1
|
Chaves A, Mendoza H, Herrera A, Pacheco-Zapata M, López-Pérez AM, Fernández A, Arguello-Sáenz M, Arnal A, Suzán G. Zoonosis: social and environmental connections in the Mexico-United States border region. ONE HEALTH OUTLOOK 2025; 7:3. [PMID: 39780242 PMCID: PMC11715514 DOI: 10.1186/s42522-024-00120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 01/11/2025]
Abstract
The emerging risks facing humanity have highlighted the need to address and prevent challenges through multilateral preventive strategies. The Mexico-United States (US) border is a region with great biological biodiversity and both countries shared a similar history and intense socioeconomic, and cultural interrelationships. Also, it has an extraordinary ecological contrast, resulting in an enormous biological diversity in a broad Nearctic-Neotropical transition zone. This dynamic region has important disparities due to the lack of bilateral strategies to face emerging issues (e.g., infectious diseases) in an integrated and holistic approach. In this context, we describe the various socio-ecosystemic contexts of the shared border and present different diseases transmitted, and different zoonoses that affect ecosystemic public health that must be addressed under collaborative schemes that can develop preventive policies under the One Health approach with emphasis on the Mexican zone. We describe the social determinants of health issues for the border, but we add ecological contexts infrequently studied in classical epidemiological approaches. Strategies towards One Health require international and multidisciplinary approaches that strengthen diagnostic capabilities, recognizing social, and environmental challenges. Recognizing these aspects will allow the establishment of joint monitoring, prevention, and mitigation strategies with benefits for both countries.
Collapse
Affiliation(s)
- Andrea Chaves
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
- Institute of Research and Education in Nutrition and Health (INCIENSA), La Union, San Diego, Cartago, 42250, Costa Rica
- Escuela de Biología, Universidad de Costa, 11501-206, San José, Costa Rica
| | - Hugo Mendoza
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Angel Herrera
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Mitsuri Pacheco-Zapata
- Institute of Research and Education in Nutrition and Health (INCIENSA), La Union, San Diego, Cartago, 42250, Costa Rica
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
| | - Andrés M López-Pérez
- Red de Biología y Conservación de Vertebrados, Instituto de ecologia AC, Xalapa, 91073, Veracruz, México
| | - Adriana Fernández
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Milena Arguello-Sáenz
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Audrey Arnal
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico.
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Walls FN, McGarvey DJ. A systems-level model of direct and indirect links between environmental health, socioeconomic factors, and human mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162486. [PMID: 36858240 DOI: 10.1016/j.scitotenv.2023.162486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Major efforts are being made to better understand how human health and ecosystem health are influenced by climate and other environmental factors. However, studies that simultaneously address human and ecosystem health within a systems-level framework that accounts for both direct and indirect effects are rare. Using path analysis and a large database of environmental and socioeconomic variables, we create a systems-level model of direct and indirect effects on human and ecosystem health in counties throughout the conterminous United States. As indicators of human and ecosystem health, we use age-adjusted mortality rate and an index of biological integrity in streams and rivers, respectively. We show that: (i) geology and climate set boundary conditions for all other variables in the model; (ii) hydrology and land cover have predictable but distinct effects on human and ecosystem health; and (iii) forest cover is a key link between the environment and the socioeconomic variables that directly influence human health.
Collapse
Affiliation(s)
- Felisha N Walls
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, 1000 West Cary Street, Richmond, VA 23284, USA.
| | - Daniel J McGarvey
- Center for Environmental Studies, Virginia Commonwealth University, 1000 West Cary Street, Richmond, VA 23284, USA.
| |
Collapse
|
3
|
Molecular Detection of Tick-Borne Pathogens in American Bison ( Bison bison) at El Uno Ecological Reserve, Janos, Chihuahua, Mexico. Pathogens 2021; 10:pathogens10111428. [PMID: 34832584 PMCID: PMC8621901 DOI: 10.3390/pathogens10111428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
American bison (Bison bison) is listed as near-threatened and in danger of extinction in Mexico. Recent studies have demonstrated the presence of several emerging pathogens at the Janos Biosphere Reserve (JBR), inhabited by one wild herd of American bison. Blood samples were collected from 26 American bison in the JBR. We tested for the presence of Anaplasma marginale, Babesia bigemina, B. bovis, Borrelia burgdorferi sensu lato, and Rickettsia rickettsii DNA using nested and semi-nested PCR protocols performing duplicates in two different laboratories. Results showed three animals (11.5%) positive for B. burgdorferi s. l., three more (11.5%) for Rickettsia rickettsii, and four (19.2%) for B. bovis. Two individuals were co-infected with B. burgdorferi s. l. and B. bovis. We found no animals positive for A. marginale and B. bigemina. This is the first report in America of R. rickettsii in American bison. American bison has been described as an important reservoir for pathogens of zoonotic and veterinary importance; thus, the presence of tick-borne pathogen DNA in the JBR American bison indicates the importance of continuous wildlife health surveys.
Collapse
|
4
|
Tasker A, Braam D. Positioning zoonotic disease research in forced migration: A systematic literature review of theoretical frameworks and approaches. PLoS One 2021; 16:e0254746. [PMID: 34310626 PMCID: PMC8312951 DOI: 10.1371/journal.pone.0254746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/27/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The emergence and transmission of zoonotic diseases are driven by complex interactions between health, environmental, and socio-political systems. Human movement is considered a significant and increasing factor in these processes, yet forced migration remains an understudied area of zoonotic research-due in part to the complexity of conducting interdisciplinary research in these settings. OBJECTIVES We conducted a systematic review to identify and analyze theoretical frameworks and approaches used to study linkages between forced migration and zoonotic diseases. METHODS We searched within eight electronic databases: ProQuest, SCOPUS, Web of Science, PubMed, PLoSOne, Science Direct, JSTOR, and Google Scholar, to identify a) research articles focusing on zoonoses considering forced migrants in their study populations, and b) forced migration literature which engaged with zoonotic disease. Both authors conducted a full-text review, evaluating the quality of literature reviews and primary data using the Critical Appraisal Skills Programme (CASP) model, while theoretical papers were evaluated for quality using a theory synthesis adapted from Bonell et al. (2013). Qualitative data were synthesized thematically according to the method suggested by Noblit and Hare (1988). RESULTS Analyses of the 23 included articles showed the increasing use of interdisciplinary frameworks and approaches over time, the majority of which stemmed from political ecology. Approaches such as EcoHealth and One Health were increasingly popular, but were more often linked to program implementation and development than broader contextual research. The majority of research failed to acknowledge the heterogeneity of migrant populations, lacked contextual depth, and insufficient acknowledgments of migrant agency in responding to zoonotic threats. CONCLUSIONS Addressing the emergence and spread of zoonoses in forced migration contexts requires more careful consideration and use of interdisciplinary research to integrate the contributions of social and natural science approaches. Robust interdisciplinary theoretical frameworks are an important step for better understanding the complex health, environment, and socio-political drivers of zoonotic diseases in forced migration. Lessons can be learned from the application of these approaches in other hard-to-reach or seldom-heard populations.
Collapse
Affiliation(s)
- Alex Tasker
- Department of Anthropology, University College London, London, United Kingdom
- * E-mail:
| | - Dorien Braam
- Disease Dynamics Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Gortázar C, Barroso P, Nova R, Cáceres G. The role of wildlife in the epidemiology and control of Foot-and-mouth-disease And Similar Transboundary (FAST) animal diseases: A review. Transbound Emerg Dis 2021; 69:2462-2473. [PMID: 34268873 DOI: 10.1111/tbed.14235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Transboundary Animal Diseases (TADs) are notifiable diseases which are highly transmissible and have the potential for rapid spread regardless of national borders. Many TADs are shared between domestic animals and wildlife, with the potential to affect both livestock sector and wildlife conservation and eventually, public health in the case of zoonosis. The European Commission for the Control of Foot-and-Mouth Disease (EuFMD), a commission of the Food and Agriculture Organization of the United Nations (FAO), has grouped six TADs as 'Foot-and-mouth disease (FMD) And Similar Transboundary animal diseases' (FAST diseases). FAST diseases are ruminant infections caused by viruses, for which vaccination is a control option. The EuFMD hold-FAST strategy aims primarily at addressing the threat represented by FAST diseases for Europe. Prevention and control of FAST diseases might benefit from assessing the role of wildlife. We reviewed the role of wildlife as indicators, victims, bridge hosts or maintenance hosts for the six TADs included in the EuFMD hold-FAST strategy: FMD, peste des petits ruminants, lumpy skin disease, sheep and goatpox, Rift Valley fever and bovine ephemeral fever. We observed that wildlife can act as indicator species. In addition, they are occasionally victims of disease outbreaks, and they are often relevant for disease management as either bridge or maintenance hosts. Wildlife deserves to become a key component of future integrated surveillance and disease control strategies in an ever-changing world. It is advisable to increase our knowledge on wildlife roles in relevant TADs to improve our preparedness in case of an outbreak in previously disease-free regions, where wildlife may be significant for disease surveillance and control.
Collapse
Affiliation(s)
- Christian Gortázar
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Patricia Barroso
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Rodrigo Nova
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Germán Cáceres
- European Commission for the Control of Foot-and-Mouth Disease, Rome, Italy
| |
Collapse
|
6
|
Alonso-Díaz MA, Fernández-Salas A. Entomopathogenic Fungi for Tick Control in Cattle Livestock From Mexico. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:657694. [PMID: 37744087 PMCID: PMC10512273 DOI: 10.3389/ffunb.2021.657694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/01/2021] [Indexed: 09/26/2023]
Abstract
Ticks are one of the main economic threats to the cattle industry worldwide affecting productivity, health and welfare. The need for alternative methods to control tick populations is prompted by the high prevalence of multiresistant tick strains to the main chemical acaricides and their ecological consequences. Biological control using entomopathogenic fungi (EPF) is one of the most promising alternative options. The objective of this paper is to review the use of EPF as an alternative control method against cattle ticks in Mexico. Metarhizium anisopliae sensu lato (s.l.) and Beauveria bassiana s.l. are the most studied EPF for the biological control of ticks in the laboratory and in the field, mainly against Rhipicephalus microplus; however, evaluations against other important cattle ticks such as Amblyomma mixtum and R. annulatus, are needed. A transdisciplinary approach is required to incorporate different types of tools, such as genomics, transcriptomics and proteomics in order to better understand the pathogenicity/virulence mechanism in EPF against ticks. Laboratory tests have demonstrated the EPF efficacy to control susceptible and resistant/multiresistant tick populations; whereas, field tests have shown satisfactory control efficiency of M. anisopliae s.l. against different stages of R. microplus when applied both on pasture and on cattle. Epidemiological aspects of ticks and environmental factors are considered as components that influence the acaricidal behavior of the EPF. Finally, considering all these aspects, some recommendations are proposed for the use of EPF in integrated control schemes for livestock ticks.
Collapse
|
7
|
Shapiro-Ilan DI, Goolsby JA. Evaluation of Barricade® to enhance survival of entomopathogenic nematodes on cowhide. J Invertebr Pathol 2021; 184:107592. [PMID: 33882276 DOI: 10.1016/j.jip.2021.107592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
Entomopathogenic nematodes (EPNs), Steinernema riobrave and Heterorhabditis floridensis are under evaluation for eradication of the southern cattle fever tick, Rhipicephalus microplus infesting nilgai antelope, in South Texas. Cattle fever ticks are a significant threat to the U.S. livestock industry. Although they have been eradicated in the U.S. they frequently re-invade along the Texas-Mexico border. Remotely operated field sprayers have been developed to directly treat nilgai antelope with EPNs as they transit fence crossings and as they contact wetted foliage and soil from the surrounding area. EPNs are known to be susceptible to mortality from ultraviolet light (UV) and desiccation. A sprayable fire gel, Barricade®, has been reported to protect EPNs from UV and desiccation but has not been tested on animal hides. Barricade® at 1 and 2 percent rates was mixed with the water solution of S. riobrave and H. floridensis and applied to cowhides (to mimic direct treatment of nilgai) and filter paper and then these substrates were placed out of doors in 0, 30, 60 or 120 min of sunlight. Wax moth larvae, Galleria mellonella, were exposed to the cowhides and filter paper to determine efficacy of the EPNs. Efficacy of S. riobrave with 1 and 2% Barricade® gel applied to cowhides was significantly improved at 30 and 60 min as compared to the control. At 120 min mortality of the wax moth larvae was near zero for both the control and the treatments. Similar results were found with the filter paper test. In contrast, efficacy of H. floridensis with Barricade® applied to cowhides or filter paper was not significantly improved at 30, 60 or 120 min as compared to the water only control. Barricade® has the potential to improve the efficacy of S. riobrave and other EPNs by reducing mortality and desiccation, especially when used in the remotely operated sprayer developed for treatment of cattle fever tick infested nilgai.
Collapse
Affiliation(s)
- David I Shapiro-Ilan
- USDA-ARS, Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008, United States
| | - John A Goolsby
- United States Dept. of Agriculture, Agricultural Research Service, Plains Area, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Cattle Fever Tick Research Laboratory, Edinburg, TX 78541, United States.
| |
Collapse
|
8
|
Esteve-Gasent MD, Rodríguez-Vivas RI, Medina RF, Ellis D, Schwartz A, Cortés Garcia B, Hunt C, Tietjen M, Bonilla D, Thomas D, Logan LL, Hasel H, Alvarez Martínez JA, Hernández-Escareño JJ, Mosqueda Gualito J, Alonso Díaz MA, Rosario-Cruz R, Soberanes Céspedes N, Merino Charrez O, Howard T, Chávez Niño VM, Pérez de León AA. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens 2020; 9:pathogens9110871. [PMID: 33114005 PMCID: PMC7690670 DOI: 10.3390/pathogens9110871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Bovine babesiosis is a reportable transboundary animal disease caused by Babesia bovis and Babesiabigemina in the Americas where these apicomplexan protozoa are transmitted by the invasive cattle fever ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus(Boophilus) annulatus. In countries like Mexico where cattle fever ticks remain endemic, bovine babesiosis is detrimental to cattle health and results in a significant economic cost to the livestock industry. These cattle disease vectors continue to threaten the U.S. cattle industry despite their elimination through efforts of the Cattle Fever Tick Eradication Program. Mexico and the U.S. share a common interest in managing cattle fever ticks through their economically important binational cattle trade. Here, we report the outcomes of a meeting where stakeholders from Mexico and the U.S. representing the livestock and pharmaceutical industry, regulatory agencies, and research institutions gathered to discuss research and knowledge gaps requiring attention to advance progressive management strategies for bovine babesiosis and cattle fever ticks. Research recommendations and other actionable activities reflect commitment among meeting participants to seize opportunities for collaborative efforts. Addressing these research gaps is expected to yield scientific knowledge benefitting the interdependent livestock industries of Mexico and the U.S. through its translation into enhanced biosecurity against the economic and animal health impacts of bovine babesiosis and cattle fever ticks.
Collapse
Affiliation(s)
- Maria D. Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Roger I. Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, km. 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán 97000, Mexico
- Correspondence:
| | - Raúl F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Dee Ellis
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Andy Schwartz
- Texas Animal Health Commission, Austin, TX 78758, USA;
| | - Baltazar Cortés Garcia
- Departamento de Rabia Paralítica y Garrapata, Dirección de Campañas Zoosanitarias, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Avenida Insurgentes Sur N° 489 Piso 9, Colonia Hipódromo, Alcaldía Cuauhtémoc, Ciudad de Mexico 06100, Mexico;
| | - Carrie Hunt
- Institute for Infectious Animal Diseases, Texas A&M AgriLife Research, College Station, TX 77843, USA; (D.E.); (C.H.)
| | - Mackenzie Tietjen
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| | - Denise Bonilla
- Veterinary Services, Animal and Plant Health Inspection Service International Services, United States Department of Agriculture (USDA-APHIS), Fort Collins, CO 80526, USA;
| | - Don Thomas
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Cattel Fever Tick Research Laboratory, Moore Air Base, Edinburg, TX 78541, USA;
| | - Linda L. Logan
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Hallie Hasel
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Austin, TX 78701, USA;
| | - Jesús A. Alvarez Martínez
- CENID-SAI, Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla No. 8534, Col. Progreso. Jiutepec, Morelos 62390, Mexico;
| | - Jesús J. Hernández-Escareño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Francisco Villa S/N, Hacienda del Canada, Ciudad General Escobedo, Nuevo León 66054, Mexico;
| | - Juan Mosqueda Gualito
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, Queretaro Queretaro 76140, Mexico;
| | - Miguel A. Alonso Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, Martínez de la Torre, Veracruz 93600, Mexico;
| | - Rodrigo Rosario-Cruz
- BioSA Research Lab., Natural Sciences College, Campus el ‘Shalako’ Las Petaquillas, Autonomous Guerrero State University, Chilpancingo, Guerrero 62105, Mexico;
| | - Noé Soberanes Céspedes
- Lapisa S.A. de C.V. Carretera La Piedad-Guadalajara Km 5.5, Col. Camelinas, La Piedad, Michoacán 59375, Mexico;
| | - Octavio Merino Charrez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 Carretera Victoria-Mante, Ciudad Victoria, Tamaulipas 87000, Mexico;
| | - Tami Howard
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, (USDA-APHIS-VS), Field Operations, Southern Border Ports, Albuquerque, NM 87109, USA;
| | - Victoria M. Chávez Niño
- United States Department of Agriculture, Animal and Plant Health Inspection Service, International Services, (USDA-APHIS-IS), Mexico, Sierra Nevada 115, Col. Lomas de Chapultepec, Mexico City 11000, Mexico;
| | - Adalberto A. Pérez de León
- United States Department of Agriculture, Agricultural Research Service (USDA–ARS), Knipling–Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, USA; (M.T.); (A.A.P.d.L.)
| |
Collapse
|
9
|
Osbrink WLA, Showler AT, Abrigo V, Pérez de León AA. Rhipicephalus (Boophilus) microplus (Ixodida: Ixodidae) Larvae Collected From Vegetation in the Coastal Wildlife Corridor of Southern Texas and Research Solutions for Integrated Eradication. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1305-1309. [PMID: 31971591 DOI: 10.1093/jme/tjaa002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Indexed: 06/10/2023]
Abstract
The potential for reinvasion of the United States by cattle fever ticks, Rhipicephalus (Boophilus) annulatus and Rhipicephalus microplus (Canestrini), which remain established in Mexico, threatens the viability of the domestic livestock industry because these ticks vector the causal agents (Babesia bovis and Babesia bigemina) of bovine babesiosis. The Cattle Fever Tick Eradication Program safeguards the health of the national cattle herd preventing the reemergence of bovine babesiosis by keeping the United States free of cattle fever ticks. Here, the collection of free-living southern cattle tick, R. microplus, larvae by sweeping flannel flags over vegetation in the wildlife corridor of Cameron and Willacy Counties, TX, is reported. Finding R. microplus larvae on vegetation complements reports of infestations in wildlife hosts inhabiting the southern Texas coastal plains. Land uses and environmental conditions have changed since cattle fever ticks were eradicated from the United States by 1943. These changes complicate efforts by the Cattle Fever Tick Eradication Program to keep cattle in the United States free of the cattle fever tick disease vectors. Current scientific research on technologies that could be used for area-wide management of fever tick larvae in south Texas and how this could be applied to integrated eradication efforts are discussed.
Collapse
Affiliation(s)
- Weste L A Osbrink
- USDA-ARS-SPA Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX
| | - Allan T Showler
- USDA-ARS-SPA Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX
| | | | | |
Collapse
|
10
|
Showler AT, Pérez de León A. Landscape Ecology of Rhipicephalus (Boophilus) microplus (Ixodida: Ixodidae) Outbreaks in the South Texas Coastal Plain Wildlife Corridor Including Man-Made Barriers. ENVIRONMENTAL ENTOMOLOGY 2020; 49:546-552. [PMID: 32338280 DOI: 10.1093/ee/nvaa038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 06/11/2023]
Abstract
Landscape features and the ecology of suitable hosts influence the phenology of invasive tick species. The southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodida: Ixodidae), vectors causal agents of babesiosis in cattle and it infests exotic, feral nilgai, Bosephalus tragocamelus Pallas, and indigenous white-tailed deer, Odocoilus virginianus (Zimmerman), on the South Texas coastal plain wildlife corridor. The corridor extends from the Mexico border to cattle ranches extending north from inside Willacy Co. Outbreaks of R. microplus infesting cattle and nondomesticated ungulate hosts since 2014 in the wildlife corridor have focused attention on host infestation management and, by extension, dispersal. However, there is a knowledge gap on the ecology of R. microplus outbreaks in the South Texas coastal plain wildlife corridor. Ixodid distribution on the wildlife corridor is strongly influenced by habitat salinity. Saline habitats, which constitute ≈25% of the wildlife corridor, harbor few ixodids because of occasional salt toxicity from hypersaline wind tides and infrequent storm surges, and from efficient egg predation by mud flat fiddler crabs, Uca rapax (Smith). Rhipicephalus microplus infestations on nilgai were more prevalent in part of the corridor with mixed low salinity and saline areas than in an area that is more extensively saline. The different levels of R. microplus infestation suggest that man-made barriers have created isolated areas where the ecology of R. microplus outbreaks involve infested nilgai. The possible utility of man-made barriers for R. microplus eradication in the lower part of the South Texas coastal plain wildlife corridor is discussed.
Collapse
Affiliation(s)
- Allan T Showler
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Road, Kerrville, TX
| | - Adalberto Pérez de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Road, Kerrville, TX
| |
Collapse
|
11
|
Merino O, De la Cruz NI, Martinez J, de León AAP, Romero-Salas D, Esteve-Gassent MD, Lagunes-Quintanilla R. Molecular detection of Rickettsia species in ticks collected in the Mexico-USA transboundary region. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:559-567. [PMID: 32249393 DOI: 10.1007/s10493-020-00483-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Zoonotic tick-borne diseases, including those caused by Rickettsia species, continue to have serious consequences for public health worldwide. One such disease that has emerged as a major problem in several countries of the American continent is the Rocky Mountain Spotted Fever (RMSF) caused by the bacterium Rickettsia rickettsii. Several tick species are capable of transmitting R. rickettsia, including Amblyomma cajennense, A. aureolatum, A. imitator, Rhipicephalus sanguineus, Dermacentor andersoni, D. variabilis and possibly A. americanum. Despite previous reports in Mexico linking new outbreaks of RMSF to the presence of these tick species, no robust measures have tackled transmission. In the present study, we amplified R. rickettsii from 109 test DNA samples extracted from ticks collected from several animals and humans of Tamaulipas, Mexico, between November 2015 and December 2017. Our analysis revealed the presence of R. rickettsii in six samples and these findings contribute to a spatial distribution map that is intended to minimize the risk of transmission to humans.
Collapse
Affiliation(s)
- O Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 Carretera Victoria-Mante, CP 87000, Ciudad Victoria, TAMPS, Mexico.
| | - N I De la Cruz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 Carretera Victoria-Mante, CP 87000, Ciudad Victoria, TAMPS, Mexico
| | - J Martinez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 Carretera Victoria-Mante, CP 87000, Ciudad Victoria, TAMPS, Mexico
| | - A A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX, 78028, USA
| | - D Romero-Salas
- Laboratorio de Parasitología. UD PZTM. Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Mexico
| | - M D Esteve-Gassent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - R Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, INIFAP. AP 2016, Civac, CP 62550, Jiutepec, MOR, Mexico
| |
Collapse
|
12
|
Yu S, Modarelli J, Tomeček JM, French JT, Hilton C, Esteve-Gasent MD. Prevalence of common tick-borne pathogens in white-tailed deer and coyotes in south Texas. Int J Parasitol Parasites Wildl 2020; 11:129-135. [PMID: 32025488 PMCID: PMC6997490 DOI: 10.1016/j.ijppaw.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
Determining which wildlife hosts are involved in the enzootic cycles of tick-borne diseases (TBD) enables enhanced surveillance and risk assessment of potential transmission to humans and domestic species. Currently, there is limited data to indicate which tick-borne pathogens (TBP) can infect coyotes. Additionally, limited surveillance data for white-tailed deer (WTD) in south Texas is available. The purpose of this study was to detect current infections of common TBP in coyotes and WTD in south Texas, which represents a transboundary region and common site for animal migrations across the U.S.-Mexico border. A patent pending real-time PCR assay, the TickPath layerplex test, was used to screen whole-blood samples for species from Borrelia, Rickettsia, Ehrlichia, Anaplasma, and Babesia genera. Conventional PCR and subsequent sequencing of positive samples confirmed the pathogen species. Of 122 coyote samples, 11/122 (9.0%) were positive for Babesia vogeli and 1/122 (0.8%) was positive for Borrelia turicatae. Of 245 WTD samples, 1/245 (0.4%) was positive for Anaplasma platys, 4/245 (1.6%) were positive for Ehrlichia chaffeensis, and 18/245 (7.3%) were positive for Theileria cervi. All positive samples from both species, except for one coyote, were collected from counties located in south Texas along the U.S.Mexico border. One coyote positive for B. vogeli originated from a county in northern Texas. The results from this study depicts the first known molecular detection of B. turicatae in a coyote, and demonstrates that coyotes and WTDs can potentially serve as sentinels for several zoonotic TBD as well as TBD that affect domestic animals.
Collapse
Affiliation(s)
- Serene Yu
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - Joseph Modarelli
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - John M. Tomeček
- Department of Wildlife and Fisheries Sciences Texas A&M University, College Station, TX, 77843, USA
| | - Justin T. French
- Department of Wildlife and Fisheries Sciences Texas A&M University, College Station, TX, 77843, USA
| | - Clayton Hilton
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Maria D. Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Kruse CS, Guerra DA, Gelillo-Smith R, Vargas A, Krishnan L, Stigler-Granados P. Leveraging Technology to Manage Chagas Disease by Tracking Domestic and Sylvatic Animal Hosts as Sentinels: A Systematic Review. Am J Trop Med Hyg 2020; 101:1126-1134. [PMID: 31549619 PMCID: PMC6838565 DOI: 10.4269/ajtmh.19-0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Surveillance of Chagas in the United States show more is known about prevalence in animals and vectors than in humans. Leveraging health information technology (HIT) may augment surveillance efforts for Chagas disease (CD), given its ability to disseminate information through health information exchanges (HIE) and geographical information systems (GISs). This systematic review seeks to determine whether technological tracking of Trypanosoma cruzi–infected domestic and/or sylvatic animals as sentinels can serve as a potential surveillance resource to manage CD in the southern United States. A Boolean search string was used in PubMed and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). Relevance of results was established and analysis of articles was performed by multiple reviewers. The overall Cohen statistic was 0.73, demonstrating moderate agreement among the study team. Four major themes were derived for this systematic review (n = 41): animals act as reservoir hosts to perpetuate CD, transmission to humans could be dependent on cohabitation proximity, variations in T. cruzi genotypes could lead to different clinical manifestations, and leveraging technology to track T. cruzi in domestic animals could reveal prevalent areas or “danger zones.” Overall, our systematic review identified that HIT can serve as a surveillance tool to manage CD. Health information technology can serve as a surveillance tool to manage CD. This can be accomplished by tracking domestic and/or sylvatic animals as sentinels within a GIS. Information can be disseminated through HIE for use by clinicians and public health officials to reach at-risk populations.
Collapse
|
14
|
Modarelli JJ, Tomeček JM, Piccione J, Ferro PJ, Esteve‐Gasent MD. Molecular prevalence and ecoregion distribution of select tick‐borne pathogens in Texas dogs. Transbound Emerg Dis 2019; 66:1291-1300. [DOI: 10.1111/tbed.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Joseph J. Modarelli
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical SciencesTexas A&M University College Station Texas
| | - John M. Tomeček
- Department of Wildlife and Fisheries SciencesTexas A&M University College Station Texas
| | - Julie Piccione
- Texas A&M Veterinary Medical Diagnostic LaboratoryTexas A&M University College Station Texas
| | - Pamela J. Ferro
- Texas A&M Veterinary Medical Diagnostic LaboratoryTexas A&M University College Station Texas
| | - Maria D. Esteve‐Gasent
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical SciencesTexas A&M University College Station Texas
| |
Collapse
|
15
|
Rodriguez-Morales AJ, Bonilla-Aldana DK, Idarraga-Bedoya SE, Garcia-Bustos JJ, Cardona-Ospina JA, Faccini-Martínez ÁA. Epidemiology of zoonotic tick-borne diseases in Latin America: Are we just seeing the tip of the iceberg? F1000Res 2018; 7:1988. [PMID: 31489178 PMCID: PMC6707394 DOI: 10.12688/f1000research.17649.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Ticks are responsible for transmission of multiple bacterial, parasitic and viral diseases. Tick-borne diseases (TBDs) occur particularly in tropical and also subtropical areas. The frequency of these TBDs has been increasing and extending to new territories in a significant way, partly since ticks' populations are highly favored by prevailing factors such as change in land use patterns, and climate change. Therefore, in order to obtain accurate estimates of mortality, premature mortality, and disability associated about TBDs, more molecular and epidemiological studies in different regions of the world, including Latin America, are required. In the case of this region, there is still a limited number of published studies. In addition, there is recently the emergence and discovering of pathogens not reported previously in this region but present in other areas of the world. In this article we discuss some studies and implications about TBDs in Latin America, most of them, zoonotic and with evolving taxonomical issues.
Collapse
Affiliation(s)
- Alfonso J. Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- School of Medicine, Universidad Franz Tamayo/UNIFRANZ, Cochabamba, Cochabamba, 4780, Bolivia
| | - D. Katterine Bonilla-Aldana
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Samuel E. Idarraga-Bedoya
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Juan J. Garcia-Bustos
- Grupo de Investigación en Patología e Inmunología – Doctorado en Medicina Tropical, Universidad del Magdalena, Santa Marta, Magdalena, 470004, Colombia
- Grupo de Investigación en Ciencias Animales Macagual, Universidad de La Amazonia, Florencia, Caquetá, 180002, Colombia
| | - Jaime A. Cardona-Ospina
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Infection and Immunity Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Biomedicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas – Sci-Help, Pereira, Risaralda, 660003, Colombia
| | - Álvaro A. Faccini-Martínez
- Postgraduate Program in Infectious Diseases, Health Science Center, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
16
|
Rodriguez-Morales AJ, Bonilla-Aldana DK, Idarraga-Bedoya SE, Garcia-Bustos JJ, Cardona-Ospina JA, Faccini-Martínez ÁA. Epidemiology of zoonotic tick-borne diseases in Latin America: Are we just seeing the tip of the iceberg? F1000Res 2018; 7:1988. [PMID: 31489178 PMCID: PMC6707394 DOI: 10.12688/f1000research.17649.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2018] [Indexed: 12/11/2022] Open
Abstract
Ticks are responsible for transmission of multiple bacterial, parasitic and viral diseases. Tick-borne diseases (TBDs) occur particularly in tropical and also subtropical areas. The frequency of these TBDs has been increasing and extending to new territories in a significant way, partly since ticks' populations are highly favored by prevailing factors such as change in land use patterns, and climate change. Therefore, in order to obtain accurate estimates of mortality, premature mortality, and disability associated about TBDs, more molecular and epidemiological studies in different regions of the world, including Latin America, are required. In the case of this region, there is still a limited number of published studies. In addition, there is recently the emergence and discovering of pathogens not reported previously in this region but present in other areas of the world. In this article we discuss some studies and implications about TBDs in Latin America, most of them, zoonotic and with evolving taxonomical issues.
Collapse
Affiliation(s)
- Alfonso J. Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- School of Medicine, Universidad Franz Tamayo/UNIFRANZ, Cochabamba, Cochabamba, 4780, Bolivia
| | - D. Katterine Bonilla-Aldana
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Samuel E. Idarraga-Bedoya
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Juan J. Garcia-Bustos
- Grupo de Investigación en Patología e Inmunología – Doctorado en Medicina Tropical, Universidad del Magdalena, Santa Marta, Magdalena, 470004, Colombia
- Grupo de Investigación en Ciencias Animales Macagual, Universidad de La Amazonia, Florencia, Caquetá, 180002, Colombia
| | - Jaime A. Cardona-Ospina
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Infection and Immunity Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Biomedicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas – Sci-Help, Pereira, Risaralda, 660003, Colombia
| | - Álvaro A. Faccini-Martínez
- Postgraduate Program in Infectious Diseases, Health Science Center, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
17
|
Maintenance of Trypanosoma cruzi, T. evansi and Leishmania spp. by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:398-404. [PMID: 30370220 PMCID: PMC6199764 DOI: 10.1016/j.ijppaw.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 11/05/2022]
Abstract
Domestic dogs are considered reservoirs hosts for several vector-borne parasites. This study aimed to evaluate the role of domestic dogs as hosts for Trypanosoma cruzi, Trypanosoma evansi and Leishmania spp. in single and co-infections in the Urucum settlement, near the Brazil-Bolivian border. Additionally, we evaluated the involvement of wild mammals’ in the maintenance of these parasites in the study area. Blood samples of dogs (n = 62) and six species of wild mammals (n = 36) were collected in July and August of 2015. The infections were assessed using parasitological, serological and molecular tests. Clinical examination of dogs was performed and their feeding habits were noted. Overall, 87% (54/62) of sampled dogs were positive for at least one trypanosomatid species, in single (n = 9) and co-infections (n = 45). We found that 76% of dogs were positive for T. cruzi, four of them displayed high parasitemias demonstrated by hemoculture, including one strain types TcI, two TcIII and one TcIII/TcV. Around 73% (45/62) of dogs were positive to T. evansi, three with high parasitemias as seen by positive microhematocrit centrifuge technique. Of dogs sampled, 50% (31/62) were positive for Leishmania spp. by PCR or serology. We found a positive influence of (i) T. evansi on mucous pallor, (ii) co-infection by T. cruzi and Leishmania with onychogryphosis, and (iii) all parasites to skin lesions of sampled dogs. Finally, feeding on wild mammals had a positive influence in the Leishmania spp. infection in dogs. We found that 28% (5/18) coati Nasua nasua was co-infected for all three trypanosamatids, demonstrating that it might play a key role in maintenance of these parasites. Our results showed the importance of Urucum region as a hotspot for T. cruzi, T. evansi and Leishmania spp. and demonstrated that dogs can be considered as incidental hosts. Observation of high occurrence of dogs co-infected by trypanosomatids. Dogs infected by TcI, TcIII and TcIII/TcV. Nasua nasua is a key species in the sylvatic cycles of trypanosomatids. Direct effect of trypanosomatids' infection in clinical signs of dogs. Dogs as sentinels to human infection in the Brazil-Bolivian border.
Collapse
|
18
|
Carmona-Castro O, Moo-Llanes DA, Ramsey JM. Impact of climate change on vector transmission of Trypanosoma cruzi (Chagas, 1909) in North America. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:84-101. [PMID: 28887895 DOI: 10.1111/mve.12269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/05/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Climate change can influence the geographical range of the ecological niche of pathogens by altering biotic interactions with vectors and reservoirs. The distributions of 20 epidemiologically important triatomine species in North America were modelled, comparing the genetic algorithm for rule-set prediction (GARP) and maximum entropy (MaxEnt), with or without topographical variables. Potential shifts in transmission niche for Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) (Chagas, 1909) were analysed for 2050 and 2070 in Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. There were no significant quantitative range differences between the GARP and MaxEnt models, but GARP models best represented known distributions for most species [partial-receiver operating characteristic (ROC) > 1]; elevation was an important variable contributing to the ecological niche model (ENM). There was little difference between niche breadth projections for RCP 4.5 and RCP 8.5; the majority of species shifted significantly in both periods. Those species with the greatest current distribution range are expected to have the greatest shifts. Positional changes in the centroid, although reduced for most species, were associated with latitude. A significant increase or decrease in mean niche elevation is expected principally for Neotropical 1 species. The impact of climate change will be specific to each species, its biogeographical region and its latitude. North American triatomines with the greatest current distribution ranges (Nearctic 2 and Nearctic/Neotropical) will have the greatest future distribution shifts. Significant shifts (increases or decreases) in mean elevation over time are projected principally for the Neotropical species with the broadest current distributions. Changes in the vector exposure threat to the human population were significant for both future periods, with a 1.48% increase for urban populations and a 1.76% increase for rural populations in 2050.
Collapse
Affiliation(s)
- O Carmona-Castro
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Mexico
| | - D A Moo-Llanes
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - J M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Mexico
| |
Collapse
|
19
|
Abstract
Within the last five years, the State of Texas has experienced either transmission or outbreaks of Ebola, chikungunya, West Nile, and Zika virus infections. Autochthonous transmission of neglected parasitic and bacterial diseases has also become increasingly reported. The rise of such emerging and neglected tropical diseases (NTDs) has not occurred by accident but instead reflects rapidly evolving changes and shifts in a “new” Texas beset by modern and globalizing forces that include rapid expansions in population together with urbanization and human migrations, altered transportation patterns, climate change, steeply declining vaccination rates, and a new paradigm of poverty known as “blue marble health.” Summarized here are the major NTDs now affecting Texas. In addition to the vector-borne viral diseases highlighted above, there also is a high level of parasitic infections, including Chagas disease, trichomoniasis, and possibly leishmaniasis and toxocariasis, as well as typhus-group rickettsiosis, a vector-borne bacterial infection. I also highlight some of the key shifts in emerging and neglected disease patterns, partly due to an altered and evolving economic and ecological landscape in the new Texas, and provide some preliminary disease burden estimates for the major prevalent and incident NTDs.
Collapse
Affiliation(s)
- Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Scowcroft Institute of International Affairs, Bush School of Government and Public Service, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Short EE, Caminade C, Thomas BN. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases. Infect Dis (Lond) 2017; 10:1178633617732296. [PMID: 29317829 PMCID: PMC5755797 DOI: 10.1177/1178633617732296] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/20/2017] [Indexed: 01/07/2023] Open
Abstract
The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected.
Collapse
Affiliation(s)
- Erica E Short
- Environmental Science Program, Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Cyril Caminade
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
21
|
Foley AM, Goolsby JA, Ortega-S A, Ortega-S JA, Pérez de León A, Singh NK, Schwartz A, Ellis D, Hewitt DG, Campbell TA. Movement patterns of nilgai antelope in South Texas: Implications for cattle fever tick management. Prev Vet Med 2017; 146:166-172. [PMID: 28992923 DOI: 10.1016/j.prevetmed.2017.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/30/2017] [Accepted: 08/02/2017] [Indexed: 11/28/2022]
Abstract
Wildlife, both native and introduced, can harbor and spread diseases of importance to the livestock industry. Describing movement patterns of such wildlife is essential to formulate effective disease management strategies. Nilgai antelope (Boselaphus tragocamelus) are a free-ranging, introduced ungulate in southern Texas known to carry cattle fever ticks (CFT, Rhipicephalus (Boophilus) microplus, R. (B.) annulatus). CFT are the vector for the etiological agent of bovine babesiosis, a lethal disease causing high mortality in susceptible Bos taurus populations and severely affecting the beef cattle industry. Efforts to eradicate CFT from the United States have been successful. However, a permanent quarantine area is maintained between Texas and Mexico to check its entry from infested areas of neighboring Mexico states on wildlife and stray cattle. In recent years, there has been an increase in CFT infestations outside of the permanent quarantine area in Texas. Nilgai are of interest in understanding how CFT may be spread through the landscape. Thirty nilgai of both sexes were captured and fitted with satellite radio collars in South Texas to gain information about movement patterns, response to disturbances, and movement barriers. Median annual home range sizes were highly variable in males (4665ha, range=571-20,809) and females (1606ha, range=848-29,909). Female movement patterns appeared to be seasonal with peaks during June-August; these peaks appeared to be a function of break-ups in female social groups rather than environmental conditions. Nilgai, which reportedly are sensitive to disturbance, were more likely to relocate into new areas immediately after being captured versus four other types of helicopter activities. Nilgai did not cross 1.25m high cattle fences parallel to paved highways but did cross other fence types. Results indicate that females have a higher chance of spreading CFT through the landscape than males, but spread of CFT may be mitigated via maintenance of cattle fences running parallel with paved highways. Our results highlight the importance of documenting species-specific behavior in wildlife-livestock interfaces that can be used to develop effective disease management strategies in the United States and worldwide.
Collapse
Affiliation(s)
- Aaron M Foley
- East Foundation, 200 Concord Plaza Drive, Suite 410, San Antonio, TX 78216, United States; Caesar Kleberg Wildlife Research Institute, 700 University Blvd., Kingsville, TX 78363, United States
| | - John A Goolsby
- USDA, Agricultural Research Service, Cattle Fever Tick Research Laboratory, 22675 N. Moorefield Rd., Edinburg, TX 78541, United States.
| | - Alfonso Ortega-S
- East Foundation, 200 Concord Plaza Drive, Suite 410, San Antonio, TX 78216, United States
| | - J Alfonso Ortega-S
- Caesar Kleberg Wildlife Research Institute, 700 University Blvd., Kingsville, TX 78363, United States
| | - A Pérez de León
- USDA, Agricultural Research Service, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, TX 78028, United States
| | - Nirbhay K Singh
- Department of Veterinary Parasitology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Andy Schwartz
- Texas Animal Health Commission, 2105 Kramer Lane, Austin, TX 78758, United States
| | - Dee Ellis
- Texas Animal Health Commission, 2105 Kramer Lane, Austin, TX 78758, United States
| | - David G Hewitt
- Caesar Kleberg Wildlife Research Institute, 700 University Blvd., Kingsville, TX 78363, United States
| | - Tyler A Campbell
- East Foundation, 200 Concord Plaza Drive, Suite 410, San Antonio, TX 78216, United States
| |
Collapse
|
22
|
Osbrink WLA, Goolsby JA, Thomas DB, Mejorado A, Showler AT, Pérez De León A. Higher Ant Diversity in Native Vegetation Than in Stands of the Invasive Arundo, Arundo donax L., Along the Rio Grande Basin in Texas, USA. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2017; 9:1179543317724756. [PMID: 28835737 PMCID: PMC5555496 DOI: 10.1177/1179543317724756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Our hypothesis was that there will be greater ant biodiversity in heterogeneous native vegetation compared with Arundo stands. Changes in ant biodiversity due to Arundo invasion may be one of the ecological changes in the landscape that facilitates the invasion of cattle fever ticks from Mexico where they are endemic. Ants collected in pitfall traps were identified and compared between native vegetation and stands of Arundo, Arundo donax L., monthly for a year at 10 locations. A total of 82 752 ants representing 28 genera and 76 species were collected. More ants were collected in the native vegetation which also had greater species richness and biological diversity than ants collected from Arundo stands. It is suggested that the greater heterogeneous nature of native vegetation provided greater and more predictable nourishment in the form of nectars and more abundant arthropod prey when compared with Arundo stands.
Collapse
Affiliation(s)
- Weste LA Osbrink
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS-SPA, Kerrville, TX, USA
| | - John A Goolsby
- Cattle Fever Tick Research Lab, USDA-ARS, Edinburg, TX, USA
| | - Don B Thomas
- Cattle Fever Tick Research Lab, USDA-ARS, Edinburg, TX, USA
| | - Alba Mejorado
- Cattle Fever Tick Research Lab, USDA-ARS, Edinburg, TX, USA
| | - Allan T Showler
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS-SPA, Kerrville, TX, USA
| | - Adalberto Pérez De León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS-SPA, Kerrville, TX, USA
| |
Collapse
|
23
|
Rocky Mountain spotted fever in Mexico: past, present, and future. THE LANCET. INFECTIOUS DISEASES 2017; 17:e189-e196. [PMID: 28365226 DOI: 10.1016/s1473-3099(17)30173-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022]
Abstract
Rocky Mountain spotted fever, a tick-borne zoonosis caused by Rickettsia rickettsii, is among the most lethal of all infectious diseases in the Americas. In Mexico, the disease was first described during the early 1940s by scientists who carefully documented specific environmental determinants responsible for devastating outbreaks in several communities in the states of Sinaloa, Sonora, Durango, and Coahuila. These investigators also described the pivotal roles of domesticated dogs and Rhipicephalus sanguineus sensu lato (brown dog ticks) as drivers of epidemic levels of Rocky Mountain spotted fever. After several decades of quiescence, the disease re-emerged in Sonora and Baja California during the early 21st century, driven by the same environmental circumstances that perpetuated outbreaks in Mexico during the 1940s. This Review explores the history of Rocky Mountain spotted fever in Mexico, current epidemiology, and the multiple clinical, economic, and social challenges that must be considered in the control and prevention of this life-threatening illness.
Collapse
|
24
|
Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA. Acta Trop 2016; 164:259-266. [PMID: 27647574 PMCID: PMC5107337 DOI: 10.1016/j.actatropica.2016.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022]
Abstract
In contrast to other mammalian reservoirs, many bat species migrate long-distances and have the potential to introduce exotic pathogens to new areas. Bats have long been associated with blood-borne protozoal trypanosomes of the Schizotrypanum subgenus, which includes the zoonotic parasite Trypanosoma cruzi, agent of Chagas disease. Another member of the subgenus, Trypanosoma dionisii, infects bats of Europe and South America, and genetic similarities between strains from the two continents suggest transcontinental movement of this parasite via bats. Despite the known presence of diverse trypanosomes in bats of Central and South America, and the presence of T. cruzi-infected vectors and wildlife in the US, the role of bats in maintaining and dispersing trypanosomes in the US has not yet been reported. We collected hearts and blood from 8 species of insectivorous bats from 30 counties across Texas. Using PCR and DNA sequencing, we tested 593 bats for trypanosomes and found 1 bat positive for T. cruzi (0.17%), 9 for T. dionisii (1.5%), and 5 for Blastocrithidia spp. (0.8%), a group of insect trypanosomes. The T. cruzi-infected bat was carrying TcI, the strain type associated with human disease in the US. In the T. dionisii-infected bats, we detected three unique variants associated with the three infected bat species. These findings represent the first report of T. cruzi in a bat in the US, of T. dionisii in North America, and of Blastocrithidia spp. in mammals, and underscore the importance of bats in the maintenance of trypanosomes, including agents of human and animal disease, across broad geographic locales.
Collapse
|
25
|
Simulated interactions of white-tailed deer (Odocoileus virginianus), climate variation and habitat heterogeneity on southern cattle tick (Rhipicephalus (Boophilus) microplus) eradication methods in south Texas, USA. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Longoni SS, Villagrán-Herrera ME, de Diego Cabrera JA, Marin C, Sanchez-Moreno M. Purification of a Fe-SOD excreted by Leishmania braziliensis for specific antibodies detection in Mexican human sera: Cutting-edge the knowledge. Parasite Epidemiol Control 2016; 1:90-97. [PMID: 29988218 PMCID: PMC5991859 DOI: 10.1016/j.parepi.2016.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 11/23/2022] Open
Abstract
Clinical diagnosis of leishmaniasis is highly complex, presenting a wide range of clinical manifestations, sometimes non-specific, and thus the epidemiological study and diagnostic need specific molecular markers for each Leishmania species. Leishmania spp. posses different Fe-SOD isoforms, one of which is excreted into the external milieu and, presenting immunogenic characteristics, is a very reliable molecular marker. Superoxide dismutases (SODs) are antioxidant metal-enzymes responsible for the dismutation of superoxide ion into hydrogen peroxide and molecular oxygen, and it is considered an important virulence factor. In this manuscript we have purified the iron(Fe)-SOD excreted by Leishmania braziliensis using ion-exchange and molecular-sieve chromatography and we have studied it as an antigen in serodiagnostic analyses in ELISA and Western blot techniques, testing 213 human sera from Mexico. Indeed, L. braziliensis Fe-SODe has been purified 123.26 times with a specific activity of about 893.66 U/mg of protein. Applying the purified enzymes in serological tests we found 17.84% sera positive. We have demonstrated that the purified enzyme is more sensitive than the non-purified ones and we also demonstrated, for the first time, the presence of antibodies against L. braziliensis, not the main species in the country, in human population from Hidalgo and Nuevo Leon States.
Collapse
Affiliation(s)
- Silvia Stefania Longoni
- Departamento de Parasitología, Facultad de Ciencias, UGR, Granada, Spain
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | | | - Jose Antonio de Diego Cabrera
- Unidad de Parasitología y Medicina Tropical, Departamento de Medicina Preventiva y Salud Publica, Facultad de Medicina, UAM, Madrid, Spain
| | - Clotilde Marin
- Departamento de Parasitología, Facultad de Ciencias, UGR, Granada, Spain
| | | |
Collapse
|
27
|
Levin AE, Williamson PC, Bloch EM, Clifford J, Cyrus S, Shaz BH, Kessler D, Gorlin J, Erwin JL, Krueger NX, Williams GV, Penezina O, Telford SR, Branda JA, Krause PJ, Wormser GP, Schotthoefer AM, Fritsche TR, Busch MP. Serologic screening of United States blood donors for Babesia microti using an investigational enzyme immunoassay. Transfusion 2016; 56:1866-74. [PMID: 27224258 PMCID: PMC6007971 DOI: 10.1111/trf.13618] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND The tick-borne pathogen Babesia microti has become recognized as the leading infectious risk associated with blood transfusion in the United States, yet no Food and Drug Administration-licensed screening tests are currently available to mitigate this risk. The aim of this study was to evaluate the performance of an investigational enzyme immunoassay (EIA) for B. microti as a screening test applied to endemic and nonendemic blood donor populations. STUDY DESIGN AND METHODS The study aimed to test 20,000 blood donors from areas of the United States considered endemic for B. microti and 10,000 donors from a nonendemic area with the investigational B. microti EIA. Repeat-reactive samples were retested by polymerase chain reaction (PCR), blood smear, immunofluorescent assay (IFA), and immunoblot assay. In parallel, serum samples from symptomatic patients with confirmed babesiosis were tested by EIA, IFA, and immunoblot assays. RESULTS A total of 38 of 13,757 (0.28%) of the donors from New York, 7 of 4583 (0.15%) from Minnesota, and 11 of 8363 (0.13%) from New Mexico were found repeat reactive by EIA. Nine of the 56 EIA repeat-reactive donors (eight from New York and one from Minnesota) were positive by PCR. The specificity of the assay in a nonendemic population was 99.93%. Among IFA-positive clinical babesiosis patients, the sensitivity of the assay was 91.1%. CONCLUSION The B. microti EIA detected PCR-positive, potentially infectious blood donors in an endemic population and exhibited high specificity among uninfected and unexposed individuals. The EIA promises to provide an effective tool for blood donor screening for B. microti in a format amenable to high-throughput and cost-effective screening.
Collapse
Affiliation(s)
| | | | - Evan M Bloch
- Blood Systems Research Institute, San Francisco, California.,Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | - Jed Gorlin
- Innovative Blood Resources/Memorial Blood Centers, St Paul, Minnesota
| | | | | | | | | | - Sam R Telford
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - John A Branda
- Massachusetts General Hospital, Boston, Massachusetts
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
28
|
Esteve-Gassent MD, Castro-Arellano I, Feria-Arroyo TP, Patino R, Li AY, Medina RF, Pérez de León AA, Rodríguez-Vivas RI. TRANSLATING ECOLOGY, PHYSIOLOGY, BIOCHEMISTRY, AND POPULATION GENETICS RESEARCH TO MEET THE CHALLENGE OF TICK AND TICK-BORNE DISEASES IN NORTH AMERICA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:38-64. [PMID: 27062414 PMCID: PMC4844827 DOI: 10.1002/arch.21327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern United States and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multihost-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks.
Collapse
Affiliation(s)
- Maria D. Esteve-Gassent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical sciences, Texas A&M University, College Station, TX-77843, USA
| | - Ivan Castro-Arellano
- Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX-78666, USA
| | - Teresa P. Feria-Arroyo
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX-78539, USA
| | - Ramiro Patino
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX-78539, USA
| | - Andrew Y. Li
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland 20705, USA
| | - Raul F. Medina
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX-77843, USA
| | - Adalberto A. Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, and Veterinary Pest Genomics Center, Kerrville, TX-78028, USA
| | - Roger Iván Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias. Facultad de Medicina Veterinaria y Zootecnia. Km 15.5 carretera Mérida-Xmatkuil. Yucatán, México
| |
Collapse
|
29
|
Poelchau MF, Coates BS, Childers CP, Peréz de León AA, Evans JD, Hackett K, Shoemaker D. Agricultural applications of insect ecological genomics. CURRENT OPINION IN INSECT SCIENCE 2016; 13:61-69. [PMID: 27436554 DOI: 10.1016/j.cois.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/07/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance.
Collapse
Affiliation(s)
- Monica F Poelchau
- USDA-ARS, National Agricultural Library, Beltsville, MD 20705, United States.
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, United States
| | | | - Adalberto A Peréz de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, United States
| | - Jay D Evans
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, United States
| | - Kevin Hackett
- USDA-ARS, Office of National Programs, Crop Production and Protection, Beltsville, MD 20705, United States
| | - DeWayne Shoemaker
- USDA-ARS, Imported Fire Ant and Household Insects Research Unit, Gainesville, FL 32608, United States.
| |
Collapse
|
30
|
Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico. Vet Parasitol 2016; 215:106-13. [DOI: 10.1016/j.vetpar.2015.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022]
|
31
|
Bueno-Marí R, Almeida APG, Navarro JC. Editorial: Emerging Zoonoses: Eco-Epidemiology, Involved Mechanisms, and Public Health Implications. Front Public Health 2015; 3:157. [PMID: 26106592 PMCID: PMC4459090 DOI: 10.3389/fpubh.2015.00157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rubén Bueno-Marí
- Entomology and Pest Control Laboratory, Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), University of Valencia , Valencia , Spain
| | - A Paulo Gouveia Almeida
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa , Lisbon , Portugal ; University of Pretoria , Pretoria , South Africa
| | - Juan Carlos Navarro
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela , Caracas , Venezuela
| |
Collapse
|