUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceDabanClaireUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceBourginJulieUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceGayOlivierUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceMam-Lam-FookCéliaUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceKrebsMarie-OdileUniversity Paris Descartes, Hôpital Sainte-Anne, C’JAAD, Service HospitaloUniversitaire, Inserm U894, Institut de Psychiatrie (CNRS 3557) Paris, FranceNordholmDorteMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkRandersLasseMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkKrakauerKristineMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkGlenthøjLouiseMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkGlenthøjBirteCentre for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, DenmarkNordentoftMereteMental Health Center Copenhagen and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, DenmarkRuhrmannStephanDepartment of Psychiatry and Psychotherapy, University of Cologne, Cologne, GermanyGebhardDominikaDepartment of Psychiatry and Psychotherapy, University of Cologne, Cologne, GermanyArnholdJuliaPsyberlin, Berlin, GermanyKlosterkötterJoachimDepartment of Psychiatry and Psychotherapy, University of Cologne, Cologne, GermanySachsGabrieleDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, AustriaLasserIrisDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, AustriaWinklbaurBernadetteDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, AustriaDelespaulPhilippe ADepartment of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, PO Box 616, 6200 MD 464 Maastricht, The NetherlandsMondriaan Mental Health Trust, PO Box 4436 CX Heerlen, The NetherlandsRuttenBart PDepartment of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, PO Box 616, 6200 MD 464 Maastricht, The Netherlandsvan Os1JimDepartment of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, PO Box 616, 6200 MD 464 Maastricht, The Netherlands
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
11
|
Kim M, Kim T, Hwang WJ, Lho SK, Moon SY, Lee TY, Kwon JS. Forecasting prognostic trajectories with mismatch negativity in early psychosis. Psychol Med 2023; 53:1489-1499. [PMID: 36315242 PMCID: PMC10009395 DOI: 10.1017/s0033291721003068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prognostic heterogeneity in early psychosis patients yields significant difficulties in determining the degree and duration of early intervention; this heterogeneity highlights the need for prognostic biomarkers. Although mismatch negativity (MMN) has been widely studied across early phases of psychotic disorders, its potential as a common prognostic biomarker in early periods, such as clinical high risk (CHR) for psychosis and first-episode psychosis (FEP), has not been fully studied. METHODS A total of 104 FEP patients, 102 CHR individuals, and 107 healthy controls (HCs) participated in baseline MMN recording. Clinical outcomes were assessed; 17 FEP patients were treatment resistant, 73 FEP patients were nonresistant, 56 CHR individuals were nonremitters (15 transitioned to a psychotic disorder), and 22 CHR subjects were remitters. Baseline MMN amplitudes were compared across clinical outcome groups and tested for utility prognostic biomarkers using binary logistic regression. RESULTS MMN amplitudes were greatest in HCs, intermediate in CHR subjects, and smallest in FEP patients. In the clinical outcome groups, MMN amplitudes were reduced from the baseline in both FEP and CHR patients with poor prognostic trajectories. Reduced baseline MMN amplitudes were a significant predictor of later treatment resistance in FEP patients [Exp(β) = 2.100, 95% confidence interval (CI) 1.104-3.993, p = 0.024] and nonremission in CHR individuals [Exp(β) = 1.898, 95% CI 1.065-3.374, p = 0.030]. CONCLUSIONS These findings suggest that MMN could be used as a common prognostic biomarker across early psychosis periods, which will aid clinical decisions for early intervention.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
12
|
Functional connectivity signatures of NMDAR dysfunction in schizophrenia-integrating findings from imaging genetics and pharmaco-fMRI. Transl Psychiatry 2023; 13:59. [PMID: 36797233 PMCID: PMC9935542 DOI: 10.1038/s41398-023-02344-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Both, pharmacological and genome-wide association studies suggest N-methyl-D-aspartate receptor (NMDAR) dysfunction and excitatory/inhibitory (E/I)-imbalance as a major pathophysiological mechanism of schizophrenia. The identification of shared fMRI brain signatures of genetically and pharmacologically induced NMDAR dysfunction may help to define biomarkers for patient stratification. NMDAR-related genetic and pharmacological effects on functional connectivity were investigated by integrating three different datasets: (A) resting state fMRI data from 146 patients with schizophrenia genotyped for the disease-associated genetic variant rs7191183 of GRIN2A (encoding the NMDAR 2 A subunit) as well as 142 healthy controls. (B) Pharmacological effects of the NMDAR antagonist ketamine and the GABA-A receptor agonist midazolam were obtained from a double-blind, crossover pharmaco-fMRI study in 28 healthy participants. (C) Regional gene expression profiles were estimated using a postmortem whole-brain microarray dataset from six healthy donors. A strong resemblance was observed between the effect of the genetic variant in schizophrenia and the ketamine versus midazolam contrast of connectivity suggestive for an associated E/I-imbalance. This similarity became more pronounced for regions with high density of NMDARs, glutamatergic neurons, and parvalbumin-positive interneurons. From a functional perspective, increased connectivity emerged between striato-pallido-thalamic regions and cortical regions of the auditory-sensory-motor network, while decreased connectivity was observed between auditory (superior temporal gyrus) and visual processing regions (lateral occipital cortex, fusiform gyrus, cuneus). Importantly, these imaging phenotypes were associated with the genetic variant, the differential effect of ketamine versus midazolam and schizophrenia (as compared to healthy controls). Moreover, the genetic variant was associated with language-related negative symptomatology which correlated with disturbed connectivity between the left posterior superior temporal gyrus and the superior lateral occipital cortex. Shared genetic and pharmacological functional connectivity profiles were suggestive of E/I-imbalance and associated with schizophrenia. The identified brain signatures may help to stratify patients with a common molecular disease pathway providing a basis for personalized psychiatry.
Collapse
|
13
|
Cooper SM, Fusar-Poli P, Uhlhaas PJ. Characteristics and clinical correlates of risk symptoms in individuals at clinical high-risk for psychosis: A systematic review and meta-analysis. Schizophr Res 2023; 254:54-61. [PMID: 36801514 DOI: 10.1016/j.schres.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Emerging evidence suggests that the duration of risk symptoms (DUR) may have an impact on clinical outcomes in clinical high-risk for psychosis (CHRP) participants. To explore this hypothesis, we performed a meta-analysis on studies that examined DUR in CHR-P individuals in relation to their clinical outcomes. This review was conducted in accordance with the PRISMA guidelines and the protocol was registered with PROSPERO on 16th April 2021 (ID no. CRD42021249443). Literature searches were conducted using PsycINFO and Web of Science in March and November 2021, for studies reporting on DUR in CHR-P populations, in relation to transition to psychosis or symptomatic, functional, or cognitive outcomes. The primary outcome was transition to psychosis, while the secondary outcomes were remission from CHR-P status and functioning at baseline. Thirteen independent studies relating to 2506 CHR-P individuals were included in the meta-analysis. The mean age was 19.88 years (SD = 1.61) and 1194 individuals (47.65 %) were females. The mean length of DUR was 23.61 months (SD = 13.18). There was no meta-analytic effect of DUR on transition to psychosis at 12-month follow-up (OR = 1.000, 95%CI = 0.999-1.000, k = 8, p = .98), while DUR was related to remission (Hedge's g = 0.236, 95%CI = 0.014-0.458, k = 4, p = .037). DUR was not related to baseline GAF scores (beta = -0.004, 95%CI = -0.025-0.017, k = 3, p = .71). The current findings suggest that DUR is not associated with transition to psychosis at 12 months, but may impact remission. However, the database was small and further research in this area is required.
Collapse
Affiliation(s)
- Saskia M Cooper
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; OASIS service, South London and Maudsley NHS Foundation Trust, London, United Kingdom; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; National Institute for Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
14
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Mismatch Negativity in Response to Auditory Deviance and Risk for Future Psychosis in Youth at Clinical High Risk for Psychosis. JAMA Psychiatry 2022; 79:780-789. [PMID: 35675082 PMCID: PMC9178501 DOI: 10.1001/jamapsychiatry.2022.1417] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Importance Although clinical criteria for identifying youth at risk for psychosis have been validated, they are not sufficiently accurate for predicting outcomes to inform major treatment decisions. The identification of biomarkers may improve outcome prediction among individuals at clinical high risk for psychosis (CHR-P). Objective To examine whether mismatch negativity (MMN) event-related potential amplitude, which is deficient in schizophrenia, is reduced in young people with the CHR-P syndrome and associated with outcomes, accounting for effects of antipsychotic medication use. Design, Setting, and Participants MMN data were collected as part of the multisite case-control North American Prodrome Longitudinal Study (NAPLS-2) from 8 university-based outpatient research programs. Baseline MMN data were collected from June 2009 through April 2013. Clinical outcomes were assessed throughout 24 months. Participants were individuals with the CHR-P syndrome and healthy controls with MMN data. Participants with the CHR-P syndrome who developed psychosis (ie, converters) were compared with those who did not develop psychosis (ie, nonconverters) who were followed up for 24 months. Analysis took place between December 2019 and December 2021. Main Outcomes and Measures Electroencephalography was recorded during a passive auditory oddball paradigm. MMN elicited by duration-, pitch-, and duration + pitch double-deviant tones was measured. Results The CHR-P group (n = 580; mean [SD] age, 19.24 [4.39] years) included 247 female individuals (42.6%) and the healthy control group (n = 241; mean age, 20.33 [4.74] years) included 114 female individuals (47.3%). In the CHR-P group, 450 (77.6%) were not taking antipsychotic medication at baseline. Baseline MMN amplitudes, irrespective of deviant type, were deficient in future CHR-P converters to psychosis (n = 77, unmedicated n = 54) compared with nonconverters (n = 238, unmedicated n = 190) in both the full sample (d = 0.27) and the unmedicated subsample (d = 0.33). In the full sample, baseline medication status interacted with group and deviant type indicating that double-deviant MMN, compared with single deviants, was reduced in unmedicated converters compared with nonconverters (d = 0.43). Further, within the unmedicated subsample, deficits in double-deviant MMN were most strongly associated with earlier conversion to psychosis (hazard ratio, 1.40 [95% CI, 1.03-1.90]; P = .03], which persisted over and above positive symptom severity. Conclusions and Relevance This study found that MMN amplitude deficits were sensitive to future psychosis conversion among individuals at risk of CHR-P, particularly those not taking antipsychotic medication at baseline, although associations were modest. While MMN shows limited promise as a biomarker of psychosis onset on its own, it may contribute novel risk information to multivariate prediction algorithms and serve as a translational neurophysiological target for novel treatment development in a subgroup of at-risk individuals.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Peter M. Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| | - Ricardo E. Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Erica Duncan
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jason K. Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Margaret A. Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston
- Veterans Affairs Boston Healthcare System, Brockton, Massachusetts
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles
- Department of Psychology, University of California, Los Angeles, Los Angeles
| | | | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York
| | - Thomas H. McGlashan
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Elaine F. Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W. Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Tyrone D. Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
- Department of Psychology, Yale University, School of Medicine, New Haven, Connecticut
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| |
Collapse
|
15
|
Hedges EP, See C, Si S, McGuire P, Dickson H, Kempton MJ. Meta-analysis of longitudinal neurocognitive performance in people at clinical high-risk for psychosis. Psychol Med 2022; 52:2009-2016. [PMID: 35821623 PMCID: PMC9386433 DOI: 10.1017/s0033291722001830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
Abstract
Persons at clinical high-risk for psychosis (CHR) are characterised by specific neurocognitive deficits. However, the course of neurocognitive performance during the prodromal period and over the onset of psychosis remains unclear. The aim of this meta-analysis was to synthesise results from follow-up studies of CHR individuals to examine longitudinal changes in neurocognitive performance. Three electronic databases were systematically searched to identify articles published up to 31 December 2021. Thirteen studies met inclusion criteria. Study effect sizes (Hedges' g) were calculated and pooled for each neurocognitive task using random-effects meta-analyses. We examined whether changes in performance between baseline and follow-up assessments differed between: (1) CHR and healthy control (HC) individuals, and (2) CHR who did (CHR-T) and did not transition to psychosis (CHR-NT). Meta-analyses found that HC individuals had greater improvements in performance over time compared to CHR for letter fluency (g = -0.32, p = 0.029) and digit span (g = -0.30, p = 0.011) tasks. Second, there were differences in longitudinal performance of CHR-T and CHR-NT in trail making test A (TMT-A) (g = 0.24, p = 0.014) and symbol coding (g = -0.51, p = 0.011). Whilst CHR-NT improved in performance on both tasks, CHR-T improved to a lesser extent in TMT-A and had worsened performance in symbol coding over time. Together, neurocognitive performance generally improved in all groups at follow-up. Yet, evidence suggested that improvements were less pronounced for an overall CHR group, and specifically for CHR-T, in processing speed tasks which may be a relevant domain for interventions aimed to enhance neurocognition in CHR populations.
Collapse
Affiliation(s)
- Emily P. Hedges
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Cheryl See
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Shuqing Si
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Hannah Dickson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Matthew J. Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
16
|
Wu G, Tang X, Gan R, Zeng J, Hu Y, Xu L, Wei Y, Tang Y, Chen T, Liu H, Li C, Wang J, Zhang T. Automatic auditory processing features in distinct subtypes of patients at clinical high risk for psychosis: Forecasting remission with mismatch negativity. Hum Brain Mapp 2022; 43:5452-5464. [PMID: 35848373 PMCID: PMC9704791 DOI: 10.1002/hbm.26021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 01/15/2023] Open
Abstract
Individuals at clinical high risk (CHR) for psychosis exhibit a compromised mismatch negativity (MMN) response, which indicates dysfunction of pre-attentive deviance processing. Event-related potential and time-frequency (TF) information, in combination with clinical and cognitive profiles, may provide insight into the pathophysiology and psychopathology of the CHR stage and predict the prognosis of CHR individuals. A total of 92 individuals with CHR were recruited and followed up regularly for up to 3 years. Individuals with CHR were classified into three clinical subtypes demonstrated previously, specifically 28 from Cluster 1 (characterized by extensive negative symptoms and cognitive deficits), 31 from Cluster 2 (characterized by thought and behavioral disorganization, with moderate cognitive impairment), and 33 from Cluster 3 (characterized by the mildest symptoms and cognitive deficits). Auditory MMN to frequency and duration deviants was assessed. The event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were acquired using TF analysis. Predictive indices for remission were identified using logistic regression analyses. As expected, reduced frequency MMN (fMMN) and duration MMN (dMMN) responses were noted in Cluster 1 relative to the other two clusters. In the TF analysis, Cluster 1 showed decreased theta and alpha ITC in response to deviant stimuli. The regression analyses revealed that dMMN latency and alpha ERSP to duration deviants, theta ITC to frequency deviants and alpha ERSP to frequency deviants, and fMMN latency were significant MMN predictors of remission for the three clusters. MMN variables outperformed behavioral variables in predicting remission of Clusters 1 and 2. Our findings indicate relatively disrupted automatic auditory processing in a certain CHR subtype and a close affinity between these electrophysiological indexes and clinical profiles within different clusters. Furthermore, MMN indexes may serve as predictors of subsequent remission from the CHR state. These findings suggest that the auditory MMN response is a potential neurophysiological marker for distinct clinical subtypes of CHR.
Collapse
Affiliation(s)
- GuiSen Wu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - RanPiao Gan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - JiaHui Zeng
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - Tao Chen
- Big Data Research LabUniversity of WaterlooOntarioCanada,Labor and Worklife ProgramHarvard UniversityCambridgeMassachusettsUSA,Niacin (Shanghai) Technology Co., Ltd.ShanghaiPeople's Republic of China
| | - HaiChun Liu
- Department of AutomationShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)Chinese Academy of ScienceBeijingPeople's Republic of China,Institute of Psychology and Behavioral ScienceShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of MedicineShanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic DisordersShanghaiPeople's Republic of China
| |
Collapse
|
17
|
Lepock JR, Mizrahi R, Gerritsen CJ, Bagby RM, Maheandiran M, Ahmed S, Korostil M, Kiang M. N400 event-related brain potential and functional outcome in persons at clinical high risk for psychosis: A longitudinal study. Psychiatry Clin Neurosci 2022; 76:114-121. [PMID: 35037344 DOI: 10.1111/pcn.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND The N400 event-related brain potential (ERP) semantic priming effect is thought to reflect activation by meaningful stimuli of related concepts in semantic memory and has been found to be deficient in schizophrenia. We tested the hypothesis that, among individuals at clinical high risk (CHR) for psychosis, N400 semantic priming deficits predict worse symptomatic and functional outcomes after one year. METHODS We measured N400 semantic priming at baseline in CHR patients (n = 47) and healthy control participants (n = 25) who viewed prime words each followed by a related or unrelated target word, at stimulus-onset asynchronies (SOAs) of 300 or 750 ms. We measured patients' psychosis-like symptoms with the Scale of Prodromal Symptoms (SOPS) Positive subscale, and academic/occupational and social functioning with the Global Functioning (GF):Role and Social scales, respectively, at baseline and one-year follow-up (n = 29). RESULTS CHR patients exhibited less N400 semantic priming than controls across SOAs; planned contrasts indicated this difference was significant at the 750-ms but not the 300-ms SOA. In patients, reduced N400 semantic priming at the 750-ms SOA was associated with lower GF:Social scores at follow-up, and greater GF:Social decrements from baseline to follow-up. Patients' N400 semantic priming was not associated with SOPS Positive or GF:Role scores at follow-up, or change in these from baseline to follow-up. CONCLUSIONS In CHR patients, reduced N400 semantic priming at baseline predicted worse social functioning after one year, and greater decline in social functioning over this period. Thus, the N400 may be a useful prognostic biomarker of real-world functional outcome in CHR patients.
Collapse
Affiliation(s)
- Jennifer R Lepock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Cory J Gerritsen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - R Michael Bagby
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Sarah Ahmed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michele Korostil
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Michael Kiang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Zhuo C, Chen G, Chen J, Yang L, Zhang Q, Li Q, Wang L, Ma X, Sun Y, Jia F, Tian H, Jiang D. Baseline global brain structural and functional alterations at the time of symptom onset can predict subsequent cognitive deterioration in drug-naïve first-episode schizophrenia patients: Evidence from a follow-up study. Front Psychiatry 2022; 13:1012428. [PMID: 36311504 PMCID: PMC9615917 DOI: 10.3389/fpsyt.2022.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023] Open
Abstract
Alterations in the global brain gray matter volume (gGMV) and global functional connectivity density (gFCD) play a pivotal role in the cognitive impairment and further deterioration in schizophrenia. This study aimed to assess the correlation between alterations in the gGMV and gFCD at baseline (ΔgGMV and ΔgFCD), and the subsequent alterations of cognitive function in schizophrenia patients after 2-year antipsychotic treatment. Global-brain magnetic resonance imaging scans were acquired from 877 drug-naïve, first-episode schizophrenia patients at baseline and after two years of antipsychotic treatment with adequate dosage and duration, and 200 healthy controls. According to ΔgGMV at baseline, schizophrenia patients were divided into mild, moderate, and severe alteration groups. The MATRICS consensus cognitive battery and Global Deficit Score (GDS) were used to assess cognitive impairment. We found that ΔgGMV and ΔgFCD at baseline were significantly correlated with the severity of the cognitive deterioration (ΔGDS). The correlation coefficient indicated a significant positive correlation between baseline ΔgFCD and subsequent cognitive deterioration, with a relatively stronger relation in the mild alteration group (r = 0.31). In addition, there was a significant positive correlation between baseline ΔgGMV and subsequent cognitive deterioration, with a stronger relation in the moderate and severe alteration groups (r = 0.303; r = 0.302, respectively). Our results showed that ΔgGMV and ΔgFCD are correlated with the severity of cognitive deterioration after completion of a 2-year antipsychotic treatment in schizophrenia patients. These findings suggest that baseline alterations in gGMV and gFCD hold potential for predicting subsequent cognitive decline in schizophrenia.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China.,Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jiayue Chen
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Lei Yang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Xiaoyan Ma
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Yun Sun
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Feng Jia
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
19
|
Surface area in the insula was associated with 28-month functional outcome in first-episode psychosis. NPJ SCHIZOPHRENIA 2021; 7:56. [PMID: 34845247 PMCID: PMC8630202 DOI: 10.1038/s41537-021-00186-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
Many studies have tested the relationship between demographic, clinical, and psychobiological measurements and clinical outcomes in ultra-high risk for psychosis (UHR) and first-episode psychosis (FEP). However, no study has investigated the relationship between multi-modal measurements and long-term outcomes for >2 years. Thirty-eight individuals with UHR and 29 patients with FEP were measured using one or more modalities (cognitive battery, electrophysiological response, structural magnetic resonance imaging, and functional near-infrared spectroscopy). We explored the characteristics associated with 13- and 28-month clinical outcomes. In UHR, the cortical surface area in the left orbital part of the inferior frontal gyrus was negatively associated with 13-month disorganized symptoms. In FEP, the cortical surface area in the left insula was positively associated with 28-month global social function. The left inferior frontal gyrus and insula are well-known structural brain characteristics in schizophrenia, and future studies on the pathological mechanism of structural alteration would provide a clearer understanding of the disease.
Collapse
|
20
|
Nakajima S, Higuchi Y, Tateno T, Sasabayashi D, Mizukami Y, Nishiyama S, Takahashi T, Suzuki M. Duration Mismatch Negativity Predicts Remission in First-Episode Schizophrenia Patients. Front Psychiatry 2021; 12:777378. [PMID: 34899430 PMCID: PMC8656455 DOI: 10.3389/fpsyt.2021.777378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Remission in schizophrenia patients is associated with neurocognitive, social, and role functioning during both the early and chronic stages of schizophrenia. It is well-established that the amplitudes of duration mismatch negativity (dMMN) and frequency MMN (fMMN) are reduced in schizophrenia patients. However, the potential link between MMN and remission has not been established. In this study, we investigated the relationship between MMNs and remission in first-episode schizophrenia (FES) and their association with neurocognitive and social functioning. Method: dMMN and fMMN were measured in 30 patients with FES and 22 healthy controls at baseline and after a mean of 3 years. Clinical symptoms and cognitive and social functioning in the patients were assessed at the time of MMN measurements by using the Positive and Negative Syndrome Scale (PANSS), modified Global Assessment of Functioning (mGAF), Schizophrenia Cognition Rating Scale (SCoRS), and the Brief Assessment of Cognition in Schizophrenia (BACS). Remission of the patients was defined using the criteria by the Remission in Schizophrenia Working Group; of the 30 patients with FES, 14 achieved remission and 16 did not. Results: Baseline dMMN amplitude was reduced in FES compared to healthy controls. Further, baseline dMMN in the non-remitters had decreased amplitude and prolonged latency compared to the remitters. MMN did not change during follow-up period regardless of parameters, diagnosis, or remission status. Baseline dMMN amplitude in FES was correlated with future SCoRS and PANSS total scores. Logistic regression analysis revealed that dMMN amplitude at baseline was a significant predictor of remission. Conclusions: Our findings suggest that dMMN amplitude may be a useful biomarker for predicting symptomatic remission and improvement of cognitive and social functions in FES.
Collapse
Affiliation(s)
- Suguru Nakajima
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Takahiro Tateno
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Health Administration Center, Faculty of Education and Research Promotion, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
21
|
Hamilton HK, Roach BJ, Mathalon DH. Forecasting Remission From the Psychosis Risk Syndrome With Mismatch Negativity and P300: Potentials and Pitfalls. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:178-187. [PMID: 33431345 PMCID: PMC8128162 DOI: 10.1016/j.bpsc.2020.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Clinical outcomes vary for individuals at clinical high risk (CHR) for psychosis, ranging from conversion to a psychotic disorder to full remission from the risk syndrome. Given that most CHR individuals do not convert to psychosis, recent research efforts have turned toward identifying specific predictors of CHR remission, a task that is conceptually and empirically dissociable from the identification of predictors of conversion to psychosis, and one that may reveal specific biological characteristics that confer resilience to psychosis and provide further insights into the mechanisms associated with the pathogenesis of schizophrenia and those underlying a transient CHR syndrome. Such biomarkers may ultimately facilitate the development of novel early interventions and support the optimization of individualized care. In this review, we focus on two event-related brain potential measures, mismatch negativity and P300, that have attracted interest as predictors of future psychosis among CHR individuals. We describe several recent studies examining whether mismatch negativity and P300 predict subsequent CHR remission and suggest that intact mismatch negativity and P300 may reflect the integrity of specific neurocognitive processes that confer resilience against the persistence of the CHR syndrome and its associated risk for future transition to psychosis. We also highlight several major methodological concerns associated with these studies that apply to the broader literature examining predictors of CHR remission. Among them is the concern that studies that predict dichotomous remission versus nonremission and/or dichotomous conversion versus nonconversion outcomes potentially confound remission and conversion effects, a phenomenon we demonstrate with a data simulation.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| | - Brian J Roach
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
22
|
Fong CY, Law WHC, Uka T, Koike S. Auditory Mismatch Negativity Under Predictive Coding Framework and Its Role in Psychotic Disorders. Front Psychiatry 2020; 11:557932. [PMID: 33132932 PMCID: PMC7511529 DOI: 10.3389/fpsyt.2020.557932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Traditional neuroscience sees sensory perception as a simple feedforward process. This view is challenged by the predictive coding model in recent years due to the robust evidence researchers had found on how our prediction could influence perception. In the first half of this article, we reviewed the concept of predictive brain and some empirical evidence of sensory prediction in visual and auditory processing. The predictive function along the auditory pathway was mainly studied by mismatch negativity (MMN)-a brain response to an unexpected disruption of regularity. We summarized a range of MMN paradigms and discussed how they could contribute to the theoretical development of the predictive coding neural network by the mechanism of adaptation and deviance detection. Such methodological and conceptual evolution sharpen MMN as a tool to better understand the structural and functional brain abnormality for neuropsychiatric disorder such as schizophrenia.
Collapse
Affiliation(s)
- Chun Yuen Fong
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Japan
| | - Wai Him Crystal Law
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Meguro-ku, Japan.,University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), 3-8-1 Komaba, Meguro-ku, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|