1
|
Feitosa de Araújo JI, Alves do Nascimento G, Vieira-Neto AE, Alves Magalhães FE, Rolim Campos A. Neuropharmacological potential of Mimosa tenuiflora in adult zebrafish: An integrated approach to GABAergic and serotonergic neuromodulation. Behav Brain Res 2025; 481:115415. [PMID: 39761753 DOI: 10.1016/j.bbr.2025.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Mimosa tenuiflora ("jurema-preta") is traditionally used in folk medicine for various diseases. The study investigated the neuropharmacological potential of Mimosa tenuiflora bark fraction (FATEM) in adult zebrafish. This included the acute toxicity (LC50) of FATEM (0.01; 0.05; 0.1; 0.5; 1.0 and 5.0 mg/mL; i.p.) and the effects on behavioral tests, such as open field, light & dark and zebrafish tail immobilization test (ZTI). The anxiolytic response induced by alcohol withdrawal and the seizure induced by pentylenetetrazole were also tested. The possible mechanisms of anxiolytic and antidepressant actions of FATEM were evaluated through the administration of specific antagonists (Flumazenil, Cyproheptadine, Pizotifen or Granisetron). Furthermore, the study investigated the ADME profile and molecular docking simulations of the major FATEM compound, Benzyloxyamine, with GABAergic and serotonergic receptors. FATEM did not present acute toxicity and caused a reduction in locomotor activity (p < 0.0001 vs. Control) similar (p< 0.0001) to Diazepam, indicating a sedative/anxiolytic effect. The anxiolytic activity in the light & dark test was similar to Diazepam (p < 0.0001), prevented by GABA and serotonergic antagonists. FATEM also prevented anxious behaviors induced by alcohol withdrawal and exhibited an antidepressant effect in the ZTI (p < 0.0001 vs. Control) similar (p < 0.0001) to the effect of Fluoxetine, which was reversed by serotonergic antagonists. In silico evaluations indicated favorable pharmacokinetic properties and affinity of FATEM with GABAergic and serotonergic receptors. The study reveals that FATEM has adequate physicochemical characteristics to act on the CNS with specific affinity for GABAA and serotonergic receptors, indicating its potential as a treatment for anxiety and depression.
Collapse
Affiliation(s)
| | - Gabriela Alves do Nascimento
- Graduate Program in Nutrition and Health, State University of Ceará, Av. Dr. Silas Munguba, 1700 - Fortaleza, Ceará, Brazil
| | | | - Francisco Ernani Alves Magalhães
- Graduate Program in Nutrition and Health, State University of Ceará, Av. Dr. Silas Munguba, 1700 - Fortaleza, Ceará, Brazil; Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, R. Seis, 15, Tauá, Ceará, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321 - Fortaleza, Ceará, Brazil.
| |
Collapse
|
2
|
Zhou J, Noviello CM, Teng J, Moore H, Lega B, Hibbs RE. Resolving native GABA A receptor structures from the human brain. Nature 2025:10.1038/s41586-024-08454-1. [PMID: 39843743 DOI: 10.1038/s41586-024-08454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
Type A GABA (γ-aminobutyric acid) receptors (GABAA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics1,2. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABAA receptors in the human brain have been inferred from subunit localization in tissue1,3, functional measurements and structural analysis from recombinant expression4-7 and in mice8. However, the arrangements of subunits that co-assemble physiologically in native human GABAA receptors remain unknown. Here we isolated α1 subunit-containing GABAA receptors from human patients with epilepsy. Using cryo-electron microscopy, we defined a set of 12 native subunit assemblies and their 3D structures. We address inconsistencies between previous native and recombinant approaches, and reveal details of previously undefined subunit interfaces. Drug-like densities in a subset of these interfaces led us to uncover unexpected activity on the GABAA receptor of antiepileptic drugs and resulted in localization of one of these drugs to the benzodiazepine-binding site. Proteomics and further structural analysis suggest interactions with the auxiliary subunits neuroligin 2 and GARLH4, which localize and modulate GABAA receptors at inhibitory synapses. This work provides a structural foundation for understanding GABAA receptor signalling and targeted pharmacology in the human brain.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Colleen M Noviello
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Haley Moore
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bradley Lega
- Departments of Neurological Surgery, Neurology, Psychiatry and the Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411339. [PMID: 39688117 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, 16802, USA
- Department of Nuclear Engineering, The Pennsylvania State University, State College, PA, 16802, USA
- The Center for Advanced Sensing Technology, University of Maryland - Baltimore County, Baltimore, MD, 21250, USA
- Chemical, Biochemical, and Environmental Engineering Department, University of Maryland - Baltimore County, Baltimore, MD, 21250, USA
| | - Priyanka Paul
- Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, 16802, USA
| | - Dipanjan Pan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, 16802, USA
- Department of Nuclear Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
4
|
Cardoso-Vera JD, Islas-Flores H, Pérez-Alvarez I, Díaz-Camal N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants (Basel) 2024; 13:1399. [PMID: 39594540 PMCID: PMC11590872 DOI: 10.3390/antiox13111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Amphibians, which are essential components of ecosystems, are susceptible to pharmaceutical contamination, a phenomenon of increasing concern owing to the widespread consumption and detection of pharmaceutical compounds in environmental matrices. This review investigates oxidative stress (OS) as the primary mechanism of drug toxicity in these organisms. The evidence gathered reveals that various pharmaceuticals, from antibiotics to anesthetics, induce OS by altering biomarkers of oxidative damage and antioxidant defense. These findings underscore the deleterious effects of pharmaceuticals on amphibian health and development and emphasize the necessity of incorporating OS biomarkers into ecotoxicological risk assessments. Although further studies on diverse amphibian species, drug mixtures, and field studies are required, OS biomarkers offer valuable tools for identifying sublethal risks. Furthermore, the development of more refined OS biomarkers will facilitate the early detection of adverse effects, which are crucial for protecting amphibians and their ecosystems. Ultimately, this review calls for continued research and mitigation strategies to safeguard biodiversity from pharmaceutical contamination.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | | | | |
Collapse
|
5
|
Fogliano C, Carotenuto R, Agnisola C, Motta CM, Avallone B. Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii. BIOLOGY 2024; 13:808. [PMID: 39452117 PMCID: PMC11505015 DOI: 10.3390/biology13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Benzodiazepines, a significant group of newly recognised water contaminants, are psychotropic medications prescribed for common anxiety symptoms and sleep disorders. They resist efficient degradation during sewage treatment and endure in aquatic environments. Their presence in aquatic matrices is increasing, particularly after the recent pandemic period, which has led many people to systematically use benzodiazepines to manage anxiety. In previous studies, an important interference of this class of drugs on both the larval and adult stages of some aquatic species has been demonstrated, with effects on behaviour and embryonic development. This study examined the influence of delorazepam, a diazepam metabolite, on Artemia salina development to gain insight into responses in naupliar larvae. Results demonstrated that treatments (1, 5, and 10 µg/L) increase the hatching percentage and induce a desynchronisation in growth. Mortality was only slightly increased (close to 10% at six days post-hatching), but lipid reserve consumption was modified, with the persistence of lipid globules at the advanced naupliar stages. Locomotory activity significantly decreased only at 10 µg/L treatment. No teratogenic effects were observed, though modest damages were noticed in the posterior trunk and eyes, two targets of environmental toxicity. The negative impact of delorazepam on Artemia salina adds to those already reported in other species of invertebrates and vertebrates, which are not yet considered targets of these drugs. This study underscores the need for further research and immediate attention to this class of contaminants and the importance of monitoring their presence during environmental risk assessments.
Collapse
Affiliation(s)
| | | | | | - Chiara Maria Motta
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (B.A.)
| | | |
Collapse
|
6
|
Berro LF, Rowlett JK, Platt DM. GABAergic compounds for the treatment of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:383-399. [PMID: 39523061 DOI: 10.1016/bs.irn.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Decades of research have implicated the gamma-aminobutyric acid (GABA)ergic system as one of the main mediators of the behavioral effects of alcohol. Of importance, the addiction-related effects of alcohol also have been shown to be mediated in part by GABAergic systems, raising the possibility that pharmacotherapies targeting GABAergic receptors may be promising candidates for the treatment of alcohol use disorder (AUD). Alcohol modulates the activity of GABAA and GABAB receptors, and studies show that compounds targeting some of those receptors may decrease the addiction-related behavioral effects of alcohol. Specifically, drugs that share similar pharmacological properties with alcohol, such as positive allosteric modulators (PAMs) of GABAA and GABAB receptors, have been proposed as substitution therapies for AUD. Available evidence also suggests that negative allosteric modulators (NAMs) of GABAergic receptors may be potential therapeutics for AUD, although this effect is selective for specific receptor subtypes. Therefore, this Chapter reviews the available evidence on the use of GABAergic compounds for the treatment of AUD. Several GABAA and GABAB ligands show promising results, with a particularly positive therapeutic profile demonstrated for α5GABAA receptor NAMs, α4/6δGABAA receptor modulators (both positive and negative, including neurosteroids), and GABAB receptor PAMs. As newer and better GABAergic compounds become available, future research should focus on understanding how these ligands can modulate different clinical symptoms of AUD, with potential new areas of research encompassing alcohol withdrawal syndrome and AUD-related insomnia.
Collapse
Affiliation(s)
- Laís F Berro
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States.
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
7
|
Chang Y, Xie X, Liu Y, Liu M, Zhang H. Exploring clinical applications and long-term effectiveness of benzodiazepines: An integrated perspective on mechanisms, imaging, and personalized medicine. Biomed Pharmacother 2024; 173:116329. [PMID: 38401518 DOI: 10.1016/j.biopha.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
Benzodiazepines have been long-established treatments for various conditions, including anxiety disorders and insomnia. Recent FDA warnings emphasize the risks of misuse and dependence associated with benzodiazepines. This article highlights their benefits and potential drawbacks from various perspectives. It achieves this by explaining how benzodiazepines work in terms of neuroendocrinology, immunomodulation, sleep, anxiety, cognition, and addiction, ultimately improving their clinical effectiveness. Benzodiazepines play a regulatory role in the HPA axis and impact various systems, including neuropeptide Y and cholecystokinin. Benzodiazepines can facilitate sleep-dependent memory consolidation by promoting spindle wave activity, but they can also lead to memory deficits in older individuals due to reduced slow-wave sleep. The cognitive effects of chronic benzodiazepines use remain uncertain; however, no adverse findings have been reported in clinical imaging studies. This article aims to comprehensively review the evidence on benzodiazepines therapy, emphasizing the need for more clinical studies, especially regarding long-term benzodiazepines use.
Collapse
Affiliation(s)
- Yiheng Chang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xueting Xie
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yudan Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Huimin Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
8
|
Richardson RJ, Petrou S, Bryson A. Established and emerging GABA A receptor pharmacotherapy for epilepsy. Front Pharmacol 2024; 15:1341472. [PMID: 38449810 PMCID: PMC10915249 DOI: 10.3389/fphar.2024.1341472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Drugs that modulate the GABAA receptor are widely used in clinical practice for both the long-term management of epilepsy and emergency seizure control. In addition to older medications that have well-defined roles for the treatment of epilepsy, recent discoveries into the structure and function of the GABAA receptor have led to the development of newer compounds designed to maximise therapeutic benefit whilst minimising adverse effects, and whose position within the epilepsy pharmacologic armamentarium is still emerging. Drugs that modulate the GABAA receptor will remain a cornerstone of epilepsy management for the foreseeable future and, in this article, we provide an overview of the mechanisms and clinical efficacy of both established and emerging pharmacotherapies.
Collapse
Affiliation(s)
- Robert J. Richardson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Praxis Precision Medicines, Boston, MA, United States
| | - Alexander Bryson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Fogliano C, Carotenuto R, Cirino P, Panzuto R, Ciaravolo M, Simoniello P, Sgariglia I, Motta CM, Avallone B. Benzodiazepine Interference with Fertility and Embryo Development: A Preliminary Survey in the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2024; 25:1969. [PMID: 38396658 PMCID: PMC10888474 DOI: 10.3390/ijms25041969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Psychotropic drugs and benzodiazepines are nowadays among the primary substances of abuse. This results in a large and constant release into aquatic environments where they have potentially harmful effects on non-target organisms and, eventually, human health. In the last decades, evidence has been collected on the possible interference of benzodiazepines with reproductive processes, but data are few and incomplete. In this study, the possible negative influence of delorazepam on fertilization and embryo development has been tested in Paracentrotus lividus, a key model organism in studies of reproduction and embryonic development. Sperm, eggs, or fertilized eggs have been exposed to delorazepam at three concentrations: 1 μg/L (environmentally realistic), 5 μg/L, and 10 μg/L. Results indicate that delorazepam reduces the fertilizing capacity of male and female gametes and interferes with fertilization and embryo development. Exposure causes anatomical anomalies in plutei, accelerates/delays development, and alters the presence and distribution of glycoconjugates such as N-Acetyl-glucosamine, α-linked fucose, and α-linked mannose in both morulae and plutei. These results should attract attention to the reproductive fitness of aquatic species exposed to benzodiazepines and pave the way for further investigation of the effects they may exert on human fertility. The presence of benzodiazepines in the aquatic environment raises concerns about the reproductive well-being of aquatic species. Additionally, it prompts worries regarding potential impacts on human fertility due to the excessive use of anxiolytics.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Paola Cirino
- Department of Conservation of Marine Animals and Public Engagement, Anton Dohrn Zoological Station, 80122 Naples, Italy; (P.C.); (R.P.)
| | - Raffaele Panzuto
- Department of Conservation of Marine Animals and Public Engagement, Anton Dohrn Zoological Station, 80122 Naples, Italy; (P.C.); (R.P.)
| | - Martina Ciaravolo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80133 Naples, Italy;
| | - Ilaria Sgariglia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| |
Collapse
|
10
|
Dharavath RN, Pina-Leblanc C, Tang VM, Sloan ME, Nikolova YS, Pangarov P, Ruocco AC, Shield K, Voineskos D, Blumberger DM, Boileau I, Bozinoff N, Gerretsen P, Vieira E, Melamed OC, Sibille E, Quilty LC, Prevot TD. GABAergic signaling in alcohol use disorder and withdrawal: pathological involvement and therapeutic potential. Front Neural Circuits 2023; 17:1218737. [PMID: 37929054 PMCID: PMC10623140 DOI: 10.3389/fncir.2023.1218737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Alcohol is one of the most widely used substances. Alcohol use accounts for 5.1% of the global disease burden, contributes substantially to societal and economic costs, and leads to approximately 3 million global deaths yearly. Alcohol use disorder (AUD) includes various drinking behavior patterns that lead to short-term or long-lasting effects on health. Ethanol, the main psychoactive molecule acting in alcoholic beverages, directly impacts the GABAergic system, contributing to GABAergic dysregulations that vary depending on the intensity and duration of alcohol consumption. A small number of interventions have been developed that target the GABAergic system, but there are promising future therapeutic avenues to explore. This review provides an overview of the impact of alcohol on the GABAergic system, the current interventions available for AUD that target the GABAergic system, and the novel interventions being explored that in the future could be included among first-line therapies for the treatment of AUD.
Collapse
Affiliation(s)
| | - Celeste Pina-Leblanc
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Victor M. Tang
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Addiction Division, CAMH, Toronto, ON, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Matthew E. Sloan
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Addiction Division, CAMH, Toronto, ON, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Peter Pangarov
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
| | - Anthony C. Ruocco
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Kevin Shield
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Daphne Voineskos
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Daniel M. Blumberger
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Isabelle Boileau
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nikki Bozinoff
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Osnat C. Melamed
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Lena C. Quilty
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Drager LF, Assis M, Bacelar AFR, Poyares DLR, Conway SG, Pires GN, de Azevedo AP, Carissimi A, Eckeli AL, Pentagna Á, Almeida CMO, Franco CMR, Sobreira EST, Stelzer FG, Mendes GM, Minhoto GR, Linares IMP, Sousa KMM, Gitaí LLG, Sukys-Claudino L, Sobreira-Neto MA, Zanini MA, Margis R, Martinez SCG. 2023 Guidelines on the Diagnosis and Treatment of Insomnia in Adults - Brazilian Sleep Association. Sleep Sci 2023; 16:507-549. [PMID: 38370879 PMCID: PMC10869237 DOI: 10.1055/s-0043-1776281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Chronic insomnia disorder (simplified in this document as insomnia) is an increasingly common clinical condition in society and a frequent complaint at the offices of different areas of health practice (particularly Medicine and Psychology). This scenario has been accompanied by a significant evolution in treatment, as well as challenges in approaching patients in an appropriately way. This clinical guideline, coordinated by the Brazilian Sleep Association and the Brazilian Association of Sleep Medicine and counting on the active participation of various specialists in the area, encompasses an update on the diagnosis and treatment of insomnia in adults. To this end, it followed a structured methodology. Topics of interest related to diagnosis were written based on theoretical framework, evidence in the literature, and professional experience. As for the topics related to the treatment of insomnia, a series of questions were developed based on the PICO acronym (P - Patient, problem, or population; I - Intervention; C - Comparison, control, or comparator; O - Outcome). The work groups defined the eligible options within each of these parameters. Regarding pharmacological interventions, only the ones currently available in Brazil or possibly becoming available in the upcoming years were considered eligible. Systematic reviews were conducted to help prepare the texts and define the level of evidence for each intervention. The final result is an objective and practical document providing recommendations with the best scientific support available to professionals involved in the management of insomnia.
Collapse
Affiliation(s)
- Luciano Ferreira Drager
- Associação Brasileira do Sono, São Paulo, SP, Brazil.
- Unidades de HipertenSão, Instituto do Coração (InCor) e Disciplina de Nefrologia, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Márcia Assis
- Associação Brasileira do Sono, São Paulo, SP, Brazil.
- Clínica do Sono de Curitiba, Hospital São Lucas, Curitiba, Brazil.
| | - Andrea Frota Rego Bacelar
- Associação Brasileira do Sono, São Paulo, SP, Brazil.
- Clínica Bacelar - Neuro e Sono, Rio de Janeiro, RJ, Brazil.
| | - Dalva Lucia Rollemberg Poyares
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.
- Instituto do Sono, São Paulo, SP, Brazil.
| | - Silvia Gonçalves Conway
- Instituto de Psiquiatria (IPq), Universidade de São Paulo, São Paulo, SP, Brazil.
- Departamento de Otoneurologia, Universidade de São Paulo, São Paulo, SP, Brazil.
- AkasA - Formação e Conhecimento, São Paulo, SP, Brazil.
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.
- Instituto do Sono, São Paulo, SP, Brazil.
| | | | - Alicia Carissimi
- Faculdade Dom Bosco, Porto Alegre, RS, Brazil.
- Cronosul Clínica de Psicologia do Sono, Psicoterapia e Neuropsicologia, Porto Alegre, RS, Brazil.
| | - Allan Luiz Eckeli
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Álvaro Pentagna
- Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | - Emmanuelle Silva Tavares Sobreira
- AkasA - Formação e Conhecimento, São Paulo, SP, Brazil.
- Universidade Federal do Ceará, Fortaleza, CE, Brazil.
- Clínica Sinapse Diagnóstico, Fortaleza, CE, Brazil.
| | - Fernando Gustavo Stelzer
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | - Ila Marques Porto Linares
- Instituto de Psiquiatria (IPq), Universidade de São Paulo, São Paulo, SP, Brazil.
- Instituto da Criança, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Ksdy Maiara Moura Sousa
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.
- SleepUp Tecnologia e Saúde LTDA, São Paulo, SP, Brazil.
| | | | - Lucia Sukys-Claudino
- Disciplina de Neurologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - Marcio Andrei Zanini
- Instituto de Assistência Médica ao Servidor Público Estadual (IAMPSE), São Paulo, SP, Brazil.
| | | | | |
Collapse
|
12
|
Arslan A. Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach. Heliyon 2023; 9:e20218. [PMID: 37809401 PMCID: PMC10559982 DOI: 10.1016/j.heliyon.2023.e20218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Critical for brain development, neurodevelopmental and network disorders, the GABRA1 gene encodes for the α1 subunit, an abundantly and developmentally expressed subunit of heteropentameric gamma-aminobutyric acid A receptors (GABAARs) mediating primary inhibition in the brain. Mutations of the GABAAR subunit genes including GABRA1 gene are associated with epilepsy, a group of syndromes, characterized by unprovoked seizures and diagnosed by integrative approach, that involves genetic testing. Despite the diagnostic use of genetic testing, a large fraction of the GABAAR subunit gene variants including the variants of GABRA1 gene is not known in terms of their molecular consequence, a challenge for precision and personalized medicine. Addressing this, one hundred thirty-seven GABRA1 gene variants of unknown clinical significance have been extracted from the ClinVar database and computationally analyzed for pathogenicity. Eight variants (L49H, P59L, W97R, D99G, G152S, V270G, T294R, P305L) are predicted as pathogenic and mapped to the α1 subunit's extracellular domain (ECD), transmembrane domains (TMDs) and extracellular linker. This is followed by the integration with relevant data for cellular pathology and severity of the epilepsy syndromes retrieved from the literature. Our results suggest that the pathogenic variants in the ECD of GABRA1 (L49H, P59L, W97R, D99G, G152S) will probably manifest decreased surface expression and reduced current with mild epilepsy phenotypes while V270G, T294R in the TMDs and P305L in the linker between the second and the third TMDs will likely cause reduced cell current with severe epilepsy phenotypes. The results presented in this study provides insights for clinical genetics and wet lab experimentation.
Collapse
Affiliation(s)
- Ayla Arslan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
13
|
Perucca E, Bialer M, White HS. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023; 37:755-779. [PMID: 37603262 PMCID: PMC10501955 DOI: 10.1007/s40263-023-01027-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Perucca E, White HS, Bialer M. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: II. Treatments in Clinical Development. CNS Drugs 2023; 37:781-795. [PMID: 37603261 PMCID: PMC10501930 DOI: 10.1007/s40263-023-01025-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the modulation of neuronal excitability, and a disruption of GABAergic transmission contributes to the pathogenesis of some seizure disorders. Although many currently available antiseizure medications do act at least in part by potentiating GABAergic transmission, there is an opportunity for further research aimed at developing more innovative GABA-targeting therapies. The present article summarises available evidence on a number of such treatments in clinical development. These can be broadly divided into three groups. The first group consists of positive allosteric modulators of GABAA receptors and includes Staccato® alprazolam (an already marketed benzodiazepine being repurposed in epilepsy as a potential rescue inhalation treatment for prolonged and repetitive seizures), the α2/3/5 subtype-selective agents darigabat and ENX-101, and the orally active neurosteroids ETX155 and LPCN 2101. A second group comprises two drugs already marketed for non-neurological indications, which could be repurposed as treatments for seizure disorders. These include bumetanide, a diuretic agent that has undergone clinical trials in phenobarbital-resistant neonatal seizures and for which the rationale for further development in this indication is under debate, and ivermectin, an antiparasitic drug currently investigated in a randomised double-blind trial in focal epilepsy. The last group comprises a series of highly innovative therapies, namely GABAergic interneurons (NRTX-001) delivered via stereotactic cerebral implantation as a treatment for mesial temporal lobe epilepsy, an antisense oligonucleotide (STK-001) aimed at upregulating NaV1.1 currents and restoring the function of GABAergic interneurons, currently tested in a trial in patients with Dravet syndrome, and an adenoviral vector-based gene therapy (ETX-101) scheduled for investigation in Dravet syndrome. Another agent, a subcutaneously administered neuroactive peptide (NRP2945) that reportedly upregulates the expression of GABAA receptor α and β subunits is being investigated, with Lennox-Gastaut syndrome and other epilepsies as proposed indications. The diversity of the current pipeline underscores a strong interest in the GABA system as a target for new treatment development in epilepsy. To date, limited clinical data are available for these investigational treatments and further studies are required to assess their potential value in addressing unmet needs in epilepsy management.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), Melbourne Brain Centre, The University of Melbourne, 245 Burgundy Street, Melbourne, VIC, 3084, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Meir Bialer
- Faculty of Medicine, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Soyka M, Wild I, Caulet B, Leontiou C, Lugoboni F, Hajak G. Long-term use of benzodiazepines in chronic insomnia: a European perspective. Front Psychiatry 2023; 14:1212028. [PMID: 37599882 PMCID: PMC10433200 DOI: 10.3389/fpsyt.2023.1212028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic insomnia occurs in ~10% of the general population and has numerous negative health effects. The recommended first line treatment of cognitive behavior therapy for insomnia is not widely available for patients in Europe, so pharmacotherapies such as benzodiazepine receptor agonist agents (benzodiazepines and Z-drugs) are commonly used. However, their use is only recommended for ≤4 weeks due to unproven long-term efficacy in treatment of chronic insomnia, and the risk of tolerance, and the potential for dependence and misuse. In Europe, recommendations limiting the use of benzodiazepines (lowest dose and shortest duration) in chronic insomnia are not always followed, likely due to the lack of approved effective alternative therapies. Here we present a recent pilot survey of the pharmacological treatment landscape in chronic insomnia in five European countries (France, Germany, Italy, Spain, and the United Kingdom) and physicians' attitude toward treatment. The results suggest that benzodiazepines and Z-drugs are the most widely used treatments in chronic insomnia and are being used for longer than their recommended duration. Country variations in prescription rates were observed. Due to the known association between long-term benzodiazepine use and potential for developing dependence, further analysis of the literature was performed on the use and misuse of benzodiazepines. The results show that long-term use of benzodiazepines is associated with multiple consequences of treatment, including dependence, but also that previous use of benzodiazepines may increase the risk of opioid use disorder.
Collapse
Affiliation(s)
- Michael Soyka
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Imane Wild
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | - Fabio Lugoboni
- Department of Internal Medicine, Addiction Unit, Verona University Hospital, Verona, Italy
| | - Göran Hajak
- University of Regensburg, Regensburg, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Teaching Hospital of the University of Erlangen, Bamberg, Germany
| |
Collapse
|
16
|
Bappi MH, Prottay AAS, Kamli H, Sonia FA, Mia MN, Akbor MS, Hossen MM, Awadallah S, Mubarak MS, Islam MT. Quercetin Antagonizes the Sedative Effects of Linalool, Possibly through the GABAergic Interaction Pathway. Molecules 2023; 28:5616. [PMID: 37513487 PMCID: PMC10384931 DOI: 10.3390/molecules28145616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sedatives promote calmness or sleepiness during surgery or severely stressful events. In addition, depression is a mental health issue that negatively affects emotional well-being. A group of drugs called anti-depressants is used to treat major depressive illnesses. The aim of the present work was to evaluate the effects of quercetin (QUR) and linalool (LIN) on thiopental sodium (TS)-induced sleeping mice and to investigate the combined effects of these compounds using a conventional co-treatment strategy and in silico studies. For this, the TS-induced sleeping mice were monitored to compare the occurrence, latency, and duration of the sleep-in response to QUR (10, 25, 50 mg/kg), LIN (10, 25, 50 mg/kg), and diazepam (DZP, 3 mg/kg, i.p.). Moreover, an in silico investigation was undertaken to assess this study's putative modulatory sedation mechanism. For this, we observed the ability of test and standard medications to interact with various gamma-aminobutyric acid A receptor (GABAA) subunits. Results revealed that QUR and LIN cause dose-dependent antidepressant-like and sedative-like effects in animals, respectively. In addition, QUR-50 mg/kg and LIN-50 mg/kg and/or DZP-3 mg/kg combined were associated with an increased latency period and reduced sleeping times in animals. Results of the in silico studies demonstrated that QUR has better binding interaction with GABAA α3, β1, and γ2 subunits when compared with DZP, whereas LIN showed moderate affinity with the GABAA receptor. Taken together, the sleep duration of LIN and DZP is opposed by QUR in TS-induced sleeping mice, suggesting that QUR may be responsible for providing sedation-antagonizing effects through the GABAergic interaction pathway.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Munnaf Hossen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
17
|
Cardona-Acosta AM, Sial OK, Parise LF, Gnecco T, Enriquez Marti G, Bolaños-Guzmán CA. Alprazolam exposure during adolescence induces long-lasting dysregulation in reward sensitivity to morphine and second messenger signaling in the VTA-NAc pathway. Sci Rep 2023; 13:10872. [PMID: 37407659 DOI: 10.1038/s41598-023-37696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Increased use of benzodiazepines in adolescents have been reported, with alprazolam (ALP) being the most abused. Drug abuse during adolescence can induce changes with lasting consequences. This study investigated the neurobiological consequences of ALP exposure during adolescence in C57BL/6J male mice. Mice received ALP (0, 0.5, 1.0 mg/kg) once/daily (postnatal day 35-49). Changes in responsiveness to morphine (2.5, 5.0 mg/kg), using the conditioned place preference paradigm, were assessed 24-h and 1-month after ALP exposure. In a separate experiment, mice received ALP (0, 0.5 mg/kg) and then sacrificed 24-h or 1-month after treatment to assess levels of extracellular signal regulated kinase 1/2 (ERK1/2) gene expression, protein phosphorylation, and downstream targets (CREB, AKT) within the ventral tegmental area (VTA) and nucleus accumbens (NAc). ALP-pretreated mice developed a strong preference to the compartment(s) paired with a subthreshold dose (2.5 mg/kg) of MOR short-term, and this effect was also present in the 1-month group. Adolescent ALP exposure resulted in dysregulation of ERK-signaling within the VTA-NAc pathway 24-h and 1-month after ALP exposure. Results indicate ALP exposure during adolescence potentiates the rewarding properties of MOR and induces persistent changes in ERK-signaling within the VTA-NAc pathway, a brain circuit highly implicated in the regulation of both drug reward and mood- related behaviors.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Omar K Sial
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Lyonna F Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tamara Gnecco
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Giselle Enriquez Marti
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
18
|
Gómez LCG, Medina NB, Blasco SS, Gravielle MC. Diazepam-Induced Down-Regulation of The Gaba a Receptor α1 Subunit, as Mediated by the Activation of L-Type Voltage-Gated Calcium Channel/Ca 2+/Protein Kinase A Signaling Cascade. Neurosci Lett 2023:137358. [PMID: 37356564 DOI: 10.1016/j.neulet.2023.137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Benzodiazepines are among the most prescribed drug class worldwide to treat disorders such as anxiety, insomnia, muscle spasticity, and convulsive disorders, and to induce presurgical sedation. Although benzodiazepines exhibit a high therapeutic index and low toxicity in short-term treatments, prolonged administration induces tolerance to most of their therapeutic actions. The mechanism of this tolerance remains unclear. The central actions of benzodiazepines are mediated by binding to GABAA receptors, which mediate most fast inhibitory transmission in the brain. The majority of GABAA receptors are composed of two α-(1-6), two β-(1-3) and one γ-subunits (1-3). In a previous report, we demonstrated that the prolonged exposure of cerebrocortical neurons to diazepam produces a transcriptional repression of the GABAA receptor α1 subunit gene via a mechanism dependent on the activation of L-type voltage-gated calcium channels (L-VGCCs). The results reported here confirm that the diazepam-induced downregulation of the α1 subunit is contingent upon calcium influx from extracellular space. In addition, this regulatory mechanism involves the activation of protein kinase A (PKA) and is accompanied by the activation of two transcription factors, the cAMP-response element-binding protein (CREB) and the inducible cAMP early repressor (ICER). Together, our results suggest that diazepam's activation of an L-VGCC/Ca2+/PKA/CREB-ICER signaling pathway is responsible for the regulation of GABAA receptors. This elucidation of the intracellular signaling cascade activated by a prolonged benzodiazepine exposure, itself potentially involved in the development of tolerance, may contribute to locating molecular targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Leydi Carolina González Gómez
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Sara Sanz Blasco
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina.
| |
Collapse
|
19
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
20
|
Tani N, Ikeda T, Ishikawa T. Relationship between clock gene expression and CYP2C19 and CYP3A4 with benzodiazepines. Hum Exp Toxicol 2023; 42:9603271231171643. [PMID: 37072025 DOI: 10.1177/09603271231171643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The present study aimed to clarify the expressions and roles of clock genes involved in drug metabolism in patients taking benzodiazepines (BZDs), as well as the drug metabolism regulators controlled by clock genes for each BZD type. The relationships between the expressions of the clock genes BMAL1, PER2, and DBP and the drug-metabolizing enzymes CYP3A4 and CYP2C19 were investigated using livers from BZD-detected autopsy cases. In addition, the effect of BZD exposure on various genes was examined in HepG2 human hepatocellular carcinoma cells. The expressions of DBP, CYP3A4, and CYP2C19 in the liver were lower in the diazepam-detected group than in the non-detected group. Furthermore, BMAL1 expression correlated with CYP2C19 expression. Cell culture experiments showed that the expressions of DBP and CYP3A4 decreased, whereas those of BMAL1 and CYP2C19 increased after diazepam and midazolam exposure. The results of the analyses of autopsy samples and cultured cells suggested that DBP regulates CYP3A4 when exposed to BZD. Understanding the relationship between these clock genes and CYPs may help achieve individualized drug therapy.
Collapse
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center, C/O Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Tomoya Ikeda
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center, C/O Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center, C/O Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| |
Collapse
|