1
|
Sehatpour P, Kantrowitz JT. Finding the Right Dose: NMDA Receptor-Modulating Treatments for Cognitive and Plasticity Deficits in Schizophrenia and the Role of Pharmacodynamic Target Engagement. Biol Psychiatry 2025; 97:128-138. [PMID: 39218136 PMCID: PMC11634630 DOI: 10.1016/j.biopsych.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) and related deficits in learning (plasticity) are among the leading causes of disability in schizophrenia. Despite this, there are no Food and Drug Administration-approved treatments for CIAS, and the development of treatments has been limited by numerous phase 2/3 failures of compounds that showed initial promise in small-scale studies. NMDA-type glutamate receptors (NMDARs) have been proposed to play an important role in schizophrenia; moreover, the NMDAR has a well-characterized role in cognition, learning, and neuroplasticity. We review previously published clinical trials in CIAS that focused on NMDAR modulator treatments, focusing on published and recent developments of the use of novel NMDAR-modulating treatments for CIAS both alone and combined with plasticity/learning paradigms to enhance learning. We use this discussion of previous studies to highlight the importance of incorporating pharmacodynamic target engagement biomarkers early in treatment development, which can help predict which compounds will succeed or fail in phase 3. A range of direct and indirect NMDAR modulators are covered, including D-serine, D-cycloserine, memantine, and glycine and first-generation glycine transport inhibitors (e.g., sarcosine and bitopertin), as well as recent positive studies of iclepertin, a novel glycine transport inhibitor, and luvadaxistat, a D-amino acid oxidase inhibitor that increases brain D-serine levels, and indirect noninvasive brain stimulation NMDAR-modulating treatments. Several examples of successful use of pharmacodynamic target engagement biomarkers for dose/drug discovery are emphasized, including the mismatch negativity, auditory steady state, and time-frequency event-related potential approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York.
| |
Collapse
|
2
|
Okubo R, Okada M, Motomura E. Dysfunction of the NMDA Receptor in the Pathophysiology of Schizophrenia and/or the Pathomechanisms of Treatment-Resistant Schizophrenia. Biomolecules 2024; 14:1128. [PMID: 39334894 PMCID: PMC11430065 DOI: 10.3390/biom14091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
For several decades, the dopamine hypothesis contributed to the discovery of numerous typical and atypical antipsychotics and was the sole hypothesis for the pathophysiology of schizophrenia. However, neither typical nor atypical antipsychotics, other than clozapine, have been effective in addressing negative symptoms and cognitive impairments, which are indices for the prognostic and disability outcomes of schizophrenia. Following the development of atypical antipsychotics, the therapeutic targets for antipsychotics expanded beyond the blockade of dopamine D2 and serotonin 5-HT2A receptors to explore the partial agonism of the D2 receptor and the modulation of new targets, such as D3, 5-HT1A, 5-HT7, and metabotropic glutamate receptors. Despite these efforts, to date, psychiatry has not successfully developed antipsychotics with antipsychotic properties proven to be superior to those of clozapine. The glutamate hypothesis, another hypothesis regarding the pathophysiology/pathomechanism of schizophrenia, was proposed based on clinical findings that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, such as phencyclidine and ketamine, induce schizophrenia-like psychotic episodes. Large-scale genome-wide association studies (GWASs) revealed that approximately 30% of the risk genes for schizophrenia (the total number was over one hundred) encode proteins associated with glutamatergic transmission. These findings supported the validation of the glutamate hypothesis, which was inspired by the clinical findings regarding NMDAR antagonists. Additionally, these clinical and genetic findings suggest that schizophrenia is possibly a syndrome with complicated pathomechanisms that are affected by multiple biological and genetic vulnerabilities. The glutamate hypothesis has been the most extensively investigated pathophysiology/pathomechanism hypothesis, other than the dopamine hypothesis. Studies have revealed the possibility that functional abnormalities of the NMDAR play important roles in the pathophysiology/pathomechanism of schizophrenia. However, no antipsychotics derived from the glutamatergic hypothesis have yet been approved for the treatment of schizophrenia or treatment-resistant schizophrenia. Considering the increasing evidence supporting the potential pro-cognitive effects of glutamatergic agents and the lack of sufficient medications to treat the cognitive impairments associated with schizophrenia, these previous setbacks cannot preclude research into potential novel glutamate modulators. Given this background, to emphasize the importance of the dysfunction of the NMDAR in the pathomechanism and/or pathophysiology of schizophrenia, this review introduces the increasing findings on the functional abnormalities in glutamatergic transmission associated with the NMDAR.
Collapse
Affiliation(s)
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (R.O.); (E.M.)
| | | |
Collapse
|
3
|
Murthy V, Hanson E, DeMartinis N, Asgharnejad M, Dong C, Evans R, Ge T, Dunayevich E, Singh JB, Ratti E, Galderisi S. INTERACT: a randomized phase 2 study of the DAAO inhibitor luvadaxistat in adults with schizophrenia. Schizophr Res 2024; 270:249-257. [PMID: 38943928 DOI: 10.1016/j.schres.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Deficits in N-methyl-d-aspartate receptor (NMDAR) signaling are implicated in the pathogenesis of schizophrenia. Luvadaxistat (TAK-831/NBI-1065844) is an investigational d-amino acid oxidase (DAAO) inhibitor that increases d-serine levels at NMDAR coagonist sites. INTERACT is a phase 2 randomized, placebo-controlled study that evaluated the efficacy and safety of three doses of luvadaxistat, covering a range of DAAO occupancy and d-serine levels, in patients with schizophrenia with persistent negative symptoms. The study included a 14-day, single-blinded placebo run-in period and a 12-week, double-blinded treatment period. The primary efficacy endpoint was the 12-week change from baseline in Positive and Negative Syndrome Scale-Negative Symptom Factor Score (PANSS NSFS). Secondary efficacy endpoints included the 12-week changes from baseline in Brief Assessment of Cognition in Schizophrenia (BACS) score and Schizophrenia Cognition Rating Scale (SCoRS) score. Safety endpoints included adverse event assessments. The full analysis set included all randomized patients (N = 256 [placebo, n = 87; luvadaxistat 50 mg, n = 58; 125 mg, n = 56; 500 mg, n = 55]); 228 patients completed the study. No significant improvements in PANSS NSFS were observed at any dose versus placebo at week 12. Improvements were observed with luvadaxistat 50 mg versus placebo in cognitive endpoints: BACS composite score (nominal one-sided p = 0.031) and SCoRS interviewer total score (nominal one-sided p = 0.011). Luvadaxistat did not significantly improve negative symptoms of schizophrenia. However, luvadaxistat 50 mg met the prespecified secondary endpoints for cognitive performance (BACS) and function (SCoRS), warranting further investigation in patients with cognitive impairment associated with schizophrenia. Luvadaxistat was well-tolerated in INTERACT, with no new safety signals observed. ClinicalTrials.gov: NCT03382639.
Collapse
Affiliation(s)
- Venkatesha Murthy
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States.
| | - Elizabeth Hanson
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Nicholas DeMartinis
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Mahnaz Asgharnejad
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Cheng Dong
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Rebecca Evans
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Tingting Ge
- Neurocrine Biosciences, Inc., San Diego, California, United States
| | - Eduardo Dunayevich
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States; Neurocrine Biosciences, Inc., San Diego, California, United States
| | - Jaskaran B Singh
- Neurocrine Biosciences, Inc., San Diego, California, United States
| | - Emiliangelo Ratti
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | | |
Collapse
|
4
|
Zhang H, Mi Z, Wang J, Zhang J. D-histidine combated biofilm formation and enhanced the effect of amikacin against Pseudomonas aeruginosa in vitro. Arch Microbiol 2024; 206:148. [PMID: 38462558 PMCID: PMC10925579 DOI: 10.1007/s00203-024-03918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic gram-negative pathogenic microorganism that poses a significant challenge in clinical treatment. Antibiotics exhibit limited efficacy against mature biofilm, culminating in an increase in the number of antibiotic-resistant strains. Therefore, novel strategies are essential to enhance the effectiveness of antibiotics against Pseudomonas aeruginosa biofilms. D-histidine has been previously identified as a prospective anti-biofilm agent. However, limited attention has been directed towards its impact on Pseudomonas aeruginosa. Therefore, this study was undertaken to explore the effect of D-histidine on Pseudomonas aeruginosa in vitro. Our results demonstrated that D-histidine downregulated the mRNA expression of virulence and quorum sensing (QS)-associated genes in Pseudomonas aeruginosa PAO1 without affecting bacterial growth. Swarming and swimming motility tests revealed that D-histidine significantly reduced the motility and pathogenicity of PAO1. Moreover, crystal violet staining and confocal laser scanning microscopy demonstrated that D-histidine inhibited biofilm formation and triggered the disassembly of mature biofilms. Notably, D-histidine increased the susceptibility of PAO1 to amikacin compared to that in the amikacin-alone group. These findings underscore the efficacy of D-histidine in combating Pseudomonas aeruginosa by reducing biofilm formation and increasing biofilm disassembly. Moreover, the combination of amikacin and D-histidine induced a synergistic effect against Pseudomonas aeruginosa biofilms, suggesting the potential utility of D-histidine as a preventive strategy against biofilm-associated infections caused by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Haichuan Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Zhongwen Mi
- Anhui Medical University, Hefei, Anhui, 230032, China
| | - Junmin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
5
|
Heresco-Levy U, Lerer B. Synergistic psychedelic - NMDAR modulator treatment for neuropsychiatric disorders. Mol Psychiatry 2024; 29:146-152. [PMID: 37945694 DOI: 10.1038/s41380-023-02312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Modern research data suggest a therapeutic role for serotonergic psychedelics in depression and other neuropsychiatric disorders, although psychotomimetic effects may limit their widespread utilization. Serotonergic psychedelics enhance neuroplasticity via serotonin 2 A receptors (5HT2AR) activation and complex serotonergic-glutamatergic interactions involving the ionotropic glutamate receptors, tropomyosin receptor kinase B (TrkB) and the mammalian target of rapamycin (mTOR). N-methyl-d-aspartate receptors (NMDAR) channel antagonists, i.e. ketamine, and glycine modulatory site full and partial agonists, i.e., D-serine (DSR) and D-cycloserine (DCS), share some of these mechanisms of action and have neuroplastic and antidepressant effects. Moreover, procognitive effects have been reported for DSR and DCS and 5HT2AR-NMDAR interactions modulate neuronal excitability in prefrontal cortex and represent a target for new antipsychotics. We hypothesize that the synchronous administration of a psychedelic and a NMDAR modulator may increase the therapeutic impact of each of the treatment components and allow for dose adjustments and improved safety. We propose to initially focus research on the acute concurrent administration of psilocybin and DSR or DCS in depression.
Collapse
Affiliation(s)
- Uriel Heresco-Levy
- Department of Psychiatry, Herzog Medical Center; Hebrew University Faculty of Medicine, Jerusalem, Israel.
| | - Bernard Lerer
- Hadassah BrainLabs, Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
6
|
Souza INDO, Roychaudhuri R, de Belleroche J, Mothet JP. d-Amino acids: new clinical pathways for brain diseases. Trends Mol Med 2023; 29:1014-1028. [PMID: 37770379 DOI: 10.1016/j.molmed.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Free d-amino acids (d-AAs) are emerging as a novel and important class of signaling molecules in many organs, including the brain and endocrine systems. There has been considerable progress in our understanding of the fundamental roles of these atypical messengers, with increasingly recognized implications in a wide range of neuropathologies, including schizophrenia (SCZ), epilepsy, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), substance abuse, and chronic pain, among others. Research has enabled the discovery that d-serine, d-aspartate and more recently d-cysteine are essential for the healthy development and function of the central nervous system (CNS). We discuss recent progress that has profoundly transformed our vision of numerous physiological processes but has also shown how d-AAs are now offering therapeutic promise in clinical settings for several human diseases.
Collapse
Affiliation(s)
- Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Molecular Pharmacology Laboratory, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robin Roychaudhuri
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacqueline de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Kimura T, Sakai S, Isaka Y. D-Serine as a sensor and effector of the kidney. Clin Exp Nephrol 2023; 27:891-900. [PMID: 37498348 PMCID: PMC10582142 DOI: 10.1007/s10157-023-02384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
D-Serine, a rare enantiomer of serine, is a biomarker of kidney disease and function. The level of D-serine in the human body is precisely regulated through the urinary clearance of the kidney, and its clearance serves as a new measure of glomerular filtration rate with a lower bias than creatinine clearance. D-Serine also has a direct effect on the kidneys and mediates the cellular proliferation of tubular cells via mTOR signaling and induces kidney remodeling as a compensatory reaction to the loss of kidney mass. In living kidney donors, the removal of the kidney results in an increase in blood D-serine level, which in turn accelerates kidney remodeling and augments kidney clearance, thus reducing blood levels of D-serine. This feedback system strictly controls D-serine levels in the body. The function of D-serine as a biomarker and modulator of kidney function will be the basis of precision medicine for kidney diseases.
Collapse
Affiliation(s)
- Tomonori Kimura
- Reverse Translational Research Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan.
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan.
- Department of Nephrology, Osaka University Graduate School of Medicine, Yamada-oka 2-2, Suita, Osaka, 5650871, Japan.
| | - Shinsuke Sakai
- Reverse Translational Research Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Yamada-oka 2-2, Suita, Osaka, 5650871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Yamada-oka 2-2, Suita, Osaka, 5650871, Japan.
| |
Collapse
|
8
|
Tsapakis EM, Diakaki K, Miliaras A, Fountoulakis KN. Novel Compounds in the Treatment of Schizophrenia-A Selective Review. Brain Sci 2023; 13:1193. [PMID: 37626549 PMCID: PMC10452918 DOI: 10.3390/brainsci13081193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Schizophrenia is a chronic neuropsychiatric syndrome that significantly impacts daily function and quality of life. All of the available guidelines suggest a combined treatment approach with pharmacologic agents and psychological interventions. However, one in three patients is a non-responder, the effect on negative and cognitive symptoms is limited, and many drug-related adverse effects complicate clinical management. As a result, discovering novel drugs for schizophrenia presents a significant challenge for psychopharmacology. This selective review of the literature aims to outline the current knowledge on the aetiopathogenesis of schizophrenia and to present the recently approved and newly discovered pharmacological substances in treating schizophrenia. We discuss ten novel drugs, three of which have been approved by the FDA (Olanzapine/Samidorphan, Lumateperone, and Pimavanserin). The rest are under clinical trial investigation (Brilaroxazine, Xanomeline/Trospium, Emraclidine, Ulotaront, Sodium Benzoate, Luvadaxistat, and Iclepertin). However, additional basic and clinical research is required not only to improve our understanding of the neurobiology and the potential novel targets in the treatment of schizophrenia, but also to establish more effective therapeutical interventions for the syndrome, including the attenuation of negative and cognitive symptoms and avoiding dopamine blockade-related adverse effects.
Collapse
Affiliation(s)
| | - Kalliopi Diakaki
- Department of Psychiatry, Academic General Hospital, 711 10 Heraklion, Greece
| | - Apostolos Miliaras
- Department of Psychiatry, Academic General Hospital, 711 10 Heraklion, Greece
| | | |
Collapse
|
9
|
Sehatpour P, Iosifescu DV, De Baun HM, Shope C, Mayer MR, Gangwisch J, Dias E, Sobeih T, Choo TH, Wall MM, Medalia A, Saperstein AM, Kegeles LS, Girgis RR, Carlson M, Kantrowitz JT. Dose-Dependent Augmentation of Neuroplasticity-Based Auditory Learning in Schizophrenia: A Double-Blind, Placebo-Controlled, Randomized, Target Engagement Clinical Trial of the NMDA Glutamate Receptor Agonist d-serine. Biol Psychiatry 2023; 94:164-173. [PMID: 36958998 PMCID: PMC10313776 DOI: 10.1016/j.biopsych.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Patients with schizophrenia show reduced NMDA glutamate receptor-dependent auditory plasticity, which is rate limiting for auditory cognitive remediation (AudRem). We evaluate the utility of behavioral and neurophysiological pharmacodynamic target engagement biomarkers, using a d-serine+AudRem combination. METHODS Forty-five participants with schizophrenia or schizoaffective disorder were randomized to 3 once-weekly AudRem visits + double-blind d-serine (80, 100, or 120 mg/kg) or placebo in 3 dose cohorts of 12 d-serine and 3 placebo-treated participants each. In AudRem, participants indicated which paired tone was higher in pitch. The primary outcome was plasticity improvement, operationalized as change in pitch threshold between AudRem tones [(test tone Hz - reference tone Hz)/reference tone Hz] between the initial plateau pitch threshold (mean of trials 20-30 of treatment visit 1) to pitch threshold at the end of visit(s). Target engagement was assessed by electroencephalography outcomes, including mismatch negativity (pitch primary). RESULTS There was a significant overall treatment effect for plasticity improvement (p = .014). Plasticity improvement was largest within the 80 and 100 mg/kg groups (p < .001, d > 0.67), while 120 mg/kg and placebo-treated participants showed nonsignificant within-group changes. Plasticity improvement was seen after a single treatment and was sustained on subsequent treatments. Target engagement was demonstrated by significantly larger mismatch negativity (p = .049, d = 1.0) for the 100 mg/kg dose versus placebo. CONCLUSIONS Our results demonstrate sufficient proof of principle for continued development of both the d-serine+AudRem combination and our target engagement methodology. The ultimate utility is dependent on the results of an ongoing larger, longer study of the combination for clinically relevant outcomes.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York
| | - Dan V Iosifescu
- Nathan Kline Institute, Orangeburg, New York; Psychiatry, New York University Grossman School of Medicine, New York, New York
| | - Heloise M De Baun
- Area Psychosis, New York State Psychiatric Institute, New York, New York
| | | | - Megan R Mayer
- Area Psychosis, New York State Psychiatric Institute, New York, New York
| | - James Gangwisch
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Elisa Dias
- Nathan Kline Institute, Orangeburg, New York; Psychiatry, New York University Grossman School of Medicine, New York, New York
| | | | - Tse-Hwei Choo
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Melanie M Wall
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alice Medalia
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alice M Saperstein
- Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Lawrence S Kegeles
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ragy R Girgis
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Marlene Carlson
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Joshua T Kantrowitz
- Area Psychosis, New York State Psychiatric Institute, New York, New York; Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York.
| |
Collapse
|
10
|
Ramírez A, Monjaraz E, Manjarrez E, Moyaho A, Cebada J, Flores A. Pharmacological characterization and differential expression of NMDA receptor subunits in the chicken vestibular system during development. Synapse 2023; 77:e22252. [PMID: 36099479 DOI: 10.1002/syn.22252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 01/29/2023]
Abstract
Previous studies demonstrated that in vitro preparations of the isolated vestibular system of diverse animal species still exhibit stable resting electrical activity and mechanically evoked synaptic transmission between hair cells and primary afferent endings. However, there are no reports related to their neurodevelopment. Therefore, this research aimed to examine whether NMDA receptors mediate these electrical signals in an isolated preparation of the chicken vestibular system at three developmental stages, E15, E18, and E21. We found that the spontaneous and mechanically evoked discharges from primary afferents of the posterior semicircular canal were modulated by agonists NMDA and glycine, but not by the agonist d-serine applied near the synapses. Moreover, the individually applied by bath perfusion of three NMDA receptor antagonists (MK-801, ifenprodil, and 2-naphthoic acid) or high Mg2+ decreased the resting discharge rate, the NMDA response, and the discharge rate of mechanically evoked activity from these primary afferents. Furthermore, we found that the vestibular ganglion shows a stage-dependent increase in the expression of NMDA receptor subunits GluN1, GluN2 (A-C), and GluN3 (A-B), being greater at E21, except for GluN2D, which was inversely related to the developmental stage. However, in the crista ampullaris, the expression pattern remained constant throughout development. This could suggest the possible existence of presynaptic NMDA receptors. Our results highlight that although the NMDA receptors are functionally active at the early embryonic stages of the vestibular system, NMDA and glycine reach their mature functionality to increase NMDA responses close to hatching (E21).
Collapse
Affiliation(s)
- Ana Ramírez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Eduardo Monjaraz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Elías Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alejandro Moyaho
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Jorge Cebada
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Amira Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
11
|
Billard JM, Freret T. Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine? Int J Mol Sci 2022; 23:ijms232415542. [PMID: 36555191 PMCID: PMC9779005 DOI: 10.3390/ijms232415542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) by D-serine is linked to cognitive aging. Whether this deregulation may be used to initiate pharmacological strategies has yet to be considered. To this end, we performed electrophysiological extracellular recordings at CA3/CA1 synapses in hippocampal slices from young and aged mice. We show that 0.1 nM of the soluble N-terminal recombinant fragment of the secreted amyloid-protein precursor-α (sAPPα) added in the bath significantly increased NMDAR activation in aged but not adult mice without impacting basal synaptic transmission. In addition, sAPPα rescued the age-related deficit of theta-burst-induced long-term potentiation. Significant NMDAR improvement occurred in adult mice when sAPPα was raised to 1 nM, and this effect was drastically reduced in transgenic mice deprived of D-serine through genetic deletion of the synthesizing enzyme serine racemase. Altogether, these results emphasize the interest to consider sAPPα treatment targeting D-serine-dependent NMDAR deregulation to alleviate cognitive aging.
Collapse
|
12
|
A randomized pharmacological fMRI trial investigating D-cycloserine and brain plasticity mechanisms in learned pain responses. Sci Rep 2022; 12:19080. [PMID: 36351953 PMCID: PMC9646732 DOI: 10.1038/s41598-022-23769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Learning and negative outcome expectations can increase pain sensitivity, a phenomenon known as nocebo hyperalgesia. Here, we examined how a targeted pharmacological manipulation of learning would impact nocebo responses and their brain correlates. Participants received either a placebo (n = 27) or a single 80 mg dose of D-cycloserine (a partial NMDA receptor agonist; n = 23) and underwent fMRI. Behavioral conditioning and negative suggestions were used to induce nocebo responses. Participants underwent pre-conditioning outside the scanner. During scanning, we first delivered baseline pain stimulations, followed by nocebo acquisition and extinction phases. During acquisition, high intensity thermal pain was paired with supposed activation of sham electrical stimuli (nocebo trials), whereas moderate pain was administered with inactive electrical stimulation (control trials). Nocebo hyperalgesia was induced in both groups (p < 0.001). Nocebo magnitudes and brain activations did not show significant differences between D-cycloserine and placebo. In acquisition and extinction, there were significantly increased activations bilaterally in the amygdala, ACC, and insula, during nocebo compared to control trials. Nocebo acquisition trials also showed increased vlPFC activation. Increased opercular activation differentiated nocebo-augmented pain aggravation from baseline pain. These results support the involvement of integrative cognitive-emotional processes in nocebo hyperalgesia.
Collapse
|
13
|
Kuo CY, Lin CH, Lane HY. Targeting D-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 2022; 36:1143-1153. [PMID: 36194364 DOI: 10.1007/s40263-022-00959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
In the brain, D-amino acid oxidase (DAAO) is a peroxisomal flavoenzyme. Through oxidative deamination by DAAO, D-serine, the main coagonist of synaptic N-methyl-D-aspartate receptors (NMDARs), is degraded into α-keto acids and ammonia; flavin adenine dinucleotide (FAD) is simultaneously reduced to dihydroflavine-adenine dinucleotide (FADH2), which is subsequently reoxidized to FAD, with hydrogen peroxide produced as a byproduct. NMDAR hypofunction is implicated in the pathogenesis of schizophrenia. In previous studies, compared with control subjects, patients with schizophrenia had lower D-serine levels in peripheral blood and cerebrospinal fluid but higher DAAO expression and activity in the brain. Inhibiting DAAO activity and slowing D-serine degradation by using DAAO inhibitors to enhance NMDAR function may be a new strategy for use in the treatment of schizophrenia. The aim of this leading article is to review the current research in DAAO inhibitors.
Collapse
Affiliation(s)
- Chien-Yi Kuo
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC. .,Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City, 83301, Taiwan, ROC. .,School of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan, ROC.
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC. .,Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC. .,Department of Psychology, College of Medical and Health Sciences, Asia University, No. 500, Lioufeng Rd., Wufeng Dist., Taichung City, 413305, Taiwan, ROC.
| |
Collapse
|
14
|
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15101297. [PMID: 36297409 PMCID: PMC9609646 DOI: 10.3390/ph15101297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical studies have revealed that the abnormal expression or function of these receptors can underlie the pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in clinical studies, as well as in preclinical seizure models.
Collapse
Affiliation(s)
- Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Correspondence: (M.G.); (S.C.S.)
| | - Steven C. Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02114, USA
- Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA 02114, USA
- Correspondence: (M.G.); (S.C.S.)
| |
Collapse
|
15
|
Jeon H, Kim YJ, Hwang SK, Seo J, Mun JY. Restoration of Cathepsin D Level via L-Serine Attenuates PPA-Induced Lysosomal Dysfunction in Neuronal Cells. Int J Mol Sci 2022; 23:ijms231810613. [PMID: 36142514 PMCID: PMC9504002 DOI: 10.3390/ijms231810613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
L-serine is a non-essential amino acid endogenously produced by astrocytes and is abundant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in the brain including neuronal development have been reported. Through several preclinical studies, L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as ischemic stroke, amyotrophic lateral sclerosis, and Parkinson’s disease. Despite evidence for the value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown. In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes through restoration of cathepsin D in disease conditions.
Collapse
Affiliation(s)
- Hyunbum Jeon
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yeo Jin Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Correspondence:
| |
Collapse
|
16
|
Zemba Cilic A, Zemba M, Cilic M, Strbe S, Ilic S, Vukojevic J, Zoricic Z, Filipcic I, Kokot A, Smoday IM, Rukavina I, Boban Blagaic A, Tvrdeic A, Duplancic B, Stambolija V, Marcinko D, Skrtic A, Seiwerth S, Sikiric P. BPC 157, L-NAME, L-Arginine, NO-Relation, in the Suited Rat Ketamine Models Resembling “Negative-Like” Symptoms of Schizophrenia. Biomedicines 2022; 10:biomedicines10071462. [PMID: 35884767 PMCID: PMC9313087 DOI: 10.3390/biomedicines10071462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 12/30/2022] Open
Abstract
We attempted throughout the NO-system to achieve the particular counteraction of the ketamine-induced resembling “negative-like” schizophrenia symptoms in rats using pentadecapeptide BPC 157, and NO-agents, NG-nitro-L-arginine methylester (L-NAME), and/or L-arginine, triple application. This might be the find out the NO-system organized therapy (i.e., simultaneously implied NO-system blockade (L-NAME) vs. NO-system over-stimulation (L-arginine) vs. NO-system immobilization (L-NAME+L-arginine)). The ketamine regimen (intraperitoneally/kg) included: 3 mg (cognitive dysfunction, novel object recognition test), 30 mg (anxiogenic effect (open field test) and anhedonia (sucrose test)), and 8 mg/3 days (social withdrawal). Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), and BPC 157 (0.01), alone and/or together, given immediately before ketamine (L-NAME, L-arginine, and combination) or given immediately after (BPC 157 and combinations). BPC 157 counteracted ketamine-cognition dysfunction, social withdrawal, and anhedonia, and exerted additional anxiolytic effect. L-NAME (antagonization, social withdrawal) and L-arginine (antagonization, cognitive dysfunction, anhedonia) both included worsening cognitive dysfunction, anhedonia, and anxiogenic effect (L-NAME), social withdrawal, and anxiogenic effect (L-arginine). Thus, ketamine-induced resembling “negative-like” schizophrenia symptoms were “L-NAME non-responsive, L-arginine responsive” (cognition dysfunction), “L-NAME responsive, L-arginine non-responsive” (social withdrawal), “L-NAME responsive, L-arginine responsive, opposite effect” (anhedonia) and “L-NAME responsive, L-arginine responsive, parallel effect” (both anxiogening). In cognition dysfunction, BPC 157 overwhelmed NO-agents effects. The mRNA expression studies in brain tissue evidenced considerable overlapping of gene overexpression in healthy rats treated with ketamine or BPC 157. With the BPC 157 therapy applied immediately after ketamine, the effect on Nos1, Nos2, Plcg1, Prkcg, and Ptgs2 (increased or decreased expression), appeared as a timely specific BPC 157 effect on ketamine-specific targets.
Collapse
Affiliation(s)
- Andrea Zemba Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Mladen Zemba
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Matija Cilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Sanja Strbe
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Spomenko Ilic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Jaksa Vukojevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Zoran Zoricic
- University Department of Psychiatry, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Igor Filipcic
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Iva Rukavina
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
| | | | - Vasilije Stambolija
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Darko Marcinko
- Department of Psychiatry, University of Zagreb School of Medicine, University Clinical Centre Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.F.); (D.M.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.); Fax: +385-1-4920-050 (A.S. & P.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.Z.C.); (M.Z.); (M.C.); (S.I.); (J.V.); (I.M.S.); (I.R.); (A.B.B.); (A.T.)
- Correspondence: (A.S.); (P.S.); Tel.: +385-1-4566-980 (A.S.); +385-1-4566-833 (P.S.); Fax: +385-1-4920-050 (A.S. & P.S.)
| |
Collapse
|
17
|
Orzylowski M, Fujiwara E, Mousseau DD, Baker GB. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front Psychiatry 2021; 12:754032. [PMID: 34707525 PMCID: PMC8542907 DOI: 10.3389/fpsyt.2021.754032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.
Collapse
Affiliation(s)
- Magdalena Orzylowski
- Villa Caritas Geriatric Psychiatry Hospital, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|