1
|
Weller AE, Ferraro TN, Doyle GA, Reiner BC, Berrettini WH, Crist RC. Analysis of single-cell transcriptome data from a mouse model implicates protein synthesis dysfunction in schizophrenia. Genes Genomics 2024; 46:1071-1084. [PMID: 39083157 DOI: 10.1007/s13258-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Schizophrenia is a mental disorder that causes considerable morbidity, whose risk largely results from genetic factors. Setd1a is a gene implicated in schizophrenia. OBJECTIVE To study the gene expression changes found in heterozygous Setd1a± knockout mice in order to gain useful insight into schizophrenia pathogenesis. METHODS We mined a single-cell RNA sequencing (scRNAseq) dataset from the prefrontal cortex (PFC) and striatum of Setd1a± mice and identified cell type-specific differentially expressed genes (DEGs) and differential transcript usage (DTU). DEGs and genes containing DTU found in each cell type were used to identify affected biological pathways using Ingenuity Pathway Analysis (IPA). RESULTS We identified 273 unique DEGs across all cell types in PFC and 675 unique gene peaks containing DTU. In striatum, we identified 327 unique DEGs across all cell types and 8 unique gene peaks containing DTU. Key IPA findings from the analysis of DEGs found in PFC and striatum implicate processes involved in protein synthesis, mitochondrial function, cell metabolism, and inflammation. IPA analysis of genes containing DTU in PFC points to protein synthesis, as well as cellular activities involving intracellular signaling and neurotransmission. One canonical pathway, 'EIF2 Signaling', which is involved in the regulation of protein synthesis, was detected in PFC DEGs, striatum DEGs, and PFC genes containing DTU, drawing attention to its importance in schizophrenia pathophysiology. CONCLUSION Processes involving protein synthesis in general and the 'EIF2 Signaling' pathway in particular could be targets for the development of new research strategies and biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Andrew E Weller
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US.
| | - Thomas N Ferraro
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, US
| | - Glenn A Doyle
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, US
| | - Benjamin C Reiner
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Wade H Berrettini
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Richard C Crist
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| |
Collapse
|
2
|
Du Y, He J, Xu Y, Wu X, Cheng H, Yu J, Wang X, An Y, Wu Y, Guo W. SIRT6 prevent chronic cerebral hypoperfusion induced cognitive impairment by remodeling mitochondrial dynamics in a STAT5-PGAM5-Drp1 dependent manner. J Transl Med 2024; 22:788. [PMID: 39183280 PMCID: PMC11346289 DOI: 10.1186/s12967-024-05566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Vascular dementia (VaD) is a prevalent form of dementia resulting from chronic cerebral hypoperfusion (CCH). However, the pathogenic mechanisms of VaD and corresponding therapeutic strategies are not well understood. Sirtuin 6 (SIRT6) has been implicated in various biological processes, including cellular metabolism, DNA repair, redox homeostasis, and aging. Nevertheless, its functional relevance in VaD remains unexplored. In this study, we utilized a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate the role of SIRT6. We detected a significant decrease in neuronal SIRT6 protein expression following CCH. Intriguingly, neuron-specific ablation of Sirt6 in mice exacerbated neuronal damage and cognitive deficits after CCH. Conversely, treatment with MDL-800, an agonist of SIRT6, effectively mitigated neuronal loss and facilitated neurological recovery. Mechanistically, SIRT6 inhibited excessive mitochondrial fission by suppressing the CCH-induced STAT5-PGAM5-Drp1 signaling cascade. Additionally, the gene expression of monocyte SIRT6 in patients with asymptomatic carotid stenosis showed a correlation with cognitive outcomes, suggesting translational implications in human subjects. Our findings provide the first evidence that SIRT6 prevents cognitive impairment induced by CCH, and mechanistically, this protection is achieved through the remodeling of mitochondrial dynamics in a STAT5-PGAM5-Drp1-dependent manner.
Collapse
Affiliation(s)
- Yong Du
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jiaqing He
- Department of Neurosurgery, Xi'an Medical University, Xi'an, Shaanxi, 710032, China
| | - Yanni Xu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongbo Cheng
- Department of Neurosurgery, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jiegang Yu
- Department of Neurosurgery, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yaqing An
- Department of Emergency, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yang Wu
- Department of Neurosurgery, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
3
|
Neto S, Reis A, Pinheiro M, Ferreira M, Neves V, Castanho TC, Santos N, Rodrigues AJ, Sousa N, Santos MAS, Moura GR. Unveiling the molecular landscape of cognitive aging: insights from polygenic risk scores, DNA methylation, and gene expression. Hum Genomics 2024; 18:75. [PMID: 38956648 PMCID: PMC11221141 DOI: 10.1186/s40246-024-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.
Collapse
Affiliation(s)
- Sonya Neto
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andreia Reis
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Pinheiro
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Margarida Ferreira
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vasco Neves
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Teresa Costa Castanho
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nadine Santos
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Ana João Rodrigues
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nuno Sousa
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
- P5 Medical Center, Braga, Portugal
| | - Manuel A S Santos
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370, Coimbra, Portugal
| | - Gabriela R Moura
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Yang J, Long Q, Zhang Y, Liu Y, Wu J, Zhao X, You X, Li X, Liu J, Teng Z, Zeng Y, Luo XJ. Whole transcriptome analysis reveals dysregulation of molecular networks in schizophrenia. Asian J Psychiatr 2023; 85:103649. [PMID: 37267675 DOI: 10.1016/j.ajp.2023.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
To characterize the regulatory relationships between different types of transcripts and the altered molecular networks in schizophrenia (SCZ), we performed a whole transcriptome study by quantifying mRNAs, long noncoding RNAs (lncRNAs), miRNAs, and circular RNAs (circRNAs) in the same individuals simultaneously. A total of 807 dysregulated genes showed differential expression in SCZ cases compared with controls. Network-based analysis revealed dysregulation of molecular networks in SCZ. Finally, integration of the transcriptome data with published data identified promising SCZ candidate genes. Our study reveals that dysregulated molecular networks and regulatory relationships between different types of transcript may have a role in SCZ.
Collapse
Affiliation(s)
- Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Qing Long
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yunqiao Zhang
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China; Honghe Second People's Hospital, Honghe, Yunnan 654399, China; The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Yilin Liu
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China
| | - Jie Wu
- The Affiliated Mental Health Center, Kunming Medical University, Kunming, Yunnan 650224, China
| | - Xinling Zhao
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China
| | - Xu You
- Honghe Second People's Hospital, Honghe, Yunnan 654399, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhaowei Teng
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China.
| | - Yong Zeng
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China.
| | - Xiong-Jian Luo
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Department of Neurology, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Witte K, Schneider-Burrus S, Salinas G, Mössner R, Ghoreschi K, Wolk K, Sabat R. Blood T Helper Memory Cells: A Tool for Studying Skin Inflammation in HS? Int J Mol Sci 2023; 24:ijms24108854. [PMID: 37240200 DOI: 10.3390/ijms24108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Hidradenitis suppurativa (HS) is an inflammatory skin disease characterized by painful lesions on intertriginous body areas such as the axillary, inguinal, and perianal sites. Given the limited treatment options for HS, expanding our knowledge of its pathogenetic mechanisms is a prerequisite for novel therapeutic developments. T cells are assumed to play a crucial role in HS pathogenesis. However, it is currently unknown whether blood T cells show specific molecular alterations in HS. To address this, we studied the molecular profile of CD4+ memory T (Thmem) cells purified from the blood of patients with HS and matched healthy participants. About 2.0% and 1.9% of protein-coding transcripts were found to be up- and down-regulated in blood HS Thmem cells, respectively. These differentially expressed transcripts (DETs) are known to be involved in nucleoside triphosphate/nucleotide metabolic processes, mitochondrion organization, and oxidative phosphorylation. The detected down-regulation of transcripts involved in oxidative phosphorylation suggest a metabolic shift of HS Thmem cells towards glycolysis. The inclusion of transcriptome data from skin from HS patients and healthy participants in the analyses revealed that in HS skin lesions, the expression pattern of transcripts identified as DETs in blood HS Thmem cells was very similar to the expression pattern of the totality of protein-coding transcripts. Furthermore, there was no significant association between the extent of the expressional changes in the DETs of blood HS Thmem cells and the extent of the expressional changes in these transcripts in HS skin lesions compared to healthy donor skin. Additionally, a gene ontology enrichment analysis did not demonstrate any association of the DETs of blood HS Thmem cells with skin disorders. Instead, there were associations with different neurological diseases, non-alcoholic fatty liver disease, and thermogenesis. The levels of most DETs linked to neurological diseases showed a positive correlation to each other, suggesting common regulatory mechanisms. In summary, the transcriptomic changes in blood Thmem cells observed in patients with manifest cutaneous HS lesions do not appear to be characteristic of the molecular changes in the skin. Instead, they could be useful for studying comorbidities and identifying corresponding blood biomarkers in these patients.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Sylke Schneider-Burrus
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Dermatosurgery, Havelklinik Berlin, 13595 Berlin, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Rotraut Mössner
- Department of Dermatology, Georg-August-University Goettingen, 37073 Goettingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
6
|
Sheridan SD, Horng JE, Perlis RH. Patient-Derived In Vitro Models of Microglial Function and Synaptic Engulfment in Schizophrenia. Biol Psychiatry 2022; 92:470-479. [PMID: 35232567 PMCID: PMC10039432 DOI: 10.1016/j.biopsych.2022.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023]
Abstract
Multiple lines of evidence implicate dysregulated microglia-mediated synaptic pruning in the pathophysiology of schizophrenia. In vitro human cellular studies represent a promising means of pursuing this hypothesis, complementing efforts with animal models and postmortem human data while addressing their limitations. The challenges in culturing homogeneous populations of cells derived from postmortem or surgical biopsy brain material from patients, and their limited availability, has led to a focus on differentiation of induced pluripotent stem cells. These methods too have limitations, in that they disrupt the epigenome and can demonstrate line-to-line variability due in part to extended time in culture, partial reprogramming, and/or residual epigenetic memory from the cell source, yielding large technical artifacts. Yet another strategy uses direct transdifferentiation of peripheral mononuclear blood cells, or umbilical cord blood cells, to microglia-like cells. Any of these approaches can be paired with patient-derived synaptosomes from differentiated neurons as a simpler alternative to co-culture. Patient-derived microglia models may facilitate identification of novel modulators of synaptic pruning and identification of biomarkers that may allow more targeted early interventions.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Cordone V, Ferrara F, Pecorelli A, Guiotto A, Vitale A, Amicarelli F, Cervellati C, Hayek J, Valacchi G. The constitutive activation of TLR4-IRAK1- NFκB axis is involved in the early NLRP3 inflammasome response in peripheral blood mononuclear cells of Rett syndrome patients. Free Radic Biol Med 2022; 181:1-13. [PMID: 35085773 DOI: 10.1016/j.freeradbiomed.2022.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Rett syndrome (RTT), a devastating neurodevelopmental disorder, is caused in 95% of the cases by mutations in the X-chromosome-localized MECP2 gene. To date, RTT is considered a broad-spectrum disease, due to multisystem disturbances affecting patients, associated with mitochondrial dysfunctions, subclinical inflammation and an overall OxInflammatory status. Inflammasomes are multi-protein complexes crucially involved in innate immune responses against pathogens and oxidative stress mediators. The assembly of NLRP3:ASC inflammasome lead to pro-caspase 1 activation, maturation of interleukins (IL)-1β and 18 and proteolytic cleavage of Gasdermin D leading eventually to pyroptosis and systemic inflammation. The possible de-regulation of this system, in parallel with upstream nuclear factor (NF)-κB p65 pathway, were analyzed in peripheral blood mononuclear cells (PBMCs) and plasma isolated from RTT patients and matching controls. RTT PBMCs showed a constitutive activation of the axis TLR4 (Toll-like receptor 4)-IRAK1 (interleukin-1 receptor associated kinase 1)-NF-κB p65, together with augmented ROS generation and enhanced IL-18 mRNA levels and NLRP3:ASC co-localization. The deregulation of inflammasome components was even found in THP-1 cells silenced for MECP2 and importantly, in plasma compartment of RTT subjects, from the earliest stages of the pathology or in correlation with the severity of MeCP2 mutations. Taken together, these data provide new insights into the mechanisms involved in RTT sub-clinical inflammatory status present in RTT patients, thus helping to reveal new targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Cordone
- Dept. of Environment and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Ferrara
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, N.C. Research Campus, North Carolina State University, 28081, Kannapolis, NC, USA
| | - Anna Guiotto
- Dept. of Environment and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Antonio Vitale
- Paediatric Unit, "San Giuseppe Moscati" National Hospital (AORN), 83100, Avellino, Italy
| | - Fernanda Amicarelli
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carlo Cervellati
- Dept. of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Joussef Hayek
- Toscana Life Science Foundation, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Dept. of Environment and Prevention, University of Ferrara, 44121, Ferrara, Italy; Animal Science Department, Plants for Human Health Institute, N.C. Research Campus, North Carolina State University, 28081, Kannapolis, NC, USA; Dept. of Food and Nutrition, Kyung Hee University, 02447, Seoul, South Korea.
| |
Collapse
|